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Abstract: Super-resolution mapping (SRM) is a technique to obtain sub-pixel resolution thematic map
(SRTM). Soft-then-hard SRM (STHSRM) is an important SRM algorithm due to its simple physical
meaning. The soft classification errors may affect the SRTM derived by STHSRM. To overcome
this problem, the maximum a posteriori probability (MAP) super-resolution then hard classification
(MTC) algorithm has been proposed. However, the prior information of the original image is difficult
to utilize in MTC. To solve this issue, a novel method based on pansharpening then hard classification
(PTC) is proposed to improve SRTM. The pansharpening technique is applied to the original coarse
image to obtain the improved resolution image by suppling more prior information. The SRTM is
then derived from the improved resolution image by hard classification. Not only does PTC inherit
the advantages of MTC that avoids soft classification errors, but it can also incorporate more prior
information from the original image into the process. Experiments based on real remote sensing
images show that the proposed method can produce higher mapping accuracy than the STHSRM
and MTC. It is shown that the PTC has the percentage correctly classified (PCC) in the range from
89.62% to 95.92% for the experimental dataset.

Keywords: remote sensing image; sub-pixel resolution thematic map; super-resolution mapping;
pansharpening technique

1. Introduction

The widespread existence of mixed pixels in coarse multispectral image (MSI) or hyperspectral
image (HSI) hinders accurate extraction of land cover spatial distribution information [1]. Although soft
classification [2] is effective in estimating the proportion of each class within mixed pixels, such as linear
spectral mixture analysis [3], nonlinear unmixing [4], support vector machines [5,6], fuzzy c-means
classifiers [7], k-nearest neighbor classifiers [8], and artificial neural networks [9], it cannot provide any
spatial distribution information for the land-cover classes in mixed pixels. Super-resolution mapping
(SRM) is a postprocessing technique operating on the results of the soft classification [10]. It predicts
the distribution of land-cover classes at a sub-pixel scale based on the output of soft classification.

SRM is based on the spatial dependence theory [11–13]. The soft-then-hard SRM (STHSRM) [14]
contains two steps: (1) sub-pixel sharpening and (2) class allocation [14]. The proportion of each class
in sub-pixel is estimated by upsampling the soft classification result; this process is called sub-pixel
sharpening. Class labels are then allocated for the sub-pixel according to the proportion of each class
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in the sub-pixel, and this process is called class allocation. Back-propagation neural networks [15,16],
Hopfield neural networks [17,18], spatial attraction [19,20], kriging [21], indicator cokriging [22,23],
and super-resolution algorithms [24–29] can be selected as the sub-pixel sharpening method in
STHSRM. Common class allocation methods include linear optimization [30], highest proportion
arrangement first [31], and spatial distribution pattern [32]. To overcome the soft classification errors
in STHSRM, maximum a posteriori probability (MAP) super-resolution then hard classification (MTC)
is proposed [33].

However, due to some uncertainty in the original coarse image, such as diversity of the land
cover classes and the limitation of the resolution of the satellite sensor, the MTC has difficulty in
gathering the full prior information of the original image. Here, the authors propose a novel method
based on pansharpening then hard classification (PTC) to improve the sub-pixel resolution thematic
map (SRTM). The pansharpening technique is applied to improve the resolution of the original coarse
image with more prior information, and the improved resolution image is then utilized to derive
the SRTM by the hard classification method. The proposed method has the following advantages.
First, pansharpening technique is creatively applied to obtain SRTM. A new method utilized to obtain
the SRTM is proposed, namely pansharpening then classification. Second, PTC inherits the advantages
of MTC, which avoids the soft classification errors. Third, the proposed method takes more prior
information from the original image into account than MTC.

The remainder of this paper is organized as follows. The SRM is introduced in Section 2. Section 3
gives an introduction about the MTC. The proposed PTC is presented in Section 4. Section 5 shows the
experimental results and analyses. The conclusions are given in Section 6.

2. Soft-then-Hard Super-Resolution Mapping

Figure 1 shows a simple example to explain the spatial correlation the theory [14,23,25]. Figure 1a
shows the soft classification result for Class 1. There are 3× 3 mixed pixels in Figure 1a, and the
proportion of Class 1 are marked on each mixed pixel. The scale factor S indicates the scale ratio
between a mixed pixel and its sub-pixels. When the soft classification results are upsampled with
scale factor of S = 2, a mixed pixel is divided into 2 × 2 sub-pixels, and 0.25 which means that
4× 0.25 sub-pixels belong to Class 1. Figure 1b,c describe two possible distributions of sub-pixels.
The principle of spatial dependence indicates that the former is perceived to be more optimal.
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Figure 2 shows the flowchart of STHSRM. The soft classification results for each class as inputs
are first upsampled with a scale factor S by an appropriate sub-pixel sharpening method to produce a
set of soft-classified images for all classes at fine spatial resolution, each of which is composed of the
proportion of each class in the sub-pixel. Class labels are then allocated for sub-pixel according to the
proportion of each class in sub-pixels.
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Constraints from class fractioning should be defined:

Nk(P) = Round(Lk(P)S2) (1)

where Nk(P) is the number of sub-pixels for the kth class, Lk(P) is the proportion of the kth class for
mixed pixel P in the soft classification result, Round(•) is a function that takes the nearest integer
to Lk(P)S2.

3. MAP Super-Resolution then Hard Classification

It is noted that STHSRM can be considered the postprocessing operation on the results of the soft
classification. To alleviate the errors from the soft classification, the MAP super-resolution then hard
classification (MTC) is proposed [33].

The flowchart of the MTC is shown in Figure 3. The original coarse image is the input, SRTM is
the output. An improved resolution image is derived by upsampling the original coarse image using
the MAP super-resolution method. SRTM is then achieved by hard classifying the improved resolution
image. MTC is different from the STHSRM because the soft classification is avoided.
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The endmembers of interest (EOI) [33] is utilized to reduce the complexity of the MAP
super-resolution method. The N-FINDR algorithm is used to extract the endmember [34]. Using MTC,
N-FINDR takes the original image to derive the spectral signature for the classes of interest (COI),
the area with a greater number of pixels. The spectral signature of the COI is selected to constitute
the EOI, which is selected as the low dimensional data to original high dimensional data mapping
operator, is the EOI column vector. The original high dimensional data to low dimensional data

mapping operator is Φinv, and Φinv =
(

ΦTΦ
)−1

ΦT . The low dimensional data to original high
dimensional data mapping operator Φinv is first applied to map the original high dimensional original
image into a low dimensional transformation space. The above MAP super-resolution process is then
applied. Utilizing the low dimensional data to original high dimensional data mapping operator the
super-resolution result is mapped to the original dimensional space. Reducing the dimensionality of
input data can simplify the MAP super-resolution process. Experiments show that when there is full
supervision information, MTC can obtain a more accurate SRTM result than the STHSRM [28,29,33].

4. The Proposed Method

Although MTC can alleviate the soft classification errors on SRTM, gathering the full
prior information from the original image is still challenge. To supply more prior information,
pansharpening technique is conducted here.

4.1. Pansharpening Technique

Pansharpening aims at fusing a coarse MSI or HSI and a panchromatic image, featuring the result
of the processing with the spectral resolution of the former and the spatial resolution of the latter
which should be simultaneously acquired over the same area. This is a data fusion problem since
one would aim at combining the spatial details resolved by the panchromatic image and the several
spectral bands of the MSI or HSI into a unique product [33].

Due to the advantages of high fidelity in rendering the spatial details and robustness to
misregistration errors and aliasing [35], the component substitution (CS) is widely used for
pansharpening. CS relies on projecting of an MSI or HSI into another space, to separate the spatial
structure from the spectral information in different components. Subsequently, the transformed
MSI or HSI can be enhanced by replacing the component containing the spatial structure with the
panchromatic image. The larger the correlation between the panchromatic image and the replaced
component, the less spectral distortion will be introduced by the fusion approach. To achieve a good
fusion, histogram matching of the panchromatic image to the selected component is performed before
the substitution takes place. The histogram-matched panchromatic will exhibit the same mean and
variance as the component to replace. The CS-based fusion process is completed by applying the
inverse spectral transformation to obtain the fused image. Figure 4 shows the flowchart of the CS
approach [35]. The general formulation of CS is given by:

∧
Yb =

∼
Yb + gb

(
P−

N

∑
b=1

wb

∼
Yb

)
(2)

where b (b = 1, 2, . . . , N) indicates the bth spectral band, Y is the original low resolution MSI

or HSI,
∧
Y is the pansharpened image,

∧
Yb denotes the bth band of the pansharpened image,

∼
Yb represents the bth band of the MSI or HSI interpolated at the scale of the panchromatic image,
gb = [g1, g2, ..., gN] is the vector of the injection gains, P is the panchromatic image, and the weight
vector wb = [w1, . . . , wi, . . . , wN]T measures the spectral overlap among the spectral bands and the
panchromatic image [36].



Remote Sens. 2018, 10, 884 5 of 15
Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 14 

 

P

Y

Interpolation to 

panchromatic 

image scale


bY

Histogram matching

~

Yb





I


bg



bw



Y

Coarse MSI or HSI 

Panchromatic 

image





 

Figure 4. The flowchart of the component substitution (CS) approach. 

There are many pansharpening approaches belonging to the CS family, such as principal 

component analysis (PCA) [36], Gram–Schmidt [37], and intensity-hue-saturation (IHS) [38]. Due to 

fast and easy implementation, PCA is employed here. PCA is achieved through a rotation of the 

original data (i.e., a linear transformation) that yields a set of scalar images, called principal 

components (PCs). The hypothesis underlying its application to pansharpening is that the spatial 

information (shared by all the channels) is concentrated on the first PC, while the spectral information 

(specific to each single band) is accounted for in the other PCs. The whole pansharpening process can 

be described by the general formulation stated by Equation (2), where the vectors w and g coefficient 

vectors are derived by the PCA procedure applied to the MSI or HSI. 

4.2. Pansharpening then Hard Classification 

To obtain more prior information, the pansharpening technique is utilized to obtain SRTM. First, 

the original coarse HS image Y is improved by PCA and the improved resolution image 


Y  is 

derived by Equation (2). To reduce the complexity of the PCA algorithm, the EOI developed [33] is 

also utilized. The N-FINDR takes the original image to derive the spectral signature for the COI which 

constitutes the EOI. The low dimensional data to original high dimensional data mapping operator 

  is the EOI column vector. The original high dimensional data to low dimensional data mapping 

operator is 
inv . First, utilize 

inv  maps the original high dimensional original image into a low 

dimensional transformation space, then the above PCA process is applied. Finally,   is applied to 

map the PCA result Y


 into the original dimensional space. Reducing the dimensionality of input 

data can simplify the PCA process. Then, the SRTM is derived by directly hard classifying the image 

Y


. 

PTC is shown as a flowchart in Figure 5. The implementation of PTC includes three steps: 

Step (1) Utilizing the endmembers of interest (EOI) map the original high dimensional MSI or HSI 

into a low dimensional transformation space. 

Step (2) The original coarse MSI or HSI in the low dimensional transformation space and a 

panchromatic image are fused (see Equation (2)) with the PCA pansharpening technique, to 

generate an improved resolution image. 

Step (3) SRTM is produced by classifying the improved resolution image. 

From Figures 3 and 5, since the PTC utilizes the panchromatic image, it supplies more prior 

information from the original image into the original coarse image than the MTC, the better SRTM 

will be derived. 

Figure 4. The flowchart of the component substitution (CS) approach.

There are many pansharpening approaches belonging to the CS family, such as principal
component analysis (PCA) [36], Gram–Schmidt [37], and intensity-hue-saturation (IHS) [38]. Due to
fast and easy implementation, PCA is employed here. PCA is achieved through a rotation of the
original data (i.e., a linear transformation) that yields a set of scalar images, called principal components
(PCs). The hypothesis underlying its application to pansharpening is that the spatial information
(shared by all the channels) is concentrated on the first PC, while the spectral information (specific to
each single band) is accounted for in the other PCs. The whole pansharpening process can be described
by the general formulation stated by Equation (2), where the vectors w and g coefficient vectors are
derived by the PCA procedure applied to the MSI or HSI.

4.2. Pansharpening then Hard Classification

To obtain more prior information, the pansharpening technique is utilized to obtain SRTM.

First, the original coarse HS image Y is improved by PCA and the improved resolution image
∧
Y is

derived by Equation (2). To reduce the complexity of the PCA algorithm, the EOI developed [33]
is also utilized. The N-FINDR takes the original image to derive the spectral signature for the COI
which constitutes the EOI. The low dimensional data to original high dimensional data mapping
operator Φ is the EOI column vector. The original high dimensional data to low dimensional data
mapping operator is Φinv. First, utilize Φinv maps the original high dimensional original image into a
low dimensional transformation space, then the above PCA process is applied. Finally, Φ is applied to

map the PCA result
∧
Y into the original dimensional space. Reducing the dimensionality of input data

can simplify the PCA process. Then, the SRTM is derived by directly hard classifying the image
∧
Y.

PTC is shown as a flowchart in Figure 5. The implementation of PTC includes three steps:

Step (1) Utilizing the endmembers of interest (EOI) map the original high dimensional MSI or HSI
into a low dimensional transformation space.

Step (2) The original coarse MSI or HSI in the low dimensional transformation space and a
panchromatic image are fused (see Equation (2)) with the PCA pansharpening technique,
to generate an improved resolution image.

Step (3) SRTM is produced by classifying the improved resolution image.

From Figures 3 and 5, since the PTC utilizes the panchromatic image, it supplies more prior
information from the original image into the original coarse image than the MTC, the better SRTM will
be derived.
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5. Experimental Analysis

To validate the performance of the proposed method, HS images from two public data sets are
used. The linear optimization technique (LOT) [30] is employed as class allocation in the STHSRM.
SVM is employed in both MTC and PTC as a classification tool [39] and in STHSRM as a soft
classification tool [5]. Because the endmember extraction method is utilized in SVM soft classification
in STHSRM, and the endmember extraction method is also utilized in MTC and PTC. To get a fair
comparison, the N-FINDR algorithm is selected as the endmember extraction method in STHSRM,
MTC and PTC, so the source of uncertainties is the same in the three methods. The number of the
training samples is selected as 10% per class and the remaining numbers per class are test samples
in SVM in all experiments. The original fine remote sensing image is downsampled to produce the
simulated coarse image and then upsampled to the size of the original fine image by the scale factor S
for quantitative assessment. Since, in the downsampled case the land cover classes at the sub-pixel
level are known, the study can facilitate direct evaluation of the impact of image registration error on
the technique. Regarding the upsampled case, the experimental results are evaluated by comparing
the reference image. To avoid the effect of errors caused by the acquisition of the panchromatic image
on the SRTM result, we only consider the effect of pansharpening on SRTM result. The spectral
response of the IKONOS satellite is utilized in the original remote sensing image to create appropriate
synthetic panchromatic image according to the [40,41]. This satellite captures a panchromatic image
(0.45–0.90 µm) and four MSI bands (0.45–0.52 µm, 0.52–0.60 µm, 0.63–0.69 µm, and 0.76–0.90 µm) [41].

Five methods are tested and compared including bilinear interpolation (BI) [28],
bicubic interpolation (BIC) [29], MAP as sub-pixel sharpening method (MAP) [24], MTC [33], and the
proposed PTC. Two experiments are designed to gain realistic simulation of the coarse image, which are
derived by downsampling the original image with a scale factor of S. Traditional classification accuracy
assessment, which is completed by the indices of percentage correctly classified (PCC), the average
accuracy of the classification result (AA) and the Kappa coefficient (Kappa) are utilized to assess the
SRTM. All experiments are tested on a Pentium(R) Dual-core Processor (2.20 GHz) with MATLAB
R2010 version.
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5.1. Experiment 1

The Washington, DC data set is obtained from the ground truth map of hyperspectral remote
sensing image. It is acquired in an urban site of the airborne HYDICE from a mall in Washington, DC.
It contains 1400 × 512 pixels and 210 spectral bands. The authors tested a 240 × 240 pixels region
which includes shadow, water, road, tree, grass, roof, and trail [42]. The original image is shown in
Figure 6a. The simulated coarse image is derived by downsampling the original image. The scale
factor S is set to 2 and each mixed pixel contains 2 × 2 sub-pixels. The simulated coarse image is
shown in Figure 6b. The synthetic panchromatic image which is derived by the spectral response of
the IKONOS satellite is shown in Figure 6c.
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Figure 6b shows that spatial distribution information is difficult to obtain from the coarse image.
Although the soft classification results of seven land cover classes from SVM soft classification shown
in Figure 7 can estimate the proportion of each class, the spatial distribution information is difficult to
obtain from the soft classification results. Thus, the SRTM, which is utilized to derive fine distribution
information at finer spatial resolution, is necessary.
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Figure 7. Proportion images of the seven classes obtained by spectral unmixing of the Data set 2:
From left to right: shadow, water, road, tree, grass, roof, and trail.

The results of MAP in the MTC and pansharpening in PTC are shown in Figure 8a,b.
The pansharpening result is closer to the original image in Figure 6a than the MAP result.
Super-resolution reconstruction relative error is utilized to evaluate the performance of the MAP
result and the pansharpening result. Super-resolution reconstruction relative error is defined as the
sum of all reconstruction pixels absolute errors for each class in Figure 8a,b ratios the sum of all pixels
for each class in Figure 6a. Using the aid of the reference image in Figure 9a, the number of pixels is
counted. Table 1 shows the statistics reconstruction error for different classes. As shown in Table 1,
each class of reconstruction error from the pansharpening result is lower than that from the MAP result
due to more prior information supplied into the coarse image by the pansharpening technique.
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Table 1. Super-resolution reconstruction errors for different classes.

MAP Result Pansharpening Result

Class 1 3.27% 2.66%
Class 2 4.18% 3.50%
Class 3 2.58% 1.81%
Class 4 2.96% 2.14%
Class 5 2.31% 1.47%
Class 6 1.27% 0.82%
Class 7 1.46% 0.51%

Next, the SRTM is produced respectively based on the STHSRM, MTC, and PTC. The SRTM of
the five methods are shown in Figure 9. A visual comparison of the results suggests that the results
of the proposed PTC in Figure 9f are better. Due to many soft classification errors in the STHSRM,
there are many obvious burrs in the road and grass boundaries, which seem rough in Figure 9b–e.
Although the MTC avoids the soft classification and improves the SRTM, the prior information of
the original image is still not fully utilized, causing wrong classification. Some classes belong to roof,
which are wrongly classified into trail for example. With the aid of pansharpening, this phenomenon
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is alleviated in Figure 9f, which shows a greater continuity and smoother boundaries for each of the
classes, and the result is closer to the reference map due to utilizing more prior information.

Further to visual contrast, the performances of the five methods for Experiment 1 are quantitatively
evaluated by the classification accuracy of each class, AA and PCC, as listed in Table 2. Checking the
accuracy for each class in Table 2, the accuracy of PTC is superior to other methods. Regarding the
overall accuracy, in the STHSRM, BI produces a PCC of 76.82%, BIC produces a PCC of 77.47%,
whereas MAP produces a PCC of 78.06%. Due to the fact that there is more prior information from the
original image utilized in PTC, the classification accuracy of the roof is 88.75%, approximately 3.2%
larger than that of MTC and the classification accuracy of the road is 90.31%, with a gain of
approximately 1.6% over MTC. Overall, the PTC has the highest PCC. The AA in PTC shows a
better balance of the classification of different classes.

Table 2. Accuracy (%) of five methods in Experiment 1 (S = 2).

BI BIC MAP MTC PTC

Shadow 73.44 75.03 77.50 78.77 80.13
Water 85.56 88.97 90.49 95.15 95.54
Road 70.55 72.74 75.73 88.75 90.31
Tree 72.45 75.45 77.36 97.47 98.04

Grass 74.70 78.60 82.19 88.86 89.51
Roof 70.67 72.98 75.09 85.23 88.43
Trail 73.88 75.58 77.98 87.16 90.35
AA 74.46 77.05 79.48 88.77 90.33
PCC 76.82 77.47 78.06 88.51 89.62

The performance of SRTM is affected by the scale factor S. The five methods are tested for the
other two scale factors, i.e., 4 and 6. The PCC and the Kappa of the five methods for all three scale
factors are shown in Figure 10a,b. It is noteworthy that as S increases, the PCC and the Kappa of all
five methods decrease. This is because a higher S will bring more uncertainty in the coarse image.
Similar to the results in Table 2, PTC produces higher PCC and Kappa than the other methods.
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5.2. Experiment 2

The Pavia data set is acquired by the Reflective Optics System Imaging Spectrometer (ROSIS)
at the urban test area of Pavia, northern Italy. The whole data size includes 1400 × 512 pixels and
102 bands. Figure 11a shows 400 × 400 pixels are selected as the tested area [42]. The simulated coarse
image shown in Figure 11b is derived by degrading Figure 11a with S = 2. The synthetic panchromatic
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image is shown in Figure 11c. The soft classification results of six land cover classes derived from
SVM soft classification are shown in Figure 12. Figure 13a,b show a visual comparison of the results
suggesting that the pansharpening result in the PTC is visually more consistent with the original image
in Figure 11a than the MAP result in the MTC.
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Figure 14 gives the SRTM of the STHSRM, MTC, and PTC. Comparing the reference image shown
in Figure 14a, due to the influence of the soft classification errors, some disconnected and cone-shaped
patches exist in Figure 14b–d in the STHSRM. Figure 14e–f demonstrate that this phenomenon is
alleviated. The roof appears to be more continuous, and the road is smoother. Moreover, the result of
the proposed PTC in Figure 14f is visually more consistent with the reference distribution of land cover.
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Figure 14. SRTM in experiment 2 (S = 2). (a) Reference image; (b) BI result; (c) BIC result;
(d) MAP result; (e) MTC result; (f) PTC result.

Table 3 shows the classification accuracy of each class, the AA and the PCC for the five methods.
Similar to Experiment 1, the classification accuracy of the PTC is found to be higher than the STHSRM
and the MTC. The classification accuracy of the tree in PTC is 97.04%, about 2.4% greater than that in
MTC and the classification accuracy of the road in PTC is 95.31%, with a gain of about 2% over that
in MTC for example. According to the AA, PTC has a better performance. Figure 15a,b are the PCC
and the Kappa of the five methods for three scale factors, i.e., 2, 5, and 8. Similar to the results in the
aforementioned Experiment 1, the PCC and the Kappa from the PTC are higher than those from the
STHSRM and the MTC.

Table 3. Accuracy (%) of five methods in experiment 2 (S = 2).

BI BIC MAP MTC PTC

Shadow 77.59 82.36 82.94 84.28 86.13
Water 95.84 96.29 95.77 97.81 98.54
Road 71.69 74.51 73.23 93.36 95.31
Tree 74.28 75.63 77.36 94.68 97.04

Grass 69.23 71.40 71.71 90.34 92.51
Roof 79.75 82.07 80.81 97.69 98.43
AA 78.06 80.37 80.38 93.02 94.66
PCC 80.45 82.40 82.64 94.48 95.92
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6. Conclusions

Utilizing a pansharpening technique to produce a sub-pixel resolution thematic map from a coarse
remote sensing image (PTC) is proposed in this paper. The original coarse image and a panchromatic
image are fused with the help of the pansharpening technique in the proposed PTC. The improved
resolution image is utilized to produce the ideal SRTM. The proposed PTC can avoid the influence
of soft classification errors on SRTM. Moreover, the proposed method takes more prior information
from the original image into account. Experiments are conducted to compare the proposed with
the STHSRM and MTC. Results indicate that the proposed method has comparable accuracy with
higher efficiency. Regarding the Pavia data set (S = 2), the classification accuracy of the tree in PTC is
97.04%, around 2.4% larger than that in MTC; the classification accuracy of the road in PTC is 95.31%,
with a gain of about 2% over that in MTC, and the overall accuracy evaluation PCC in PTC is 95.92%,
around 1.5% greater than that in MTC. The Washington, DC data set, the PCC, and the Kappa from the
PTC are higher than that from the STHSRM and MTC under different scales.

The performance of PTC depends on the classification algorithm. When the supervised
information is not rich, a classification algorithm may produce many errors. The PTC cannot always
be better than STHSRM and MTC. It is worth seeking a more effective classification algorithm to
reduce errors. To easily follow the thread of the exhibition, all acronyms in this paper are listed
in Abbreviation.
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Acronyms Acronym Definitions
MSI Multispectral image
HSI Hyperspectral image
SRM Super-resolution mapping
STHSRM Soft then hard super-resolution mapping



Remote Sens. 2018, 10, 884 13 of 15

SRTM Sub-pixel resolution thematic map
MAP Maximum a posteriori probability
MTC MAP super-resolution then hard classification
PTC Pansharpening then hard classification
CS Component substitution
PCA Principal component analysis
LOT Linear optimization technique
EOI Endmembers of interest
COI Classes of interest
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