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Abstract: Convolutional neural networks (CNNs) can adapt to more complex data, extract deeper
characteristics from images, and achieve higher classification accuracy in remote sensing image scene
classification and object detection compared to traditional shallow-model methods. However, directly
applying common-structure CNNs to pixel-based remote sensing image classification will lead to
boundary or outline distortions of the land cover and consumes enormous computation time in
the image classification stage. To solve this problem, we propose a high-resolution remote sensing
image classification method based on CNN and the restricted conditional random field algorithm
(CNN-RCRF). CNN-RCRF adopts CNN superpixel classification instead of pixel-based classification
and uses the restricted conditional random field algorithm (RCRF) to refine the superpixel result
image into a pixel-based result. The proposed method not only takes advantage of the classification
ability of CNNs but can also avoid boundary or outline distortions of the land cover and greatly
reduce computation time in classifying images. The effectiveness of the proposed method is
tested with two high-resolution remote sensing images, and the experimental results show that
the CNN-RCRF outperforms the existing traditional methods in terms of overall accuracy, and
CNN-RCRF’s computation time is much less than that of traditional pixel-based deep-model methods.

Keywords: deep learning; convolutional neural network; conditional random field; remote sensing
images; pixel-based classification

1. Introduction

With the rapid development of remote sensing technology, a large volume of high-resolution
remote sensing images is now available. Using classification algorithms, land cover information can be
extracted automatically from remote sensing images, allowing the massive amounts of remote sensing
data already obtained from satellites to be fully utilized. In recent years, many algorithms have been
introduced in the field of high-resolution image classification [1].

High-resolution remote sensing images contain abundant detailed land cover information, which
can lead to considerable internal variability in a land cover category, resulting in low accuracy
classification images when utilizing classification algorithms if they rely on only the band values
of pixels [2]. To improve the results, algorithms should consider a pixel’s neighborhood as the context
to discover the deeper characteristics of land cover from images [3]. When using classification trees,
support vector machines (SVMs) and other traditional shallow classification models, object-oriented
segmentation techniques, which can obtain relatively homogeneous areas and reduce the classification
difficulty, are usually adopted [4]. However, segmentation algorithms typically rely on several
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pre-determined parameters. Because of the different scales involved in the different land covers in an
image, these algorithms might result in both over- and under-segmentation within the same image [5].
This problem can be partially solved by introducing multi-scale technology such as hierarchical
selection or supervised evaluation selection [6]; however, in these methods, multiple iterations of
segmentation, evaluation, and parameter selection must be executed in subsequent steps, thereby
further increasing the difficulty of model implementation and utilization. Meanwhile, along with
improvement of the image resolution, single segmentation can hardly represent the characteristics of
land cover category due to internal variability. Considering all the above limitations, it is imperative to
introduce new technologies for classifying high-resolution remote sensing images.

In recent years, deep learning technology has achieved considerable success in such fields as signal
processing, image identification, speech identification, and Go board position evaluation [7–10]. In the
field of remote image processing, auto-encoders (AEs) and convolutional neural networks (CNNs) are
the main focuses. AEs can reconstruct input data via encoding and decoding processes and obtain more
optimized feature expressions, and the ability of an algorithm to filter noise from signals and identify
objects in the image can be significantly improved through AE processing [11–13]. By integrating the
spectral-spatial information of hyperspectral images, features with greater classification value can be
constructed to improve classification accuracy [14]. The pan-sharpening method for remote sensing
images is realized by an AE and achieves better results [15]. The features are extracted using the AE
and the image classification quality is improved [16–19]. The hyperspectral data can be projected
to a higher dimension using the AE to improve data separability, or attributes can be reconstructed
and reduced to improve the classification quality [20,21]. An AE-based classification framework was
created for land cover mapping over Africa [22]. A fuzzy AE is used to conduct cloud detection from
ETM+ images [23]. For CNNs, convolutional layers and max-pooling layers are adopted to strengthen
the image classification ability. CNNs can achieve favorable classification results, especially in the fields
of object detection and scenario classification. Vehicles can be detected from remote sensing images
using CNNs. The target recognition accuracy has been enhanced in SAR images by improving the CNN
training method [24]. A pre-trained CNN from ImageNet was used to conduct object recognition [25],
and a CNN was used to extract road networks [26]. The region-based CNN was improved to increase
the precision of detecting geospatial objects [27]. The rotation-invariant characteristics of a CNN were
enhanced by improving the objective function [28]. For scenario classification from remote sensing
images, experimental results show that CNNs achieve higher classification accuracies compared to
the bag of visual words (BOVW) and other traditional algorithms [29]. A pre-trained neural network
extracts spatial attributes and can achieve higher accuracy than traditional feature representation
algorithms [30]. CNNs describe multi-scale spatial patterns and improve the BOVW algorithm’s
classification accuracy [31].

In the common CNN structure, the input is a feature map set and the output is a category
label. Directly applying this structure to pixel-based remote sensing image classification will lead
to boundary and outline distortions of the land covers in the result image [32]. To overcome this
drawback of CNNs, three types of CNN-based strategies exist for performing pixel-based image
classification. (1) The pixel-based classification can be realized by transforming the CNN input or
output. For example, a central point enhancement layer can be introduced to weaken the translational
invariance characteristics of the CNN to achieve pixel-based classification [32]. Integrating CNN
output results and MLP output results can also improve the classification accuracy of the land cover
boundary [33]. Nevertheless, algorithms of this type have a typical weakness: during classification, for
every pixel in the image, an input feature map (or image patch) must be constructed and classified.
When the image is large (e.g., a 6000 × 6000 image involves reading and classifying 36,000,000 image
patches), this requirement constitutes a serious computational burden, causing the classification
speed to be very slow. (2) Pixel-based segmentation can be realized by introducing fully convolutional
networks (FCNs) into the CNN as a deconvolution output layer [3,34]. However, this type of algorithms
requires a large amount of training data (e.g., training data obtained from many images) to train the
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neural network, and the model training stage requires multiple days or even weeks, even on a
high-performance computer [35,36]. (3) The CNN first classifies the entire image to obtain rough
superpixel classification results; then, it semantically segments the superpixel image using conditional
random fields (CRFs) and refines the results into pixel-based classifications [37]. Land covers in remote
sensing images have many categories and have different sizes. Different categories that have similar
spatial band values will lead to excessive expansion or shrinking of partial land covers during the
CRF segmentation process. Therefore, CRF segmentation is seldom utilized in the remote sensing
classification field.

The motivation of this paper is to fully utilize the CNN’s classification ability, avoiding traditional
CNN drawbacks of boundary or outline distortions of land cover, reducing computational time,
and achieving the goal of realizing “reasonable training sample set size- > acceptable model
training time- > acceptable entire image classification time- > higher classification accuracy” in
high-resolution remote sensing image classification. This paper proposes a high-resolution remote
sensing image classification method based on CNN and the restricted conditional random field
algorithm (CNN-RCRF). CNN-RCRF adopts CNN superpixel classification instead of pixel-based
classification and uses the restricted conditional random field algorithm (RCRF) to refine the superpixel
result image into a pixel-based result. The proposed method not only takes advantage of the
classification ability of CNNs but can also avoid boundary or outline distortions of the land cover and
greatly reduce computation time in classifying images. The effectiveness of the proposed method is
tested with two high-resolution remote sensing images, and the experimental results show that
the CNN-RCRF outperforms the existing traditional methods in terms of overall accuracy, and
CNN-RCRF’s computation time is much less than that of traditional pixel-based deep-model methods.

2. Methods

2.1. CNN and Image Classification

A convolutional neural network (CNN) is a multi-layer neural network different from general
neural networks, CNN introduces convolutional layers and subsampling layers into its structure.
Via the kernel, the convolutional layer performs a convolution calculation of the feature map input by
the previous layer. Then, the transmission function can be calculated to obtain the output feature map.
The formula for calculating the output feature map can be written as follows:

ξ l
j = f (∑

i∈T
ξ l−1

i × kl
ij + bl

j), (1)

where f is the transmission function, l corresponds to the current layer, ξ l
j denotes the jth output feature

map at the lth layer, T denotes all the input feature maps, kl
ij corresponds to the weights of the kernels

of the ith input feature map, and bl
j is the bias of layer l [32]. The subsampling layer can realize the

down-sampling of the input feature map, and the output feature map is smaller than the input feature
map. The formula for calculating the output feature map can be written as follows:

ξ l
j = f (δl

jdown(ξ l−1
j ) + bl

j), (2)

where down is a down-sampling function that returns the maximum or minimum value within an
n × n block (the maximum value is currently more widely used). A layer that uses the maximum value
as a down-sampling function is called a max-pooling layer, and δl

j is the multiplier deviation of the jth
feature map at the lth layer [38].

The CNN input is a feature map set (or an image patch). The CNN first uses multiple groups of
convolutional layers and max-pooling layers to extract critical characteristics and reduce the number
of neurons. Next, the feature maps are converted into a one-dimensional vector. Finally, a multi-layer
fully connected neural network is used to determine the CNN output, which is a category label.
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This structure can effectively perform scene classification and land object detection. When this
structure is used for pixel-based remote sensing image classification, if the category label is directly
adopted as the category label for all pixels from the input feature map set, superpixel classification
results will be obtained; this reduces the resolution of the original image [37]. If each pixel from the
image is considered as a center point, and each center point and all its neighboring pixels are used to
construct the feature map set, then the CNN determines the pixel’s category label based on this feature
map set, which leads to boundary and outline distortions of the land covers in the result image [32].
Therefore, accurate pixel-based remote sensing image classification results are difficult to obtain via a
CNN with a traditional structure.

2.2. Fully Connected CRF

In the field of object identification, CRF is a classical segmentation method that can segment rough
superpixel classification results into pixel-based classification results [39]. Consider a remote sensing
image that contains N pixels and a random field I with random variables {I1, I2, . . . , IN}, where Ii is
the vector constituted by the spatial-feature values of pixel i. Suppose another random field X with
random variables {x1, x2, . . . , xN} exists, where xi is the category label of pixel i, whose value is a set of
labels L = {l1, l2, . . . , lk}. A conditional random field (I,X) can be defined as follows:

P(X|I) = 1
Z(I)

exp(− ∑
c∈Cg

log(XC|I)), (3)

where Z(I) is a normalizing factor that guarantees that the distribution sums to one:

Z(I) = ∑
X

exp(− ∑
c∈Cg

log(XC|I)), (4)

where g = (ν,ε) is a graph on X, c is a clique in a set of cliques Cg in g induces a potential φc [40]. In each
CRF iteration, the mutual interaction between pixels is calculated using the energy function [41].
The superpixel classification results obtained by the CNN are usually processed using the fully
connected CRF. The fully connected CRF energy function can be expressed as follows:

E(x) = ∑
i

θi(xi) + ∑
ij

θij(xi, xj), (5)

where the unary potential θi(xi) = − log P(xi) and P(xi) represents the probability of pixel i belonging
to the category label. The pairwise potential θij(xi, xj) can be written as follows:

θij(xi, xj) = µ(xi, xj)Kij, (6)

If xi 6= xj, then µ(xi, xj) = 1; otherwise, µ(xi, xj) = 0. The formula for Kij can be expressed as follows:

Kij = ω1 exp(−
‖pi − pj‖2

2σ2
α

−
‖Ii − Ij‖2

2σ2
β

) + ω2 exp(−
‖pi − pj‖2

2σ2
γ

), (7)

where pi and pj correspond to the positions of pixel i and pixel j, respectively. The first part of the
formula describes the degree to which adjacent pixels with similar band values belong to the same
category. Here, σa and σβ are used to control the weights of the position and the band value. The second
part of the formula is used to eliminate relatively isolated areas in the image. Through the JointBoost
algorithm, the values of ω1, σa, σβ, ω2 and σγ can be obtained from the image [42]. Using CRFs,
the pixels affect one another through their energies, their category labels may change during iteration,
and the rough superpixel results can be segmented into pixel-based classification results. The process
of obtaining the pixel-based segmentation result via CRF is shown in Figure 1:



Remote Sens. 2018, 10, 920 5 of 20

Figure 1. Process of obtaining pixel-based segmentation result via conditional random fields (CRF).
(a) The results of CRF under ideal conditions; (b) The results of CRF under real conditions.

As shown in Figure 1a, in an ideal situation, the remote sensing image contains two land cover
areas, A1 and A2 with obvious band value differences. In the segmentation process, CRF takes the
super-pixel result as the initial segmentation result. According to the value of the image pixel bands
and the category of neighborhood pixels, CRF using formula (3) is used to iteratively modify the
category of each pixel in the segmentation result. This iterative process achieves the desired goal in the
second iteration. Because there is an obvious difference between A1 and A2, the segmentation result
is no longer changed during subsequent iterations; thus, convergence results are obtained. In this
situation, CRF achieves good segmentation results easily. However, the spatial band values of adjacent
land covers might be approximately equal, thereby making it difficult to confirm the boundary between
them. Moreover, the areas of different land covers might differ greatly, or a land cover that belongs
to a certain category might be too small or too large compared with other land covers. An example
is shown in Figure 1b, in which the remote sensing image contains relatively similar categories B1
and B2. During the CRF iteration process, the second iteration reaches the closest segmentation result.
Unfortunately, because the two categories are similar, in the subsequent iterative process, category
B1 may expand gradually, causing the pixels at the boundary to be misclassified. In this situation,
the number of iterations of the CRF should be assigned a suitable value, which is a challenge in
the traditional CRF process (resulting in non-convergence). When the number of CRF iterations is
inadequate, the obtained results will be too rough to obtain the entire image pixel-based classification
results. In contrast, when the number of CRF iterations is too large, certain land covers might be
excessively expanded, while others might be excessively reduced, thereby leading to a decrease in the
classification accuracy. Therefore, when using a CRF segment method on remote sensing images, it is
imperative to develop a new mechanism that resolves all the above problems of the traditional fully
connected CRF.
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2.3. High-Resolution Remote Sensing Image Classification Method Based on Convolutional Neural Network
and Restricted Conditional Random Field

As mentioned above, when a CNN with a traditional structure is directly used for pixel-based
classification, boundary and outline distortions might occur, and when employing a CRF for remote
sensing image segmentation, certain land covers might be excessively expanded or reduced. To address
these limitations, this paper proposes a high-resolution remote sensing image classification method
based on the convolutional neural network and restricted conditional random fields (CNN-RCRF).
Figure 2 shows the process of the CNN-RCRF.

Figure 2. Basic process of the convolutional neural network-restricted conditional random field
algorithm (CNN-RCRF).

As shown in Figure 2, the CNN-RCRF involves three main steps.

Step 1: Build the CNN model and use the training data to train this model

Every spatial band of remote sensing image Mimage to be classified is normalized to the interval
[0,1] to construct a normalized remote sensing image MNorm. Then, the CNN model D is created.
The detailed information of this CNN model is shown in Table 1:
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Table 1. Detailed information of the CNN model.

Components Layers Detail Information

Input Model input
Input = A image patch which size is Scale × Scale
and band number (channel number) is Nchannel
Ouput = Scale × Scale × Nchannel

1

Group 1

Convolutional layer 1
Kernel = size is 3 × 3 with Nchannel channels
Kernel Number = 64 Transmission Function = Relu
Output = Scale × Scale × 64

Max-pooling layer 1 Down-sampling size = 2 × 2
Output = Scale/2 × Scale/2 × 64

Group 2

Convolutional layer 2
Kernel = size is 3 × 3 with 64 channels
Kernel Number = 64 Transmission Function = Relu
Output = Scale/2 × Scale/2 × 64

Max-pooling layer 2 Down-sampling size = 2 × 2
Output = Scale/4 × Scale/4 × 64

Ngroupnum groups of convolutional layers and max-pooling layers

2 Flattening layer Output = converts the previous layer’s feature maps
into a one-dimensional neural structure

3 MLP

Input Layer Number of Neurons = 128
Transmission function = Relu

Middle layer Number of Neurons = 32
Transmission function = Relu

Output layer Number of Neurons = Image’s category number
Transmission function = softmax

As shown in Table 1, this model contains the following components.
(1) Multi-group convolutional layers and max-pooling layers: The convolutional layer adopts

ReLu as the transmission function. The scale of the convolutional kernel is 3 × 3, and convolution
processing adopts the “padding = same” method, which ensures that the size of the feature map
remains the same after convolutional processing. The max-pooling layer adopts 2 × 2 as the
down-sampling size. The group number of convolutional layers and max-pooling layers can be
written as the following:

Ngroupnum =

 1,

Round(log 2( Scale
Scaletarget

)),

Scale
Scaletarget

< 2
Scale

Scaletarget
≥ 2

, (8)

where Scale is the input feature map size, and Scaletarget is the minimum target size after multi-group
convolutional layer and max-pooling layer processing. Through Ngroupnum group convolutional layers
and max-pooling layers input feature map size can be reduced and deeper representative characteristics
can be extracted.

(2) Flattening layer: This layer converts the feature maps into a one-dimensional neural structure
to improve the convenience of decision making.

(3) Fully Connected Multi-Layer Perceptron (MLP): The MLP is composed of three layers.
An input layer connects to the previous flattening layer; the input and middle layer both adopt
ReLu as the transmission function; and the output layer adopts softmax as the transmission function.

After creating the CNN model D, a sample set S = {s1, s2, s3, . . . ,sN} containing N samples is
introduced. Every sample si consists of the sample position (x, y) on the image and the corresponding
category label L. Each sample at (x, y) and the surrounding square area with size Scale cuts an image
patch from MNorm. The samples’ corresponding image patches and category labels are used as training
data and input to D to obtain the trained CNN model D which can then determine a new image patch’s
category label.
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Step 2: Classify the remote sensing image to obtain the superpixel classification result image

As shown in Figure 2, the feature map size Scale is used to split MNorm into image patches. If the
feature map exceeds the boundary of MNorm, boundary pixel mirroring is conducted to fill the image
patch to ensure that the image patch’s size is equal to Scale. Every image patch is classified by the
CNN model D to obtain a category label. In the result image Msuperpixel, this category label is assigned
to every pixel in the area of the corresponding image patch. Msuperpixel is the superpixel image, and its
resolution is lower than that of the original image. Therefore, follow-up processing must be performed
to obtain a pixel-based classification result image.

Step 3: Segment the superpixel image to obtain the pixel-based classification image

In Step 3, Msuperpixel, which was obtained through Step 2, is segmented to obtain the pixel-based
result Mpixelresult. To obtain a good segmentation result and avoid land cover expansion or reduction
problems caused by inadequate or excessive iterations of traditional CRF, this paper proposes an
algorithm (described as Algorithm 1) that controls the number of CRF iterations based on the
training samples:

Algorithm 1 Sample-Based Iteration Control Algorithm (SBIC)

Input: Remote sensing image Mimage, superpixel image Mtarget with two categories (“target” and
“background”), sample set Sobject with two categories (“target” and “background”), maximum number of
iterations Nmax

Output: Result image Mresult after segmentation
Begin

ResultArray[Nmax] = based on Mtarget and Mimage, conduct Equation (3) in Nmax iterations, save each
iteration’s result into ResultArray;

previousAccuracy = 0;
pos = 0;
for i in 1:Nmax {

accuracy = Use Sobject to calculate the classification accuracy in ResultArray[i];
if previousAccuracy ≤ accuracy {

previousAccuracy = accuracy;
pos = i;

else
break;

}
}
Mresult = ResultArray[pos];
return Mresult;

End

Based on this algorithm, every sample in Sobject contains both a sample position and category
label. Calculating the number of samples that are correctly classified can help obtain the classification
accuracy of Mresult. The SBIC algorithm can be used to conduct continuous segmentation of Mtarget,
which is composed of two categories (target and background), to obtain the pixel-based result. In each
iteration of the SBIC, Mtarget is segmented by the fully connected CRF in one iteration. Then, Sobject is
used to test the classification accuracy. If the classification accuracy remains the same or has improved
after the iteration, excessive expansion or shrinking has not occurred; consequently, the fully connected
CRF can proceed with the next iteration. In contrast, if the classification accuracy has been impaired
after an iteration, iteration should be halted, and the result of the previous iteration should be adopted
as the final result. The SBIC algorithm uses the test samples to limit the number of fully connected
CRF iterations. Based on the SBIC, this paper further proposes the RCRF algorithm. The process of the
RCRF algorithm is shown in Figure 3.
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Figure 3. Process of the RCRF algorithm.

As shown in Figure 3, the RCRF algorithm can be described as Algorithm 2.

Algorithm 2 Restricted Conditional Random Field (RCRF)

Input: the remote sensing image Mimage; the superpixel classification result Msuperpixel; the sample set S; the
maximum number of iterations Nmax; and the number of categories Ncategory.
Output: The segmented result Mpixelresult

CRFArray[Ncategory] = Initialize the array with Ncategory elements;
for i in i: Ncategory {

Define the ith category as the “target” and the other category as the “background”;
Mlabel = transform Msuperpixel into a two-category superpixel image with “target” and “background”

categories;
Sobject = transform S into a two-category training set with “target” and “background” categories;
Mresult = SBIC (Mimage, Mlabel, Sobject, Nmax);
CRFArray[i] = fetch all the “target” category pixels in Mresult and change their category labels into the ith

category;
}
Mcrfresult = Use the fully connected CRF to segment Msuperpixel in Nmax iterations;
Mmerge = Combine all pixels and their category labels in CRFArray into a result image, and remove all

conflicting pixels;
CPixels = Obtain conflicting pixels in CRFArray and assign each pixel’s category using the category of the

Mcrfresult’s corresponding position pixel;
UPixels = Obtain unassigned pixels according to CRFArray (position in the result image and no

corresponding category pixel in CRFArray) and assign each pixel’s category using the category of
Msuperpixel’s corresponding position pixel;

Mpixelresult = Mmerge + (CPixels + UPixels);
return Mpixelresult;

End
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The RCRF algorithm exhibits two main characteristics when applied to remote sensing superpixel
classification results. First, it can convert multi-category segmentation tasks into multiple two-category
“target” and “background” segmentation tasks, thereby reducing the difficulty of determining the
number of iterations for the CRF. Second, the SBIC algorithm is introduced to effectively control the
segmentation output. The SBIC can effectively prevent excessive expansion or reduction of land covers
in specific categories and overriding of small land covers.

Through these three main steps, when classifying a high-resolution remote sensing image,
the CNN-RCRF not only takes full advantage of the CNN’s classification ability but also obtains
a pixel-based remote sensing image classification result image.

3. Experiments

3.1. Algorithm Realization and Test Images

In this study, all the tested algorithms were implemented using Python 2.7. The deep learning
algorithm was implemented based on the Keras extension package for Python, and the fully connected
CRF algorithm was implemented based on the PyDenseCRF extension package for Python. An Intel-i5
2300/16 G/GeForce GT 730 computer was used to execute all the programs. To test the algorithms,
this study adopts the “Semantic labelling contest of ISPRS WG III/4” dataset from the ISPRS and
selects the two study images shown in Figure 4 from the dataset.

Figure 4. Two study images and their corresponding ground truth. (a) study image 1; (b) study image
2; (c) ground truth of study image 1; (d) ground truth of study image 2.

As shown in Figure 4a, an image from Vaihingen is adopted as study image 1. Its size is 1388 ×
2555 and its spatial resolution is 9 cm. This image includes three bands: near-infrared (NIR), red (R)
and green (G). As shown in Figure 4b, an image from Potsdam is adopted as research study image
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2. Its size is 6000 × 6000 and its spatial resolution is 5 cm. This image includes: red (R), green (G),
blue (B), infrared (I) and digital surface models (DSM) as test spatial features. Figure 4c,d present the
corresponding ground truths for six categories: Impervious surfaces (IS), Building (B), Low vegetation
(LV), Tree (T), Car (C), and Clutter/background (C/B). 400 samples are selected from each category
based on the ground truth. Then, in these 400 samples, 200 samples are randomly selected as the
training data and another 200 as the test data. Study image 1 contains five categories (study image 1
does not include the C/B category). The corresponding training dataset and test dataset each contain
200 × 5 = 1000 samples. Test image 2 contains six categories, and its corresponding training dataset
and test dataset each contain 200 × 6 = 1200 samples.

3.2. Comparison of Classification Results of Two Study Images

To evaluate the classification ability of the CNN-RCRF, this paper compares eight methods.

1. k-NN: In this algorithm, the number of neighbors is varied from 2 to 20, and the classification
result with the best accuracy is selected as the final classification result.

2. MLP: MLP is composed of an input layer, a hidden layer, and an output layer. The input and
hidden layers adopt ReLu as the transmission function, while the output layer adopts softmax as
the transmission function.

3. SVM: The RBF function is adopted as the kernel function of the SVM.
4. Pixel-based CNN: For this algorithm, we adopt the same input feature map size and the same

CNN model as are used for the CNN-RCRF. During image classification, each pixel in the image
is taken as a central point and an image patch is obtained based on this central point. The CNN
model obtains the image patch’s category label as the corresponding pixel’s category label.

5. CNN + CRF: This algorithm adopts the same input feature map size and the same CNN model
as in CNN-RCRF to obtain the superpixel classification result image. The fully connected CRF
segments the superpixel image into the pixel-based result.

6. CNN fusion MLP: This algorithm introduces the outputs of MLP and Pixel-based CNN, and then
uses a fuzzy fusion decision method (proposed by reference [33]) to integrate the two algorithms’
results into a result image.

7. CNN features + MLP: This algorithm adopts the last layer of the CNN’s softmax output as the
spatial features. Then, it uses MLP to obtain classification result based on the image original
bands and these spatial features.

8. CNN-RCRF: The parameter Scaletarget is set to 5. The parameter Nmax is set to 10. To further test
the relationship between the CNN input feature map size and classification result, the parameter
Scale is set to: 9 × 9, 15 × 15, 21 × 21, 27 × 27, 33 × 33, 39 × 39, 45 × 45, and 51 × 51. Adopt
best accuracy result among eight feature map size as CNN-RCRF‘s result.

k-NN, MLP and SVM are traditional shallow-model methods, and the pixel-based CNN,
CNN + CRF, CNN fusion MLP, CNN feature + MLP, and CNN-RCRF are deep-model methods.
The classification result images obtained by the eight methods for study image 1 are shown below.

As shown in Figure 5, there is a significant difference between the shallow-model methods and
the deep-model methods in terms of the overall classification effect. Because the shallow-models take
only the pixel band value into consideration, many misclassified pixels appear in the classification
result images of the k-NN, MLP and SVM methods (which correspond to Figure 5a–c, respectively),
the “salt-and-pepper effect” is obvious, and the land covers that have similar band values but different
textures are poorly classified. For the deep models, the pixel-based CNN, CNN + CRF, CNN fusion
MLP, CNN features + MLP and CNN-RCRF all adopt 33 × 33 as the input feature map size, and
the continuity is significantly improved. As shown in Figure 5d, some details are missing from the
land cover border, small land cover areas tend to be round, and some incorrect classifications are
exaggerated, such as the trees surrounded by buildings in the lower-left part of result image. This result
means that if the CNN is directly applied to the pixel-based classification, land cover deformation may
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occur. In Figure 5e, due to the excessive expansion of certain land covers during the CRF segmentation
process, some small land covers are wrongly classified by the surrounding land covers. In Figure 5f,
the classification errors in the MLP’s land cover boundary are still retained in the result, and the
classification result shows no improvement compared to that of the pixel-based CNN. In Figure 5g,
the fragmentation is more severe than in other deep-model methods, and there are still many errors
at the boundary of the land cover. The classification result of CNN-RCRF is presented in Figure 5h.
The classification results of the CNN-RCRF are the best among the eight algorithms, and it correctly
classified almost all the land cover. In Figure 6, a feature map size of 33 × 33 is adopted as an example
to compare the superpixel result image, the traditional fully connected CRF segmentation result image
and the RCRF segmentation result image.

Figure 5. Comparison of the classification result images of eight methods for study image 1. (a) k-NN;
(b) MLP; (c) SVM; (d) Pixel-based CNN; (e) CNN + CRF; (f) CNN fusion MLP; (g) CNN features +
MLP; (h) CNN-RCRF.

The fully connected CRF uses 10 iterations. The maximum number of iterations (Nmax) for RCRF
is 10. Figure 6b shows the fully connected CRF result image and Figure 6c shows the RCRF result
image. After segmentation by these two algorithms, the superpixel classification result image is
refined. The algorithms both reduce the degree of roughness of the superpixel image; the boundaries
of buildings and roads become smoother and the land cover shapes become clearer. In Figure 6d,
four typical regions are chosen for a comparative analysis: the isolated superpixels misclassified as
Building that appear at Region 1, Region 2 and Region 4 are rectified by both the fully connected
CRF and RCRF. This result means that during the segmentation process, certain misclassified isolated
superpixels can be rectified. However, the fully connected CRF segmentation has a series of problems:
In Region 1, the excessive expansion of the low-vegetation area overrides some trees and some cars are
covered by impervious surfaces, In Region 2, the small plots of low-vegetation area at the centre are
covered by trees. In Region 3, the buildings whose colours are similar to the colours of the impervious
surfaces are covered by impervious surfaces. In Region 4, the low-vegetation area covers two trees in
the image. Compared with the CRF, the RCRF largely avoids such incorrect segmentations.
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Figure 6. Comparison of the superpixel result image, traditional fully connected CRF segmentation
result image and RCRF segmentation result image. (a) superpixel result image; (b)traditional fully
connected CRF result; (c) RCRF result; (d) Comparison of four typical positions.

For study image 2, the classification results of the eight algorithms are compared in Figure 7.
In Figure 7a–c, the three shallow-model methods clearly distinguish buildings from other land

covers based on the spatial features of test image 2; however, their classifications of other land cover
types are poor: many low-vegetation, trees, clutter/background areas, cars and impervious surfaces
are misclassified. These problems impair the overall classification results of the three shallow-model
methods. CNN-RCRF adopts 39× 39 as the input feature map size. As shown in Figure 7d–g, the result
images of the five deep-model methods are significantly superior to those of the three shallow-model
methods in terms of continuity. Nevertheless, boundary deformations and classification mistake due to
exaggeration are still unavoidable in the pixel-based CNN, and some misclassified clutter/backgrounds
surround other land covers. In the CNN + CRF result image, excessive expansion phenomena are
observed, trees are misclassified as low-vegetation areas, and many cars are misclassified. The CNN
fusion MLP and CNN features + MLP still cannot solve the problem of misclassification of land cover
boundaries. Compared with the other methods, the CNN-RCRF achieves the best classification results.
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Figure 7. Comparison of the classification result images of eight methods for study image 2. (a) k-NN;
(b) MLP; (c) SVM; (d) Pixel-based CNN; (e) CNN + CRF; (f) CNN fusion MLP; (g) CNN features +
MLP; (h) CNN-RCRF.

4. Discussion

4.1. Comparison of Classification Accuracy

The classification accuracy of the eight methods for study image 1 and study image 2 is compared
in Table 2:

Table 2. Classification accuracy comparison of eight methods.

Study
Image Method IS B LV T C C/B Overall

Accuracy (%)

Study
Image 1

k-NN 78.5 80.5 80.5 70.0 28.5 / 67.6
MLP 80.5 75.5 81.5 70.5 33.5 / 68.3
SVM 82.5 82.0 82.5 79.5 27.5 / 70.8

Pixel-based CNN 83.5 87.5 90.5 83.5 82.0 / 85.4
CNN + CRF 85.5 90.5 93.5 82.5 58.5 / 82.1

CNN fusion MLP 84.5 88.5 90.0 84.5 70.5 / 83.6
CNN features + MLP 83.5 86.5 89.5 79.5 82.0 / 84.2

CNN-RCRF 87.5 91.5 92.5 89.5 89.5 / 90.1

Study
Image 2

k-NN 70.5 93.0 72.0 74.0 24.0 80.5 69.0
MLP 72.0 93.0 70.0 79.5 27.0 82.5 70.7
SVM 73.5 93.0 73.5 75.5 39.5 84.5 73.3

Pixel-based CNN 90.5 91.5 89.5 85.5 87.5 87.5 88.7
CNN + CRF 89.5 93.0 90.5 83.5 60.5 88.5 84.3

CNN fusion MLP 89.5 93.0 81.5 87.0 40.5 88.5 80.0
CNN features + MLP 90.5 93.0 84.5 82.5 88.0 87.5 87.7

CNN-RCRF 90.5 93.0 90.5 87.5 89.5 90.5 90.3

As shown in Table 2, for study image 1, because only pixel band values are considered rather than
pixel neighborhood information, the three shallow-model methods are unable to distinguish the land
covers successfully, and they achieve lower classification accuracies. In particular, the accuracy of car
classifications is very low. The k-NN’s classification accuracy is 67.6%, that of MLP is 68.3%, and SVM
achieves 70.8%. The accuracy of the pixel-based CNN is 85.4%; boundary and outline distortions limit
its accuracy to some extent. The accuracy of CNN + CRF reaches only 82.1%, which is lower than
that of the pixel-based CNN. This result is due to the excessive expansion or reduction of some land
covers during the CRF segmentation process. Compared to pixel-based CNN, the accuracy of CNN
fusion MLP and CNN features + MLP did not change significantly (83.6% and 84.2%, respectively).
Compared with the other methods, the CNN-RCRF achieves the highest accuracy, 90.1%. For test
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image 2, the spatial band values of buildings are significantly different from those of the other land
covers; therefore, all the methods can identify them correctly. The building classification accuracy of
the pixel-based CNN is slightly lower than that of the other algorithms because the boundaries of
the land covers are slightly distorted. Consistent with test study image 1, the accuracies of the three
shallow-model methods are lower than those of the deep models, and the CNN-RCRF achieves the
highest accuracy of 90.3%.

Shallow-models cannot effectively classify high-resolution remote sensing images; it is very
difficult to classify land cover with similar band values by single pixels. Thereby their classification
accuracy is low. Deep models have better classification ability than shallow models, especially in
the car category. These findings prompted us to utilize deep learning methods in the remote sensing
classification field. Traditional pixel-based CNNs and CNN + RCRFs cannot handle land-cover
boundaries well, leading to relatively low classification accuracy. CNN fusion MLP and CNN features
+ MLP rely on both the CNN’s and MLP’s classification ability. The land cover boundary problem
still influences the classification result when the classification accuracy of the MLP at the land cover
boundary is low. CNN-RCRF not only can take advantage of the CNN’s classification ability but can
also avoid boundary or outline distortions, so CNN-RCRF outperforms the other algorithms in terms
of classification accuracy.

4.2. Comparison of Scale

For the five deep-model methods (CNN, CNN + CRF, CNN fusion MLP, CNN features + MLP
and CNN-RCRF), the classification accuracy for the eight input scales is shown in Table 3:

Table 3. Classification accuracy comparison of deep-model methods for eight feature map sizes.

Study
Image

Feature Map
Size

Classification Accuracy (%)

Pixel-Based
CNN CNN + CRF CNN

Fusion MLP
CNN Features +

MLP CNN-RCRF

Study
Image 1

9 × 9 78 77 72.4 79.5 77.5
15 × 15 81.5 77.8 78.7 82 82.5
21 × 21 83.6 78 80.6 83.6 84.3
27 × 27 87 81.2 83 87.5 89
33 × 33 85.4 82.1 83.6 84.2 90.1
39 × 39 84.3 81.5 83.5 80.7 89.2
45 × 45 80.2 80.6 78.2 79.2 85.7
51 × 51 77.6 79.5 73.6 73.6 80.8

Study
Image 2

9 × 9 72.5 70.3 70.5 73.5 70.5
15 × 15 76.7 73.5 72.3 77.5 78.5
21 × 21 80.3 75.7 75.7 82.3 84.3
27 × 27 84.7 78.3 80.7 83.3 87.7
33 × 33 89.0 80.5 81.5 85.3 89.5
39 × 39 88.7 84.3 80.0 87.7 90.3
45 × 45 82.3 80.7 80.0 80.0 87.7
51 × 51 76.6 78.5 72.3 78.7 82.3

The comparison of the classification accuracy of the three methods is shown in Figure 8.
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Figure 8. Comparison of the five deep-model methods in in eight feature map size. (a) Study image 1;
(b) Study image 2.

According to Table 3 and Figure 8, the classification accuracies of the three deep-model methods
are closely related to the scale of the input feature map; as the scale increases, the classification accuracy
of the algorithms increases. After reaching a maximum point, the scale continues to increase (leading
to an input feature map that contains more land covers), which leads to a decrease in classification
accuracy. For the two study images, the accuracy of the CNN-RCRF is higher than those of the other
two methods except for the smallest case (9 × 9), indicating that CNN-RCRF has a greater ability to
improve classification accuracy. CNN + CRF has low classification accuracy in most cases, which
means that CRF can hardly improve classification accuracy without solving the problem of traditional
CRF; the curves of CNN fusion MLP and CNN features + MLP are similar to that of pixel-based
CNN. Furthermore, in Figure 8a,b, the decrease in the CNN’s classification accuracy occurs at smaller
scale than that for CNN-RCRF and CNN + CRF, which means that with increasing feature map scale,
the land cover boundary deformation has an increasingly larger influence on classification accuracy.
Moreover, as shown in Figure 8, the resolution of the image also influences the selection of the scale.
The resolution of study image 1 is lower than that of study image 2; thus, the best scale for study image
1 is smaller than that of study image 2 for all three methods.

From the above analysis, it can be seen that the classification ability of a CNN is affected by the
input feature map scale, too small and too large scale will negatively affect classification accuracy.
Finding the best input scale of a remote image usually entails a trial and error strategy, which always
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requires a large number of classification experiments. The classification accuracy curve of CNN-RCRF
gradually increases and then decreases. This characteristic can guide us in finding the best scale of
CNN-RCRF. In future research, we plan to take the gradient of the CNN-RCRF classification accuracy
curve into account and find the best scale of an image in relatively few experiments.

4.3. Comparison of Computation Time

In terms of computation time, each method was executed three times on the two study images, and
the average execution time is adopted as the computation time for the method. The computation time
of each method is separated into the training stage and classification stage. Because the pixel-based
CNN and CNN + CRF adopt the CNN-CRF’s classification model, so CNN and CNN + CRF training
time are same as that of CNN + CRF’s. The computation time of the CNN fusion MLP is composed
of pixel-based CNN’s computation time, the MLP’s computation time and the image fusion time.
The computation time of CNN features + MLP is composed of the pixel-based CNN’s computation
time, spatial features construction time, and the new MLP model training and classification time.
The computation time of the eight methods are shown in Table 4:

Table 4. Comparison of the computation times of the eight methods.

Study Image Method
Computation Time (Seconds)

Training Classification Total

Study Image 1

k-NN 7 36 48
MLP 18 31 49
SVM 27 182 209

Pixel-Based CNN 175 15,352 15,527
CNN + CRF 175 244 419

CNN fusion MLP 193 15,443 15,635
CNN features + MLP 175 15,424 15,599

CNN-RCRF 175 331 506

Study Image 2

k-NN 13 321 334
MLP 29 374 403
SVM 41 702 743

Pixel-Based CNN 243 162,895 163,138
CNN + CRF 243 1340 1583

CNN fusion MLP 272 163,815 164,087
CNN features + MLP 243 163,565 163,808

CNN-RCRF 243 1501 1744

As shown in Table 4, the training and classification stages of the three shallow-model methods
are notably shorter than those of the three deep models. k-NN does not require model training;
therefore, its training stage consists only of reading and constructing the training dataset, and its
computation time is the shortest among all the methods. The MLP and SVM methods are more
complex than the k-NN, and their computation time are slightly longer. The pixel-based CNN’s
image classification stage’s computation time is significantly longer than those of the other methods
because it constructs an input feature map set and classifies it for every pixel in the image. For study
image 1, the pixel-based CNN performs 1388 × 2555 = 3,546,340 classifications, and for study image
2, it performs 6000 × 6000 = 36,000,000 classifications, which is an enormous computational burden.
On test image 2, the pixel-based CNN requires 163,138 s (more than two days); thus, the pixel-based
CNN method cannot efficiently fulfil the task of classifying larger remote sensing images. Both CNN
fusion MLP and CNN features + MLP are based on the pixel-base CNN’s result, so their computation
time are slightly longer than that of a pixel-based CNN. The CNN + CRF and CNN-RCRF both adopt
superpixel classification rather than pixel-based classification. On study image 1, they only need to
perform ceil(1388/33) × ceil(2555/33) = 3354 classifications, and on study image 2 they need perform
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ceil(6000/39) × ceil(6000/39) = 23,716 classifications. Both are significantly lower than the pixel-based
CNN. For the two study research images, the CNN + CRF takes 419 s and 1583 s, respectively, and the
CNN-RCRF takes 506 s and 1744 s, respectively.

Based on the above comparisons, using a CNN to classify each pixel of a remote-sensing image
will lead to a very large computational burden. With respect to computation time, the pixel-based
CNN, CNN fusion MLP and CNN features + MLP have low application value because users would
need to wait a very long time to classify an image. Conversely, CNN-RCRF can obtain a result in a
relatively short time, and its computation times are more acceptable, indicating that the CNN-RCRF is
more applicable to real-world remote sensing image classification tasks.

5. Conclusions

High-resolution remote sensing images usually contain large amounts of detailed information.
Obtaining favorable classification results is difficult when relying only on the pixel band values;
consequently, it is necessary to introduce neighborhood information into the classification process as
context information. CNN’s convolutional layers and max-pooling layers give it the ability to consider
a pixel’s neighborhood as context information, allowing it to discover deeper image characteristics.
However, a CNN’s input is a feature map set, while its output is a category label; therefore, applying
this structure directly to pixel-based remote sensing image classification will lead to boundary and
outline distortions of the land covers in the result image. To classify high-resolution remote sensing
images more effectively, this paper proposes the CNN-RCRF, which has two advantages. First,
the CNN-RCRF uses a superpixel classification image, which can significantly reduce the number of
classifications required to classify the entire image; hence, the classification speed of the CNN-RCRF is
considerably faster than that of the pixel-based CNN method. Second, the CNN-RCRF adopts the RCRF
algorithm to segment the superpixel classification result image. This approach avoids the boundary
and outline distortions caused by pixel-based CNNs and the excessive expansion or shrinking of land
covers caused by traditional fully connected CRFs. Thus, even small land cover areas (such as cars)
can be correctly recognized by the CNN-RCRF. The experimental results show that the CNN-RCRF
achieves higher classification accuracy compared to the k-NN, MLP, SVM, pixel-based CNN, CNN +
CRF, CNN fusion MLP, and CNN features + MLP algorithms. Furthermore, the CNN-RCRF’s total
time for classifying remote sensing images is also acceptable. These advantages give the CNN-RCRF
algorithm a wider application range in high-resolution remote sensing classification fields.
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