
remote sensing  

Article

Daily Retrieval of NDVI and LAI at 3 m Resolution
via the Fusion of CubeSat, Landsat, and MODIS Data

Rasmus Houborg 1,2,* ID and Matthew F. McCabe 3 ID

1 Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA
2 Department of Geography, South Dakota State University, Brookings, SD 57007, USA
3 Water Desalination and Reuse Center, King Abdullah University of Science of Technology,

Thuwal 23955, Saudi Arabia; matthew.mccabe@kaust.edu.sa
* Correspondence: rasmus.houborg@sdstate.edu; Tel.: +1-605-688-5384

Received: 18 March 2018; Accepted: 5 June 2018; Published: 7 June 2018
����������
�������

Abstract: Constellations of CubeSats are emerging as a novel observational resource with the potential
to overcome the spatiotemporal constraints of conventional single-sensor satellite missions. With
a constellation of more than 170 active CubeSats, Planet has realized daily global imaging in
the RGB and near-infrared (NIR) at ~3 m resolution. While superior in terms of spatiotemporal
resolution, the radiometric quality is not equivalent to that of larger conventional satellites. Variations
in orbital configuration and sensor-specific spectral response functions represent an additional
limitation. Here, we exploit a Cubesat Enabled Spatio-Temporal Enhancement Method (CESTEM) to
optimize the utility and quality of very high-resolution CubeSat imaging. CESTEM represents
a multipurpose data-driven scheme for radiometric normalization, phenology reconstruction,
and spatiotemporal enhancement of biophysical properties via synergistic use of CubeSat, Landsat
8, and MODIS observations. Phenological reconstruction, based on original CubeSat Normalized
Difference Vegetation Index (NDVI) data derived from top of atmosphere or surface reflectances,
is shown to be susceptible to large uncertainties. In comparison, a CESTEM-corrected NDVI
time series is able to clearly resolve several consecutive multicut alfalfa growing seasons over a
six-month period, in addition to providing precise timing of key phenological transitions. CESTEM
adopts a random forest machine-learning approach for producing Landsat-consistent leaf area
index (LAI) at the CubeSat scale with a relative mean absolute difference on the order of 4–6%.
The CubeSat-based LAI estimates highlight the spatial resolution advantage and capability to provide
temporally consistent and time-critical insights into within-field vegetation dynamics, the rate of
vegetation green-up, and the timing of harvesting events that are otherwise missed by 8- to 16-day
Landsat imagery.
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1. Introduction

Satellite remote sensing offers unparalleled opportunities for land surface monitoring
and characterization over space and time domains, with far-reaching socioeconomic benefits [1–3].
Growing global food security concerns [4] necessitate space-borne observing systems that provide
time-critical sensing of agricultural systems together with actionable intelligence for optimizing
sustainable management practices, agricultural efficiencies, and crop production [5–7]. In the
context of precision agriculture, timely and repeatable information on intrafield variability of
crop conditions is key to achieving sustainable resource allocation and utilization [8,9]. Similarly,
agricultural management decisions (e.g., timing of irrigation, fertilizer application, and harvesting)
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could benefit tremendously from continuous and near real-time observations of crop phenological
development [10,11].

Space-borne observing capacity has evolved significantly in terms of spectral, spatial,
and temporal resolution since the launch of the first Land Remote Sensing Satellite (Landsat) in
1972 [12,13]. However, the inevitable trade-off between resolvable spatial detail and frequency of
observations [14] continues to affect the capacity to rapidly detect evolving vegetation dynamics
at spatial scales fine enough for effective resource management. These spatiotemporal restrictions
have been partly overcome via multisensor data fusion algorithms designed to synergistically exploit
sensor-specific attributes, such as the high spatial resolution (i.e., 30 m) of Landsat and high revisit
frequency (i.e., daily) of MODIS [15]. As an example, the spatial and temporal adaptive reflectance
fusion model (STARFM) [16] has been used to predict surface reflectance [17,18], leaf area index [19],
land surface temperature [20], and evapotranspiration [21,22] at both high spatial and temporal
resolution. However, the lack of actual observations to inform upon intrinsic (i.e., at the scale of
interest) spatial features at the time of prediction can introduce uncertainties that may affect the ability
to meet often stringent product accuracy criteria [23]. Additionally, the conditional requirement of a
sufficient number of homogeneous pixel samples at the coarse scale may not be met over heterogeneous
landscapes associated with a relatively small characteristic field size [16].

The recent deployment of two identical Sentinel-2 satellites [24] represents an important advance
towards resolving the classical spatiotemporal divide. The combination of high spatial resolution
(<30 m) Landsat 8 and Sentinel-2 observations can facilitate a global median average revisit interval of
about three days [25], which highlights the key importance of multisensor integration and interproduct
harmonization efforts [26,27]. However, the achievable frequency is still suboptimal for detecting rapid
vegetation dynamics and the exact timing of abrupt change events, particularly in light of obfuscating
atmospheric effects (e.g., clouds, dust) which limit visibility and reduce the achievable repeat rate.
While daily imaging at very high spatial resolution (<5 m) may be facilitated by commercial operators
of programmable sensor constellations (e.g., WorldView, Pleiades), the satellite tasking is area-limited
and prohibitively expensive [12].

One solution may lie in the cost-effective observation strategy offered by emerging constellations
of small satellites, which is on a fast-track to revolutionize the earth observation potential [14]. This new
operational paradigm has been facilitated by the standardized CubeSat concept [28] that uses compact
and light-weight (<1.33 kg) single-unit (1U; 10 × 10 × 11.35 cm) building blocks as the modular basis
for forming larger satellite configurations (i.e., 3U, 6U, 12U) for a variety of application fields [29].
As CubeSats are comprised largely of commercial off-the-shelf components and deployed as secondary
payload on reusable rockets, the changing economics of earth observation have made it feasible to
launch CubeSats in flocks at an unprecedented rate [30]. Planet [31] is leading the way in exploiting
this new resource and its constellation of 3U CubeSats deployed in low-earth orbits has realized daily
global imaging over terrestrial surfaces with an orthorectified pixel size of 3.125 m.

The number of explorative investigations into the potential benefits afforded by CubeSat data
for land surface characterization is still limited and based on relatively short and temporally sparse
records available at the time of study. The opportunities of CubeSat detectable intrafield-scale NDVI
variability for precision agriculture were first demonstrated by Houborg and McCabe [32], while
McCabe et al. [30] showcased their potential for providing valuable temporal insights into vegetation
dynamics and evaporation. However, the relatively inexpensive and less advanced sensor designs
do not come without limitations. Spectral bandwidth and response limitations, together with low
radiometric quality relative to rigorously calibrated conventional satellites (e.g., Landsat and Sentinel),
result in cross-sensor inconsistencies, which can severely affect the interpretability and utility of
CubeSat-based time series records [33]. The Cubesat Enabled Spatio-Temporal Enhancement Method
(CESTEM) was designed to optimize the benefit afforded by CubeSats via radiometric normalization
against Landsat 8 observations [33]. Application of CESTEM to a limited time series of CubeSat
imagery demonstrated accurate reproduction of Landsat-consistent surface reflectances at the scale
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and frequency of CubeSat observations, highlighting potentially far reaching implications via high
quality, timely, and temporally consistent sensing at subfield scales [33].

In this study, we demonstrate an expanded application of CESTEM to a temporally dense record of
CubeSat scenes acquired over an agricultural farming area in Saudi Arabia. Key advancements include
an improved technique for smooth phenology reconstruction and an extension to map Landsat-based
leaf area index (LAI) at the spatial and temporal resolution of the CubeSat data (i.e., CESTEM-LAI).
The overall objective is to demonstrate the potential of the +170 CubeSat constellation for producing
Landsat-consistent vegetation metrics at the highest spatiotemporal resolution ever retrieved from
space-based sensors. The specific objectives of the study are: (1) to evaluate and intercompare
the robustness and consistency of NDVI time series derived from “raw” and CESTEM-corrected
CubeSat data over a highly dynamic multicut alfalfa field; and (2) to demonstrate and evaluate
the capacity of the CESTEM framework for spatiotemporal enhancement of Landsat-based LAI.

2. Materials and Methods

This study used CubeSat (Section 2.1), Landsat 8 (Section 2.2), and MODIS (Section 2.3) data
acquired over an irrigated farming area (~2400 ha) in Saudi Arabia (Figure 1) over a six-month period
from 24 April to 25 October 2017. Alfalfa and corn were the predominant crops under pivot (~800 m in
diameter) irrigation during this period. While the corn cultivated at the farm is characterized by two
distinct growing seasons, with planting dates in the spring and the fall, alfalfa is grown continuously as
a multicut crop with a 30–40 day harvesting frequency [34]. During this time, the average daytime air
temperature high varied from ~45 ◦C during the summer months to ~35 ◦C in October. Sky conditions
were predominantly free of clouds although prone to occasionally high dust aerosol loadings [35].
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Figure 1. Domain and geographic location of the studied agricultural farming area. The image is a false
color representation of ~3 m resolution CubeSat RGB + NIR imagery. Zones with an 8-day, 8–16-day,
and 16-day Landsat revisit frequency are overplotted. The alfalfa study unit (180 × 180 m2) used for
extracting time series information is also indicated.

2.1. CubeSats

CubeSat data were acquired from the PlanetScope (PS) constellation that is commercially operated
by Planet [31]. The constellation currently consists of >170 active 3U (i.e., 10 × 10 × 30 cm) CubeSats
(“Doves”). At the time of writing, the PS constellation is capturing daily RGB and near-infrared (NIR)
imaging of the earth’s terrestrial surfaces with a 3–4 m ground sampling distance (GSD). The vast
majority of the CubeSats are deployed into sun-synchronous orbits (~475 km orbit altitude) with a
midmorning equatorial overpass time (9:30–11:30 a.m., local solar time) and a nadir GSD between
3.5–4 m. Smaller flocks of PS satellites still operate in the International Space Station orbit (400 km
altitude), which results in a variable equatorial overpass time and a GSD of ~3 m. Each CubeSat is
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associated with unique spectral response functions, and in addition to being significantly broader
than the discrete bands of Landsat 8, the bands in the visible domains are characterized by substantial
overlap [33].

Here, we used the Level 3A PlanetScope Ortho Tile Product that merges a consecutive series of
individual scenes (typically four to five) from a single satellite into 25 × 25 km tiles referenced to a
UTM map projection and with an orthorectified pixel size of 3.125 m [33,36]. The products have been
geometrically corrected with a positional accuracy typically better than 10 m root-mean-square-error.
Planet recently implemented a fairly rigorous radiometric correction approach based on a combination
of prelaunch calibration, lunar calibration, and on-orbit cross-sensor calibration based on crossovers
with rigorously calibrated sensor systems such as RapidEye and Landsat 8. The updated calibration
approach has been verified against a limited number of vicarious collections (i.e., 12 samples covering
a narrow reflectance range) over the Railroad Valley desert site in Nevada, which suggested a
radiometric accuracy within±10% of the top of atmosphere (TOA) reflectance reference and an average
constellation uncertainty on the order of 5–6% [36,37]. This suggests a significant improvement over
the first generations of Planet CubeSats [32,33].

The Planet data were converted to TOA reflectance using the calibration coefficients associated
with each scene. In order to investigate the impacts of atmospheric effects, conversion of the at-sensor
radiance to surface reflectance was undertaken using the Second Simulation of the Satellite Signal in
the Solar Spectrum (6SV) atmospheric correction approach using sensor-specific spectral response
functions, scene-specific view and illumination geometry, and satellite-based atmospheric state data
(Section 2.2).

2.2. Landsat 8

Landsat 8 (L8) data were acquired over the study region with an 8–16-day revisit period using
data from overlapping 165/43 and 164/43 path/row acquisitions. Whereas the 165/43 acquisitions
provide full farm coverage, the 164/43 scene swath edge is positioned on the western half of the farm,
with the exact location dependent on the day of the overpass. As a result, the study region is divided
into sections with an 8-day, 8–16-day, and 16-day repeat coverage (Figure 1). L8 is positioned in a
sun synchronous orbit (~705 km orbit altitude) with an equatorial overpass time between 9:56 a.m.
and 10:26 a.m. (local solar time). The Operational Land Imager (OLI) surveys the earth in a 185-km
swath (with a maximum view angle of ±7.5◦) acquiring data in nine spectral bands distributed over
the visible to near-infrared (VNIR) and shortwave-infrared domain. However, only the blue (band 2),
green (band 3), red (band 4), and NIR (band 5) bands were considered here. The radiometric reflectance
accuracy of the OLI is generally within the 3% sensor design specifications, supported by extensive
vicarious calibration campaigns [23]. The Level-1 Terrain and Precision (L1TP) corrected dataset [38]
was used in this study.

At-sensor radiance was converted into surface reflectance using an implementation of
the 6SV [39,40], specifically adapted to handle the impacts of dust aerosols and adjacency effects
over desert environments [23]. Inputs to 6SV include scene-specific sun-sensor geometry, total ozone
from the Ozone Monitoring Instrument (OMI), atmospheric profiles of water and temperature from
the Atmospheric Infrared Sounder (AIRS), and aerosol optical thickness at 550 nm (AOT550) from
MODIS deep blue algorithm retrievals [23]. Further details on the atmospheric correction approach
can be found in Houborg and McCabe [23,41].

Landsat-based leaf area index (LAI) was mapped over the study domain using prediction models
previously developed over the study site on the basis of a hybrid machine-learning approach [41].
The technique utilizes an implementation [42] of the Cubist rule-based regression tree approach [43–45]
to define the relationship between a suite of atmospherically corrected L8 vegetation indices (VI)
and the target property (i.e., LAI). In Cubist, each terminal node of the learned tree is associated with a
multivariate linear regression model and defined by a set of spectral threshold conditions (i.e., rules).
A multiday hybrid LAI target training dataset was used, consisting of in situ measurements coupled
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with physically based retrievals independently derived via an implementation of the regularized
canopy reflectance model (REGFLEC) [46]. The addition of REGFLEC-based LAI targets significantly
improved model predictability and portability, yielding a cross-validated relative mean absolute
difference (rMAD) of ~11% relative to an rMAD of ~18% for the in situ only training case. The optimal
LAI prediction model was formulated as two multivariate regression equations combining VIs derived
from visible, near-infrared, and shortwave-infrared L8 bands (see Equations (1a) and (1b) in Houborg
and McCabe [41]). Interestingly, models relying only on standard indices formed from red and NIR
band reflectances (e.g., NDVI) were associated with a substantially higher retrieval uncertainty
(i.e., rMAD ~21%).

2.3. MODIS

MODIS surface reflectance data were acquired on days coincident with CubeSat acquisitions.
The version 6 combined (i.e., Terra and Aqua) MCD43A4 product [47] was used, which provides daily
500 m surface reflectances in seven bands normalized to a nadir view direction and local solar noon
using a semiempirical bidirectional reflectance distribution function (BRDF) [48]. The data are provided
in a sinusoidal projection grid on 1200 × 1200 km tiles. Only the four bands in the VNIR were retained
for further analyses. MODIS has a wide field of view (±55◦) and corrections for reflectance anisotropy
are generally needed to produce temporally consistent time-series data. The BRDF utilizes the best
observations from both Terra and Aqua sensors collected over a 16-day period centered on the day
of interest. Observations at the day of interest are emphasized in the daily retrievals. The associated
quality flags were used to isolate high-quality retrievals that have an accuracy of ~5% [49].

2.4. CESTEM

This section describes the framework of the CubeSat Enabled Spatio-Temporal Enhancement
Method (CESTEM) [33], including an extension (CESTEM-LAI) that maps LAI to the spatial
and temporal resolution of the CubeSat data (Figure 2). At its core, CESTEM serves as a radiometric
normalization technique to translate broadband (RGB + NIR) PS data acquired from multiple CubeSats
into L8-consistent surface reflectances (i.e., blue, green, red, and NIR). The approach relies on
the availability of L8 reference data on the CubeSat prediction day (Pday) to learn band-specific
translational associations on a scene-specific basis using the Cubist decision tree regression approach, as
detailed in Houborg and McCabe [33]. L8 reference data are drawn from the available pool of Landsat
images, using MODIS-based information to quantify spectral changes over given CubeSat–Landsat
acquisition timespans (Section 2.4.2). CESTEM-LAI (Section 2.4.4) uses the normalized L8-consistent
PS data together with L8-based reference LAI in a similar fashion to generate maps of LAI at the spatial
and temporal resolution of the CubeSat data. All of these processes have been designed for complete
automation. A detailed description of the generic methodology and processing steps schematized in
Figure 2 is provided in subsequent sections.

2.4.1. Data Preprocessing

PlanetScope Ortho Tile Product (Section 2.1), L8 L1TP (Section 2.2), and MODIS MCD43A4
(Section 2.3) images are acquired programmatically using Planet’s API, Google Cloud Platform,
and the data pool portion of the Land Processes Distributed Active Archive Center (LP DAAC),
respectively. In the case of PS acquisitions, tiles are only downloaded if the percentage of unusable
data (i.e., as specified by the “unusableDataPercentage” field in the associated metadata file) is <60%.
Additionally, if multiple tiles are available over the study domain on any given day, only the tile with
the lowest percentage of unusable data is selected for download. All PS tiles are subsetted to conform
with the study scene domain (Figure 1).
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and LAI information at the spatial and temporal resolution of the PlanetScope (PS) CubeSat data.
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See Section 2.4 for a detailed description of the methodology and parameter definitions.

In order to reduce cross-sensor coregistration errors, successive PS scenes are co-aligned by
optimizing their spatial autocorrelation, as described in Houborg and McCabe [33]. The automated
technique determines pixel shifts in x and y directions in reference to a base image by maximizing
the goodness of fit (i.e., R2) between estimates of NDVI extracted from corresponding high-NDVI
contrast zones (e.g., such as around field boundaries). The pixel-shifted scene is then used as the basis
for coregistering the next scene in the successive time-series record. While a small acquisition gap is
important for effectively coregistering scene-specific spatial features, a secondary (already aligned) base
image is incorporated to avoid error propagation in the pixel shifting. This reference is continuously
updated, lagging the primary base image with a few days or more, and only involves clear-sky scenes
as reflected in a high R2 value (see below). As erroneous pixel-shifting is often the result of scene
contaminations (as reflected in a lower R2 value), the secondary base image will take preference over
the primary base image in those situations.

The technique is also used to simultaneously detect and remove cloud contaminated PS scenes
based on thresholding the R2 values established between successive scenes. Since a near-perfect
agreement (i.e., in terms of R2) is expected between corresponding spatial features in two scenes less
than a few days apart (i.e., given minimal change in cover conditions), any reduction in the R2 value
below the given threshold (R2

thres) is likely attributed to scene contaminations such as clouds or high
aerosol content. The R2

thres for scenes <5 days apart was initially set to 0.95 and continuously updated
using a weighted average of R2 values observed for successive scenes. Any scene producing an R2

below the specified threshold is assumed to be cloud contaminated and removed from further analyses.
For successive scenes >5 days apart, R2

thres defaulted to 0.7.
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The MODIS products are resized to the domain of the PS imagery and reprojected into UTM
using the MODIS Conversion Toolkit (MCTK) in ENVI batch mode and pixel-shifted to optimize
the correlation between scale-consistent MODIS and PS NDVI (i.e., after resampling to 500 m
resolution). The same pixel shift is used for all MODIS scenes. L8 data is also resized to the domain
of the PS imagery, reprojected into the UTM zone of the PS imagery, and pixel-shifted (if needed)
as described above to properly align with the closest (typically day-coincident) PS scene data (after
resampling to 30 m resolution). The UTM zone harmonization is necessary when the L8 data is
acquired from two different paths (Section 2.2). The Landsat data is atmospherically corrected as
described in Section 2.2 and clouds are detected using a Python implementation [50] of the Fmask
algorithm [51].

2.4.2. VNIR Reference Sampling

L8 reference data (L8REF
Bi ) for each spectral band (Bi) at 30 m resolution are needed on a given

CubeSat acquisition day to train the machine-learning model (Section 2.4.3) and to correct PS TOA
reflectance data (PSTOA

Bi ) into L8-consistent surface reflectances (PSL8
Bi ) (Figure 2). The reference data

are sampled from up to 10 day-coincident Landsat–PS scene pairs. Currently, the search for available
Landsat scenes is conducted both backward and forward in time from the given prediction day (Pday),
but that can be changed to backward-only to facilitate near real-time predictions. The reference
sampling approach does not require spectrally invariant pixel targets and is able to account for
temporal changes in the spectral signatures based on multitemporal MODIS data. With a daily
imaging capability and Landsat-like VNIR band configurations, MODIS is well suited for quantifying
the relative spectral changes in Landsat-consistent bands at the MODIS resolution (i.e., 500 m) over
the various timespans between Pday and each of the day-coincident Landsat–CubeSat acquisition days.
Downscaled (i.e., from 500 m to 30 m) relative surface reflectance changes are subsequently used to
correct the Landsat pixel references for moderate (as defined by a threshold percentage, Cth) reflectance
changes occurring over the acquisition timespans, as described in detail below.

Assessments of the relative change in surface reflectance at the Landsat 30 m scale requires
downscaling via PSTOA

Bi . To this end, histogram matching is first applied to day-coincident PS
and MODIS scenes after aggregation of the PS data to 500 m resolution. In this way, the pixel
values in the PS image are manipulated to mirror the distribution of the MODIS BRDF-adjusted
surface reflectances (MODSR

Bi ). The Cubist decision tree regression algorithm is then used to learn
the relationship between the “raw” (i.e., TOA reflectances) and corrected (i.e., MODIS-consistent
surface reflectances) 500 m PS pixel values, using the implementation of Cubist described in Houborg
and McCabe [33]. Disaggregation to the 30 m scale is facilitated by applying the derived band-specific
regression models to PSTOA

Bi resampled to 30 m. Finally, a conservative three-point temporal smoothing
algorithm is applied to the resulting time-series images (PSMOD

Bi ). This algorithm goes through each
scene sequentially and flags pixels that have a lower NDVI value than corresponding pixel retrievals
from two scenes acquired immediately before and after (i.e., within five days) the scene in question.
Since anomalous NDVI behavior of this kind is unlikely over such a short period in time, the Bi pixel
value is replaced by an average of the two pixel retrievals weighted by the difference of the acquisition
timespans (∆day) (i.e., 50:50 at ∆day = 0 up to 80:20 at ∆day = 5). The algorithm is then reapplied in a
second iteration, this time flagging high NDVI pixels bounded by two low NDVI pixels.

While this produces MODIS-consistent PS spectral data (PSMOD
Bi ) at 30 m, reflectance magnitudes

may differ from the L8 surface reflectance distribution due to scale issues and substantial adjacency
effects at high spatial resolutions over this specific environment [23]. This in turn will affect
the utility of the data for reliably assessing the magnitude of Landsat-consistent reflectance changes.
An NDVI-specific bias correction technique is implemented to make the change detection data more
consistent with the Landsat surface reflectance data. This approach uses all data during day-coincident
Landsat–CubeSat acquisitions to build band-specific bias correction models for discrete NDVI intervals
(i.e., 0–0.1, 0.1–0.2, 0.2–0.3 . . . 0.9–1.0). The NDVI-specific correction models are developed for each
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spectral band (Bi) using a one-rule implementation of Cubist and PSMOD
NDVI and PSMOD

Bi as explanatory
input variables and L8SR

Bi divided by PSMOD
Bi as a target variable. The trained models are then applied

to the full record of PSMOD
Bi scene data and the results multiplied by PSMOD

Bi to produce estimates
(PSMOD_L8

Bi ) more in line with the L8 based estimates (L8SR
Bi ).

The PSMOD_L8
Bi dataset is used to calculate band-specific relative surface reflectance (SR) changes

(dSRk = [SRj − SRk]/SRk) between any given CubeSat acquisition (j) on Pday and each pair (k) of
day-coincident Landsat–CubeSat acquisition [33]. Reference VNIR samples are only drawn from L8
scenes associated with a band-combined dSRk less than a given threshold percentage (Cth). Qualified
reference samples are multiplied with the band-specific correction factors (1 − dSRk) to account for
reflectance changes occurring over the acquisition timespans. In the case where reference data can
be drawn from multiple L8 scenes, weights are applied as a function of the acquisition timespan
and the magnitude of surface reflectance change. This will serve to produce a smoother result by
minimizing potential uncertainties (e.g., atmospheric contamination) associated with the L8 data. Cth is
initially set to 15% but increases to 30% for pixels not selected as references under the initial threshold.
These temporally adjusted reference samples (L8REF

BI ) are used for model training as described next.

2.4.3. VNIR Model Training and Prediction

The 30 m resolution VNIR reference data (L8REF
Bi ) specific to each CubeSat acquisition (Section 2.4.2)

are used to train four band-specific prediction models relating PSTOA
Bi to L8 surface reflectance data. Cubist

is used to produce the set of multivariate linear regression models [33]. For this purpose, the blue, green,
red, and NIR prediction models use the corresponding PS band as the input explanatory variable after
pixel aggregation to the Landsat spatial scale. The maximum number of rules (nrul) is set to 50 in order to
effectively reproduce the spatial distribution of the reference data. Resulting band-specific models are
then applied to full scene PSTOA

Bi data after pixel aggregation (i.e., 30 m) (Figure 2).
These multirule (nrul = 50) models are not directly transferable to the full resolution scale (i.e.,

3.125 m) due in part to overfitting issues [33]. To remedy this, simpler two-rule (nrul = 2) regression
models are constructed (using exactly the same 30 m inputs) and applied at the finer scale while
enforcing scale consistency with the 30 m resolution estimates (nrul = 50) (i.e., pixel aggregation to
30 m will produce near-identical results). Consistency at the 30 m resolution scale is ensured by only
utilizing the subpixel (i.e., 3.125 m) variability predicted by the two-rule models relative to the 30 m
resolution pixel estimates. In this way, the predicted ~3 m data (PSL8

Bi ) retain the spatial features
and gradients present in the original 3.125 m resolution data (PSTOA

Bi ).

2.4.4. CESTEM-LAI

This section describes the additional steps required to map LAI at the spatial and temporal
resolution of the CubeSat data (PSL8

LAI) (Figure 2). For this purpose, Cubist is combined with a random
forest (RF) regression approach to optimize retrieval accuracies. While RF is powerful at reproducing
features in seen observations, the learning process can be computationally demanding and resulting
models may not transfer well to “unseen” space and time domains [41]. In comparison, Cubist is
computationally efficient and models are generally more portable and better at handling extrapolation
beyond the conditions of the training data [41].

Landsat-based LAI scenes (L8LAI) that are day-coincident with a CubeSat acquisition are used for
reference sampling in accordance with the approach outlined for VNIR data (Section 2.4.2). The change
in LAI over given Landsat–CubeSat acquisition timespans is quantified based on initial PS LAI time
series maps (30 m) (PSini

LAI) predicted on the basis of multirule (nrul = 20) Cubist regression models.
These are constructed using a multi-day training dataset of L8LAI, paired with explanatory spectral
variables retrieved from the CESTEM corrected surface reflectances (PSL8

Bi ) acquired on the same
day as the Landsat data. The spectral variables consist of six vegetation indices (VI) with known
sensitivity to LAI and include the Normalized Difference Vegetation Index (NDVI) [52], the Optimized
Soil Adjusted Vegetation Index (OSAVI) [53], the Green Normalized Difference Vegetation Index
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(GNDVI) [54], the Modified Triangular Vegetation Index (MTVI2) [55], and the Green Simple Ratio
(GSR) [56]. The constructed models are applied to the full record of PSL8

Bi images (after VI conversion)
for assessing the change in LAI over given acquisition timespans. Subsequently, LAI reference samples
on Pday are drawn from the available pool of Landsat scenes (both before and after Pday), but only if
the absolute change in LAI over the given timespan is less than the assigned threshold (arbitrarily
set to 1.5 m3·m−3). Reference samples drawn from multiple scenes are combined and corrected for
any change in magnitude occurring over the acquisition timespans to provide a weighted estimate of
pixelwise reference LAI (L8REF

LAI ) at 30 m, characteristic of conditions during each PS scene (Figure 2).
CESTEM-LAI integrates the RF ensemble-based decision tree approach [57] to learn

the relationships between PSL8
Bi -based VI and L8REF

LAI (30 m) on a scene-specific basis. In RF, a large
ensemble of decision trees is grown, each using a random subsample of the training data and a
random subset of VI variables derived from PSL8

Bi (see above). Each tree consists of a hierarchy of
connected nodes that are defined based on spectral threshold conditions and with each terminal
node associated with a unique target prediction value. The final prediction is taken as the average
of the individual decision tree outputs. RF is relatively insensitive to parameter specifications [41]
that include the number of trees in the forest (ntree), the number of variables tried at each split (mtry),
and the minimum number of samples required at terminal nodes (nodesize). In this study, default
values for regression were used for mtry (i.e., number of variables divided by 3) and nodesize (i.e., 5),
whereas ntree was set to 200. The distributed data structures (ddr) version [58] of the “randomForest”
package in R [59] is adopted, as it uses parallel computing to speed up the training and prediction
process, which makes it more adaptable to big data analytics [60]. With an assignment of 10 dedicated
computing cores (Intel Xeon W-2125 CPU@3.33 GHz), the time for training the RF model (using 27,000
samples) decreased from 63 s (i.e., with one core) to 14 s.

While RF is highly useful for learning potentially complex associations at the 30 m scale based
on seen data, model application to unseen data beyond the conditions of the training dataset can
be problematic due to inherent transferability and extrapolation issues [41]. In addition, RF model
application at the ~3 m scale constitutes a substantial and time consuming computational load.
To address this, a pair (nrul = 2) of localized multivariate regression relationships is constructed
using Cubist and applied at the ~3 m scale while ensuring scale consistency with the 30 m resolution
RF predictions (i.e., pixel aggregation to 30 m will produce near-identical results). This ensures a
realistic distribution of predicted LAI at the 3 m scale (PSL8

LAI) without impacting LAI magnitudes
and variabilities predicted by the RF models at the 30 m resolution scale.

3. Results

A total of 103 PlanetScope images were retained for analyses over the six-month study period
after automatic screening for cloud contaminations (Figure 3). The normalized frequency distribution
of the number of days between successive acquisitions (Figure 3a insert) indicates a daily clear-sky
imaging capacity 62% of the time (i.e., 64 out of 103 scenes were acquired one day after another
acquisition) with an enhanced observing potential evident after 5 June (DOY 156). Impressively, 90%
of the time the acquisition gap was ≤3 days. Eight scenes were identified as contaminated to some
extent based on thresholding the spatial autocorrelation measure (i.e., R2) between successive scenes in
the time series, as described in Section 2.4.1. Visual inspection of the scenes demonstrated the utility of
this automated approach for retaining only clear-sky scenes in CESTEM processing. While cloud cover
is less of an issue in this environment, aerosol loadings can be substantial and may vary significantly
from day to day [46]. MODIS deep blue algorithm retrievals over the study domain during CubeSat
acquisitions suggest an average AOT550 of 0.395 ± 0.15 with a range of 0.118–0.854 (Figure 3b).

In terms of scene coregistration, established pixel shifts were less than or equal to one 3.125 m pixel
in 98% of the cases, which indicates well-aligned images over this specific region and an improvement
in scene coalignment compared to previous product distributions [33]. The absolute geolocation
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uncertainty was not directly assessed in this study but is reported to be 10 m root-mean-square error
or better (Section 2.1).

The vast majority of scenes (n = 97) were acquired by CubeSats operating in sun synchronous
orbits. Most of these (n = 94) had a consistent local overpass time between 9:37 a.m. and 9:45 a.m.
(UTC + 3 h), about one hour earlier than the remaining three (10:49 a.m. to 10:56 a.m.). The rest (n = 6)
were associated with CubeSats operating in the ISS orbit, with overpass times varying from 6:40 a.m.
to 4:18 p.m. (UTC + 3 h) (Figure 3a). Sensor view zenith angles were generally low and less than 4◦ in
85% of the cases (Figure 3a). In addition to scene-specific sensing geometry, sensor-specific spectral
response functions and radiometric quality may affect the consistency of the CubeSat data over time
as shown in Houborg and McCabe [33] and explored further below.
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The NDVI time series over a multicut alfalfa plot unit (180 × 180 m), calculated from both PS 
TOA and atmospherically corrected surface reflectances, demonstrate evolving growing cycles from 
low to higher NDVI, despite evidence of significant day-to-day variability (Figure 4a). The noise in 
the time series makes it challenging to infer the duration of the various alfalfa development stages 
and exact timing of key phenological transitions points (Figure 4a). The dynamic range in PS NDVI 
increases from 0.11–0.55 to 0.13–0.81 after atmospheric correction, but generally remains limited 
compared to the atmospherically corrected L8 data (0.29–0.92), available approximately every eight 
days over this section of the farm (Figures 1 and 4a). Large NDVI differences are evident between 
day-coincident PS and L8 retrievals, particularly during high NDVI, which is partly attributed to 
inconsistent spectral bandwidths and spectral response functions [33]. However, a consistent bias is 
not evident (Figure 4a), making systematic correction difficult. While atmospheric contamination is 
a concern over this desert landscape, with significant impacts of dust aerosols (Figure 3b) and 
adjacency effects [23], the atmospheric correction does little in terms of reducing the unrealistic short-

Figure 3. (a) Sensor view angle and local overpass time for clear-sky CubeSat imagery acquired over
a six-month period. The insert depicts the frequency distribution of the number of days between
consecutive CubeSat acquisitions. (b) Time series of aerosol optical thickness at 550 nm (AOT) derived
from MODIS deep blue algorithm retrievals (Section 2.2) and used for the atmospheric correction of
Landsat and PlanetScope data.

3.1. NDVI Time Series Dynamics

The NDVI time series over a multicut alfalfa plot unit (180 × 180 m), calculated from both PS
TOA and atmospherically corrected surface reflectances, demonstrate evolving growing cycles from
low to higher NDVI, despite evidence of significant day-to-day variability (Figure 4a). The noise in
the time series makes it challenging to infer the duration of the various alfalfa development stages
and exact timing of key phenological transitions points (Figure 4a). The dynamic range in PS NDVI
increases from 0.11–0.55 to 0.13–0.81 after atmospheric correction, but generally remains limited
compared to the atmospherically corrected L8 data (0.29–0.92), available approximately every eight
days over this section of the farm (Figures 1 and 4a). Large NDVI differences are evident between
day-coincident PS and L8 retrievals, particularly during high NDVI, which is partly attributed to
inconsistent spectral bandwidths and spectral response functions [33]. However, a consistent bias is
not evident (Figure 4a), making systematic correction difficult. While atmospheric contamination is a
concern over this desert landscape, with significant impacts of dust aerosols (Figure 3b) and adjacency
effects [23], the atmospheric correction does little in terms of reducing the unrealistic short-term
fluctuations in NDVI. Overall, using the Planet data at this processing stage for precision agricultural
applications would be challenging.
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CESTEM was applied to the full record of PS TOA reflectance images using L8 surface reflectance
images as reference. Figure 4b demonstrates the production of L8-consistent NDVI during each
CubeSat acquisition based on a standard 16-day Landsat revisit. This resulted in a total of eight
Landsat scenes available for reference sampling (i.e., dependent scenes) over the six-month period.
After applying CESTEM, PS NDVI aligns closely with the dependent Landsat estimates and also tracks
features in the independent Landsat estimates quite well (Figure 4b). Most importantly, well-defined
and clearly discernable growing cycle characteristics of a multicut alfalfa field appear. A total of
five individual growing cycles with a 30–40 day harvesting frequency can be clearly identified,
although the frequency of observations is nonoptimal during the first two cycles (i.e., DOY 110–160).
The vegetative stages are characterized by a rapid progression in NDVI followed by a period of minimal
NDVI change towards plant maturity. Harvesting is clearly indicated by abrupt declines in NDVI,
such as on DOY 159, 197, 239, and 274 (Figure 4b). The dynamic phenology and short growing seasons
are realistic given the ideal growth conditions facilitated by high day time temperatures (35–45 ◦C) in
combination with ample nutrient and water availability (i.e., pivot irrigation). In addition, the detected
phenology is consistent with the MODIS-based information (Figure 4b). What is evident is that Landsat
data alone, even with an eight-day frequency, is unable to detect the phenological transitions with
sufficient accuracy.
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Figure 4. (a) Six-month time series of Landsat 8 (L8) and PlanetScope (PS) NDVI calculated from
atmospherically corrected (6SV) and top of atmosphere (TOA) reflectances. The data represent an alfalfa
plot unit measuring 180 × 180 m2 (Figure 1). (b) CESTEM-corrected time series of PS NDVI based on
16-day L8 reference data (i.e., dependent scenes). The hollow L8 squares (i.e., independent scenes) were
not used in CESTEM. The downscaled MODIS data (MOD) were used after bias correction (MOD_L8)
(Section 2.4.2) to determine the relative change in surface reflectance over given CubeSat–Landsat
acquisition timespans. (c) As in (b), except that reference data were drawn from the full eight-day
L8 record.
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CESTEM was also evaluated using the full eight-day Landsat record for reference sampling (i.e.,
14 dependent scenes) in order to demonstrate the impact of data frequency on the CESTEM-corrected
time series results (Figure 4c). While the overall NDVI phenology is quite similar between the two
simulations (Figure 4b,c), the use of additional reference points has a significant impact on NDVI
during the vegetative stages (e.g., DOY 164–174 and 201–210). Since Landsat reference samples
during the greening-up phases (in the intermediate NDVI range) are lacking during the 16-day
simulation (Figure 4b), reference data during these periods will either be completely missing (i.e.,
if Cth < 0.3) or inferred from high or low NDVI reference samples via band-specific correction factors
derived from the MODIS-consistent surface reflectance change information (Section 2.4.2). While
the downscaled MODIS-based NDVI time series depict growing cycles consistent with the CESTEM
results, the green-up is typically less rapid and the timing of peak NDVI arrives later, which may
be attributed to the 16-day compositing adopted for the BRDF normalization (Section 2.3). As a
result, the change information established during these dynamic periods may be associated with
greater uncertainty. This is best mitigated by having Landsat reference samples over the full range
in NDVI, as that will reduce the impact of the spectral corrections (i.e., due to lower dSR values;
Section 2.4.2). The lack of consistency between the downscaled MODIS (PSMOD

NDVI) and Landsat NDVI
magnitudes is noteworthy (Figure 4c), and is in large part attributable to scale issues and the impact of
high-resolution adjacency effects that have shown to increase NDVI by up to 50% [23]. The adopted
bias correction technique is effective at ensuring that the downscaled MODIS data (PSMOD_L8

NDVI ) is more
Landsat consistent (Figure 4c), which is critical for reliable change detection and reference sampling
within the context of CESTEM.

3.2. Spatiotemporal LAI Dynamics

The utility of CESTEM for the spatiotemporal enhancement of biophysical properties ultimately
relies on the capacity of the adopted machine-learning technique to establish accurate and spatially
representative associations between the CubeSat spectral data and the reference biophysical parameter
information. Figure 5 showcases the agreement between L8 reference LAI and CubeSat LAI predicted
via random forest machine-learning on DOY 293. The CESTEM-corrected VNIR data were used to
construct the explanatory VIs for model training. Visually, predictions accurately reproduce the spatial
features and magnitudes in the reference LAI map (Figure 5a). The associated density scatter plot
confirms a strong interconsistency and clustering around the 1:1 line, with an R2 of 0.991 and a relative
mean absolute difference of 4.57%, excluding desert pixels (Figure 5b). The box-and-whisker plot
resolves the mean absolute difference (MAD) statistic as a function of LAI, which demonstrates that
the median MAD (i.e., the red line) is always lower than 0.09 m3·m−3 (Figure 5c). Similar evaluations
based on the remaining day-coincident Landsat and CubeSat acquisitions reveal consistently good
LAI retrieval performances with the RF models, yielding relative MADs ranging from 3.5% to 6.4%
(Table 1).

Table 1. Statistical metrics of the agreement between Landsat 8 and CubeSat-based LAI during
day-coincident acquisitions. Evaluations were performed at the 30 m scale (excluding desert
pixels) and include the coefficient of determination (R2), the mean absolute difference (MAD),

the relative MAD (rMAD), and the relative mean bias difference (rMBD). MAD = 1
n

n
∑

i = 1
|PSi−L8i|,

rMAD = 100×
(

1
n

n
∑

i = 1
|PSi−L8i|

)
/L8, rMBD = 100×

(
1
n

n
∑

i = 1
(PSi−L8i)

)
/L8.

DOY 149 158 165 174 181 197 206 213 222 245 270 277 286 293

R2 0.989 0.986 0.993 0.995 0.992 0.989 0.995 0.989 0.984 0.996 0.993 0.994 0.994 0.991
MAD 0.118 0.098 0.057 0.086 0.066 0.082 0.039 0.081 0.092 0.064 0.074 0.071 0.072 0.097

rMAD [%] 4.68 4.69 3.48 3.86 4.35 5.81 4.88 6.30 6.40 4.07 3.92 4.39 3.90 4.67
rMBD [%] 0.46 −0.93 0.13 0.22 0.53 1.02 0.82 1.57 −1.20 0.52 0.12 0.57 0.31 0.68
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CESTEM produced LAI time series over the multicut alfalfa study-unit track the general features 
of the about eight-day Landsat-based LAI (dependent or independent) and add close to daily 
information (i.e., after DOY 156) on LAI dynamics (Figure 6). The value of the high-frequency LAI 
data is particularly evident during rapid transition events such as harvesting, which are often 
completely missed during the eight-day Landsat revisit period (Figure 6). The match between 
CESTEM and Landsat LAI during day-coincident acquisitions is not always perfect, as the scene-
specific reference data constitute a weighted estimate of samples drawn from multiple Landsat scenes 
(Section 2.4.4). This smoothing approach was implemented in an effort to reduce uncertainties 
associated with the Landsat LAI retrievals [41]. In this case, the range in CESTEM predicted peak LAI 
over the course of five alfalfa growing seasons is constrained to ~3.9–4.7 m3·m−3, whereas Landsat 

Figure 5. (a) Maps of 30 m resolution LAI based on Landsat 8 (L8) (top) and CubeSat (bottom) data
acquired on day of year (DOY) 293. CubeSat LAI was derived via random forest machine-learning using
L8 LAI as reference (see Section 2.4.4). (b) Density scatter plot intercomparing CubeSat and L8-based
LAI on DOY 293. Statistical performance metrics are indicated on the plot and include the coefficient
of determination (R2), the mean absolute difference (MAD), and the relative mean bias difference
(rMBD). (c) Box-and-whisker plot that displays the minimum, lower quartile, median, upper quartile,
and maximum of the MADs between CubeSat and L8 as a function of LAI. See Table 1 for the definitions
of MAD and rMBD.

CESTEM produced LAI time series over the multicut alfalfa study-unit track the general features
of the about eight-day Landsat-based LAI (dependent or independent) and add close to daily
information (i.e., after DOY 156) on LAI dynamics (Figure 6). The value of the high-frequency
LAI data is particularly evident during rapid transition events such as harvesting, which are often
completely missed during the eight-day Landsat revisit period (Figure 6). The match between CESTEM
and Landsat LAI during day-coincident acquisitions is not always perfect, as the scene-specific
reference data constitute a weighted estimate of samples drawn from multiple Landsat scenes
(Section 2.4.4). This smoothing approach was implemented in an effort to reduce uncertainties
associated with the Landsat LAI retrievals [41]. In this case, the range in CESTEM predicted peak LAI
over the course of five alfalfa growing seasons is constrained to ~3.9–4.7 m3·m−3, whereas Landsat
records a peak LAI of 5.3 m3·m−3 (Figure 6). As for the spectral CESTEM corrections, pixelwise change
information over given CubeSat–Landsat acquisition timespans represents an important prerequisite.
While positively biased, the initial LAI (see Section 2.4.4) plotted in Figure 6 is highly correlated with
the final CESTEM LAI and as such serves as an effective mechanism to quantify the change in LAI
over relevant acquisition timespans (Figure 6).
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Figure 6. CESTEM-based time series of PlanetScope (PS) LAI for the alfalfa study-unit (Figure 1) using
eight-day Landsat 8 (L8) reference data (i.e., dependent scenes). Retrievals from the four L8 scenes not
included in CESTEM (i.e., independent scenes) are also shown. The dashed line depicts the initial LAI
series used to quantify the change in LAI over given CubeSat–Landsat acquisition timespans as part of
the reference sampling scheme (Section 2.4.4). The shaded area indicates the vegetative period used for
illustrative purposes in Figure 7.

Figure 7 displays a daily sequence of full resolution (i.e., 3.125 m) CubeSat LAI over the alfalfa
pivot (~800 m diameter) highlighted in Figures 1 and 6 during an eight-day green-up period (DOY
206–213) that is bounded by Landsat LAI retrievals (30 m) on DOY 206 and 213. The potential of
the very high-resolution (i.e., daily, 3 m) CubeSat LAI retrievals for providing spatial and temporal
insights into growth dynamics is clearly evident. With a factor of 10 increase in spatial resolution,
intrafield-scale variability that is largely absent in the Landsat LAI becomes resolvable. Importantly,
this allows for an improved delineation of field sections exhibiting optimal or suboptimal growth
performance and may also provide direct insight into the early detection of disease and other crop
health indicators. The benefit of daily image capture is particularly pronounced given the rapid crop
development over such a short period of time.
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The spatial and temporal advantages afforded by daily CubeSat LAI imagery are further
emphasized in a three-day sequence capturing the timing and progression of a harvesting event
commenced on DOY 181 and completed on DOY 183 (Figure 8a). In this instance, Landsat LAI is only
available on DOY 181, missing critical day-to-day dynamics in vegetation response. Similarly, Figure 8b
demonstrates that the exact timing of the harvesting event on DOY 222 can only be inferred from a daily
sequence of CubeSat images. While the single Landsat acquisition on DOY 222 captures this specific
harvest event, the exact transition day would be impossible to determine based on imagery captured
8–16 days earlier. In addition, the spatial resolution of the Landsat LAI on DOY 222 is generally too
coarse for delineating the harvested areas, or progress, with high accuracy. Figure 8c demonstrates
the potential of detail-rich CubeSat data for capturing intrafield scale variability in LAI during a
green-up phase (DOY 254–257) from an alfalfa field that exhibits significant fine-scale heterogeneity.
The closely spaced (i.e., intervals of ~50 m) circular wheel tracks from the rotating center-pivot irrigation
system add further complexity to the interpretation of vegetation response and plant development,
but these features are effectively resolved by the CubeSat data. In comparison, Landsat LAI represent
a mixed signal significantly confounded by bare soil contributions from the wheel tracks. In addition,
the temporal insights afforded by 8–16-day Landsat data present a significant limitation during
dynamic vegetative periods such as this.
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Figure 8. Events of rapid (i.e., from day to day) change in LAI over selected pivots across the study
domain. (a) Timing of a harvesting event captured by daily PlanetScope (PS) LAI (DOY 180–183)
whereas L8 LAI is only available on DOY 181. (b) Timing of intrafield transitions from high to low
LAI captured by daily PS LAI (DOY 220–222) whereas L8 LAI is only available on DOY 222. (c) Rapid
green-up development tracked by PS LAI (DOY 254–257) whereas L8 LAI is only available on DOY 254.
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4. Discussion

Constellations of CubeSats in low-earth orbits constitute an unprecedented opportunity to
monitor the terrestrial surface with enhanced spatial detail more frequently than ever before. This
study demonstrated the capacity of Planet’s constellation of CubeSats, equipped with basic optical
imagers (i.e., RGB + NIR), to monitor vegetation dynamics at high spatial (~3 m) and temporal
(~daily) resolution. While daily imaging was available during the majority of the six-month study
period, original (i.e., not CESTEM corrected) NDVI time series over a multicut alfalfa field indicated
significant day-to-day variations not directly attributable to vegetation dynamics or phenology.
While atmospheric influences due to dust aerosols were significant, atmospheric correction did
not reduce the high-frequency noise. Cross-sensor inconsistencies in radiometric quality, spectral
responses, and orbital configuration are the likely contributors to the noise observed in this time-series
record. Even though Planet’s constellation of CubeSats undergoes fairly rigorous radiometric
calibrations, as outlined in Section 2.1, the residual noise, as demonstrated here, represents a notable
limitation for high-fidelity land surface characterization. Additionally, the limited spectral information
content contained in broad and partially overlapping bands is inconsistent with the narrower
VNIR band configuration typical of conventional multispectral satellite systems such as Landsat
and Sentinel-2 [33,61]. While Planet have recently implemented their own 6S-based atmospheric
correction protocols, the product was not in wide distribution until October 2017, which is at the end of
our study period. Importantly, Planet’s approach does not include adaptations to account for localized
aerosol and adjacency effects, which are key factors in our (and many other) study environments.
In any case, atmospheric correction of the CubeSat data is not a requirement for running CESTEM that
can accept raw digital counts or TOA reflectances as demonstrated in this study.

CESTEM was designed to realize the full potential afforded by CubeSat resources and to allow
high-quality, very high-resolution spatiotemporal insights. At its core, CESTEM serves as a radiometric
normalization mechanism that has a demonstrated capacity to translate CubeSat observations into
L8-consistent imagery, while retaining the radiometric quality of actual L8 observations [33]. In the
current study, CESTEM effectively corrected the “raw” multitemporal CubeSat scene data into
L8-consistent surface reflectance estimates using an 8–16-day Landsat record as reference data. With
this normalized dataset, key phenometrics, such as the start, end, and length of five well-defined
and rapidly evolving alfalfa growing seasons, could be accurately retrieved. What is pressingly
evident is that Landsat data alone, even with the eight-day frequency available over parts of the study
domain (Figure 1), are incapable of detecting the high-frequency vegetation dynamics characteristic
of multicut alfalfa. More generally, the time-critical and spatially explicit information needs of
precision agricultural management cannot typically be satisfied by conventional satellite resources
alone. On the other hand, integrative multisource approaches based on CubeSat imaging hold
the potential to overcome traditional spatiotemporal constraints.

Temporal smoothing filters can be highly useful for assessing vegetation phenology
and calculating phenological transition dates from satellite time-series data [11]. However,
the robustness of the phenology reconstruction can be very sensitive to the choice of smoothing
algorithm and parameter calibration [62], and ultimately depends on the availability of a sufficient
number of high quality observations during phenological transition events [63]. In this case, common
smoothing filters for phenology reconstruction [64] would have limited utility given the real risk
of mistaking some of the high-frequency NDVI dynamics (i.e., such as the dips in NDVI between
alfalfa growing seasons) as signal contamination. The addition of five-day Sentinel-2 data would
certainly increase the capacity of conventional satellite resources for high-resolution land surface
characterization, particularly if used synergistically in the manner envisioned by the Harmonized
Landsat Sentinel-2 initiative [27]. When combined together, a global median average revisit of 2.9 days
can be achieved [25], which constitutes a major advance towards obtaining clear-sky imagery in a timely
fashion. Still, the temporal frequency is in many cases suboptimal for monitoring rapid land cover
and land use changes in near real time [30], which requires clear-sky image acquisitions immediately
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before and after the change event. Even disregarding the enhanced spatial resolution, with a daily
imaging frequency, the potential of Planet’s constellation of CubeSats for monitoring day-to-day
variations in vegetation dynamics and characteristics (after careful corrections for cross-sensor
inconsistencies) is clearly demonstrated in this study. Importantly, CESTEM can also be adapted
to only exploit satellite data acquired prior to the CubeSat prediction day (see Section 2.4.2), which
would enable near real-time predictions needed in the context of precision agriculture.

Unavoidable impacts of cloud contamination on data availability may be partly mitigated by
exploiting the expanding capability of the constellation to survey the same location more than
once a day. In this manner, the frequency of observations will approximate the revisit capability
of the two-satellite (i.e., Terra and Aqua) MODIS configuration, with a truly impressive factor of
80–160 increase in spatial resolution (i.e., 250/500 m to 3.125 m). In addition to disrupting the temporal
continuity of the observational CubeSat record, atmospheric contamination may affect the robustness
of CESTEM retrievals, as extended timespans between clear-sky L8 overpasses will reduce the number
of representative reference samples. Over cloud-prone regions, an effective near real-time phenology
reconstruction via CESTEM would probably require a longer multiyear record of searchable L8 scenes
together with harmonized Sentinel-2 data continuously updated with new reference scenes as they
become available. In this context, the weighting of reference samples drawn from multiple scenes
serves to effectively smooth out noise in the time-series reference data. As such, CESTEM also
functions as a superior phenological smoothing filter that draws from actual high-frequency (~daily)
CubeSat observations without the uncertainties associated with traditional smoothing and gap-filling
approximations [65].

In addition to enhanced temporal insights, the spatial detail afforded by the CubeSat data within
the framework of CESTEM can be highly advantageous for agricultural management at the precision
scale via actionable intrafield information on vegetation dynamics and disturbances. This potential
was demonstrated on the basis of CubeSat-derived LAI using CESTEM as the mechanism to enhance
Landsat-based LAI both spatially and temporally. The CubeSat resolution (~3 m) was able to resolve
intrafield-scale spatial features largely absent in the Landsat retrievals, and daily sequences of CubeSat
LAI highlighted rapid and detail-rich crop dynamics completely missed by the 8–16-day Landsat
imagery. The adopted RF machine-learning approach was shown to reproduce the L8 reference LAI
with high accuracy (i.e., relative MAD ranging from 3.5–6.4%) based on a relatively limited suite of
spectral variables derivable from the CESTEM corrected VNIR data. This was despite the fact that
a more spectrally enhanced dataset, including critical bands in the shortwave infrared domain, was
needed for the Landsat-based LAI retrieval in order to reproduce observed multiday features with
sufficient accuracy [41]. Robust CubeSat-based LAI retrievals were facilitated by strong associations
between LAI and standard indices in the VNIR [66] in combination with a repeatable redefinition of
RF prediction models based on scene-specific reference data. This approach exploits the powerful
capacity of data-driven machine-learning techniques to reproduce spatially explicit features in “seen”
observations (e.g., reference LAI) while reducing the impact of intrinsic portability and transferability
issues [41,67]. As such, CESTEM-LAI takes advantage of high quality and spectrally enhanced sensor
data (e.g., Landsat 8) for reference data generation, while reserving the more spectrally limited CubeSat
data exclusively for spatiotemporal enhancement purposes.

The downscaling from 30 m to 3.125 m resolution can result in errors due to overfitting and poor
generalization [68] and was constrained by employing simpler Cubist-based regression functions at
the full resolution scale. In addition to improving computational speed, this approach ensures realistic
distributions at the ~3 m scale without impacting magnitudes predicted by the more complex models
at the 30 m resolution scale. Although the scene-specific machine-learning approach still represents
a limitation when processing large amounts of satellite scenes, continued developments in cloud
computing and improvements in data-driven techniques [14] could offer enhanced mapping efficiency
and a pathway towards a larger-scale cloud implementation.
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A future integration of Sentinel-2 data is likely to add an expanded capacity to other vegetation
biophysical properties (i.e., chlorophyll content or carotenoids) which rely on the additional bands
in the red-edge for well-constrained retrievals [46,69,70]. In this case, correlative associations
between red-edge and combined green and NIR signals, via pigment and vegetation biomass
interdependences [71,72], could ensure effective CubeSat-based parameter enhancement on a
scene-specific basis [33]. Extendibility to hydrological process variables may also be envisioned,
including evapotranspiration (ET), given its strong link to optical remote sensing data and derivable
metrics of vegetation density [30]. However, the capacity of CESTEM to effectively resolve
spatial variability in water use, considering the complex impacts of irrigation, water availability,
and vegetation stress [73], remains to be investigated further. In that context, a comparative analysis
against traditional data-fusion algorithms for enhancing observing capacity [16,21], necessitated by
the long-standing trade-off between the spatial and temporal resolution of conventional satellites
(e.g., Landsat versus MODIS), would be highly relevant. Since CubeSat constellations overcome these
traditional spatiotemporal constraints (i.e., by providing Landsat-like data at MODIS frequency),
the CESTEM approach offers a unique avenue towards spatiotemporal enhancement with potentially
superior retrieval accuracy.

With the key focus being directed towards demonstrating the temporal and spatial advantages
of emerging CubeSat resources for vegetation monitoring, a rigorous validation of CESTEM
results against independent data was not performed. Elaborate evaluations of temporal LAI
dynamics and retrieval robustness should involve continuous records of ground-based LAI
automatically observed based on downward-looking digital photos [74,75], upward-looking digital
cover photography [76], or indirectly via tower-mounted measurements of spectral vegetation index
data [77]. Similarly, evaluations of CESTEM-derived NDVI phenology should include comparisons
against continuous NDVI records observed via near-surface remote sensing with digital cameras
mounted on towers [78–80], as embodied by the PhenoCam network [81]. The integration of
ancillary high-frequency and very high spatial resolution (i.e., <5 m) taskable satellite (e.g., WorldView,
GeoEye, VeNUS) or UAV resources may be envisioned as an independent mechanism towards a time
and scale-relevant verification of spectral and vegetation biophysical features in the CESTEM-derived
product suite.

5. Conclusions

Here, we demonstrated the potential of a constellation of CubeSats for providing daily insights
into vegetation dynamics at ~3 m resolution. When using the original Planet data, cross-sensor
inconsistencies due to variations in orbital configurations, spectral responses, and radiometric quality
resulted in a relatively noisy six-month NDVI time series, making phenology reconstruction difficult
and susceptible to large uncertainties. The CubeSat Enabled Spatio-Temporal Enhancement Method
(CESTEM), based on a multisource (i.e., CubeSat, Landsat 8, MODIS) and multiscale (i.e., 3 m, 30 m,
500 m) machine-learning technique, facilitated radiometric normalization of CubeSat top of atmosphere
(TOA) RGB + NIR data into Landsat-8-consistent surface reflectances. The CESTEM-corrected NDVI
time series revealed clearly discernable and smoothly evolving growing cycles with a crop-growth
period on the order of 30–40 days. These results highlighted the impressive capacity of near-daily
CubeSat imaging for resolving high-frequency vegetation dynamics and determining the exact timing
of key phenological transitions.

In addition to providing temporally consistent phenology information via NDVI, CESTEM
demonstrated its potential for enhancing Landsat-based LAI both spatially and temporally, while
maintaining consistency with Landsat-scale LAI. Daily sequences of CubeSat-based LAI highlighted
the spatial resolution advantage and provided critical temporal insights into within-field variations
in vegetation health and condition, the rate of vegetation green-up, and the timing and progress of
harvesting events, features that were largely uncaptured by the 8–16-day Landsat imagery.
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While CubeSat constellations are on path to reshape our earth-observing potential, the realization
of their full potential will likely require synergistic exploration with conventional satellite systems. By
serving as a multipurpose data-fusion scheme for radiometric normalization, time-series smoothing,
and spatiotemporal enhancement of biophysical properties, CESTEM provides this needed framework
and represents a novel paradigm with application potential across diverse aspects of earth observation.
Optimization of mapping efficiency (e.g., via cloud computing) and rigorous evaluation of retrieval
robustness and observing capacity over a wide range of ecosystems and environmental conditions
constitute key objectives for future research.
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