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Abstract: Concerning the strengths and limitations of multispectral and airborne LiDAR data,
the fusion of such datasets can compensate for the weakness of each other. This work have
investigated the integration of multispectral and airborne LiDAR data for the land cover mapping
of large urban area. Different LiDAR-derived features are involoved, including height, intensity,
and multiple-return features. However, there is limited knowledge relating to the integration of
multispectral and LiDAR data including three feature types for the classification task. Furthermore,
a little contribution has been devoted to the relative importance of input features and the impact
on the classification uncertainty by using multispectral and LiDAR. The key goal of this study is
to explore the potenial improvement by using both multispectral and LiDAR data and to evaluate
the importance and uncertainty of input features. Experimental results revealed that using the
LiDAR-derived height features produced the lowest classification accuracy (83.17%). The addition of
intensity information increased the map accuracy by 3.92 percentage points. The accuracy was further
improved to 87.69% with the addition multiple-return features. A SPOT-5 image produced an overall
classification accuracy of 86.51%. Combining spectral and spatial features increased the map accuracy
by 6.03 percentage points. The best result (94.59%) was obtained by the combination of SPOT-5 and
LiDAR data using all available input variables. Analysis of feature relevance demonstrated that the
normalized digital surface model (nDSM) was the most beneficial feature in the classification of land
cover. LiDAR-derived height features were more conducive to the classification of urban area as
compared to LiDAR-derived intensity and multiple-return features. Selecting only 10 most important
features can result in higher overall classification accuracy than all scenarios of input variables except
the feature of entry scenario using all available input features. The variable importance varied a very
large extent in the light of feature importance per land cover class. Results of classification uncertainty
suggested that feature combination can tend to decrease classification uncertainty for different land
cover classes, but there is no “one-feature-combination-fits-all” solution. The values of classification
uncertainty exhibited significant differences between the land cover classes, and extremely low
uncertainties were revealed for the water class. However, it should be noted that using all input
variables resulted in relatively lower classification uncertainty values for most of the classes when
compared to other input features scenarios.
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1. Introduction

Detailed knowledge of the land cover types and their aerial distribution are essential components
for the management and conservation of the land resource and are of critical importance to a series of
studies such as climate change assessment and policy purpose [1–3].

In recent decades, satellite remote sensing has exhibited its ability to achieve the land cover
information with different temporal and spatial scales in the urban area. A multispectral satellite
image can collect spectral information of land surfaces, and supply extra advantages to discriminate
differences between urban land cover classes [4–7]. Even though many studies have successfully
employed multispectral data for the classification of urban land cover, classification accuracy is more
likely to be lower using spectral signature alone in the urban environment as compared to other
environments such as forest environment. This is due to the fact that the urban environment possesses
larger spectral and spatial heterogeneity of surface materials and the more complex pattern of land
use [8]. In addition to devoting attention to the improving classification techniques, the development
of input variables can be treated as an alternative way to improve the classification accuracy of a land
cover map [7,9,10].

Aside from the spectral information, spatial features concerning geometric and textural, etc., have
been incorporated into the classification of land cover. Many previous studies showed that the addition
of spatial features had been found to be valuable for improving the performance [10–13]. In particular,
spatial features derived from Attribute Profiles (APs) have attracted more attention in the classification
due to the capabilities for providing the complementary information of spectral features [14,15]. APs is
an extension of Morphological Profiles (MPs), aiming to overcome the limitation of MPs that is fit
for providing multilevel variability of structures in an image. Recent studies performed the fusion of
spectral and spatial features with extended APs, and pointed out its effectiveness [15,16]. While the
classification result using the union of spectral and spatial features can present a good representation
of urban land cover, some urban land cover types with similar materials prove difficult to be identified
by using multispectral image alone. One solution could be to include an additional third dimension
into the classification [9].

The availability of the Light Detection and Ranging (LiDAR) system succeeds to map vertical
structure of surface objects. The LiDAR systems emit laser pulses using the wavelength in near infrared
and record the returned laser pulse signals after backscattered from the targets [17–19]. The LiDAR
system plays an increasingly vital role in the urban land cover mapping due to its power to acquire the
vertical structure of surface objects with high positional accuracy. Different LiDAR-derived features
can be extracted from LiDAR data, including LiDAR-derived height, intensity and multiple-return
features [18,20,21]. LiDAR-derived features can describe the 3D topographic features of the earth
surface, and a range of LiDAR-derived height features such as normalized DSM (nDSM) and height
variation, has proved its help in improving map accuracy [18,20,22,23]. Intensity data as the radiometric
component of LiDAR data, which is the peak backscattered laser energy from the illuminated object,
can provide additional information for the land cover classification [24,25]. Song et al. [26] initially
investigated the possibility of intensity data as the input features for the urban land cover mapping,
and concluded that intensity data could be conducive to the land cover classification. In addition,
a small number of researchers investigated the contribution of multiple-return features to the land
cover classification [27,28]. Charaniya et al. [27] adopted the difference between the first and last
return as the auxiliary feature, leading to an accuracy improvement of 5% to 6% of roads and buildings
classes. However, it has been shown that classification accuracy derived from using LiDAR data alone
is limited owing to the lack of spectral information.

The combination of multispectral and LiDAR data can compensate for the shortcomings of
each other, and generate better classification results than those obtained from using an individual
sensor, considering the merits and limitations of multispectral and LiDAR data. Despite the fact
that many studies have dedicated to combining multispectral and LiDAR data for improving
classification performance, there are still some problems worth our deep concern. Firstly, the valuable
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information acquired from LiDAR data involves in elevation, to the author’s knowledge, intensity and
multiple-return features, whereas most of the research was based on one or two feature types derived
from LiDAR data for classification [18,21,22,29–34]. Therefore, there is limited knowledge concerning
the integration of three feature types (i.e., height, intensity and multiple-return) acquired from airborne
LiDAR and multispectral for the classification task. Secondly, while some LiDAR-dervied features such
as mean absolute deviation (MAD) from median height based on height or intensity information have
been increasingly used for the classification of tree species, only a few studies have used such features
to aid in the classification of urban land cover [35]. APs were usually used to get the spatial information
from the high-resolution images, whereas there is a lack of research dedicated to extracting spatial
information from SPOT-5 image, and exploring its effects on the classification accuracy especially
for the urban area. Lastly, another important aspect that should be noticed is that classification
uncertainty as an additional accuracy measure can be employed to evaluate the spatial variation of the
classification performances [36,37]. However, there is very little research that has explored the impacts
of the integration of multispectral and LiDAR datasets on the classification uncertainty. This study is
aimed at bridging these gaps.

In addition to evaluating the classification accuracy, the contribution of each feature to the
classification accuracy was also explored by an assessment of the relative importance of all input
features for the land cover classification in this study. The key blueobjectives of our study are presented
as follows: (i) to investigate how much classification accuracy can be improved by integrating different
input features provided by multispectral and LiDAR data; (ii) to quantify the relative importance of all
input variables and explore the contribution of each feature to the classification accuracy; (iii) to assess
the influence of different input features on the classification uncertainty.

Section 2 describes the study area and presents an overview of datasets as well as the
preprocessing. Section 3 reports the methodological details, including feature extraction, classification
algorithm, accuracy assessment in conjunction with classification uncertainty. The detailed
experimental results are summarized in Section 4. Section 5 provides the discussion and summarizes
the paper with remarks and future lines of the research.

2. Study Area and Data

2.1. Study Area

In this work, the study area is located in the central part of the city of Nanjing, China (Figure 1),
which is situated on the south bank of the lower reaches of the Yangtze River. It extends approximately
150 km2 (118◦42′28′′E–118◦54′29′′E, 32◦2′40′′–32◦7′7′′N), with altitude ranging between −7 m and
447 m above mean sea level. The climate of this area belongs to a humid north-subtropical climate
with well-defined seasons [38]. The topography is characterized by mountains, hills, plains, and rivers.
Rainfall averages 1033 mm per year, occurring mainly in summer. There is a variety of land cover
classes in this area, including bare soil, buildings, cropland, grass and woodland (tree and shrub),
which makes the study area as a representative test of land cover classification performance for an
urban area.
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Figure 1. Maps of the study area are shown as follow: (a) Geographical position of the research area;
(b) SPOT-5 multispectral false color composite image acquired on 1 January 2010; (c) Digital elevation
model (DEM) and (d) Normalized digital surface model (nDSM).

2.2. Data and Pre-Processing

2.2.1. LiDAR Data

Airborne laser scanning data was acquired by Optech ALTM Gemini instrument on 21 April 2009.
The wavelength and frequency of the laser pulse were 1.06 µm and 167 kHz, respectively. The returned
laser pulse signals after backscattered from the targets were recorded with the mean point density of
4.1 points/m2 and up to four returns. The dataset contains point cloud data from a series of overlapping
flight lines, each with an overlap of 20–30% between adjacent flight lines. LiDAR data provided accurate
height data and contained multiple returns per laser pulse and the intensity information, which reflects
the surface characteristics. The identified overlap and noisy points were removed from all LiDAR point
clouds. Raster layers for both bare earth surface, digital elevation model (DEM), and the first return,
digital surface model (DSM), were generated from a triangular irregular network (TIN) of the LiDAR
data points with the pixel size of 10 m. Additionally, by subtracting the DSM with DEM, normalized
DSM (nDSM) was created, which represents the height of the above-ground surface features.

2.2.2. SPOT-5 Image

A SPOT-5 multispectral image was acquired over the study area on 1 January 2010. The SPOT-5
data set was composed of shortwave infrared (SWIR) band (1.58–1.75 µm) with 20m spatial resolution,
and three bands with the spatial resolution of 10m covering green (0.50–0.59 µm), red (0.61–0.68 µm),
and near-infrared (0.78–0.89 µm). It was orthorectified and resampled to a 10 m pixel size using the
software ENVI.

The details of ground reference data is shown in Table 1. We have collected them by using
the visual interpretation of the orthorectified SPOT-5, aerial photograph and high-spatial-resolution
images from Google Earth (http://earth.google.com/).

http://earth.google.com/
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Table 1. Ground Reference in units of pixels for each of the classes.

Class Training Samples Test Samples

Bare soil 113 1014
Building Land 1005 9043

Cropland 157 1412
Grassland 71 638

Road 183 1646
Water 479 4306

Woodland 530 4769

3. Methods

3.1. Feature Extraction

3.1.1. Spatial Features

Attribute Profiles (APs), an extension of the Morphological profiles (MPs), were employed to
extract spatial features from the SPOT-5 image. APs is a multi-level decomposition of an image
with a sequence of morphological attribute filters, which is well suited to modeling the geometrical
characteristic instead of the size of the objects [15,39,40]. APs can be formulated as a concatenation of
n morphological attribute thinning (δC) and n attribute thickening (φC), obtained by processing the
image I according to a criterion T:

AP(I) =
{

φC
k (I), φC

k−1(I), ..., φC
1 (I), f , δC

1 (I), ..., δC
k−1(I), δC

k (I)
}

(1)

Different spatial information, belonging to features present in the nDSM data, can be obtained
by APs by many different types of attributes and criterions considered. In this work, two attributes
are exploited: area (a) of the regions and standard deviation (s) of the pixels’ grey-level values in the
regions. The area can extract information on the scale of the objects, while the standard deviation
is associated with the homogeneity of grey-level values of the pixels. In terms of each attribute,
the rational values of λ should be selected to initialize each APs. To solve this problem, an automatic
scheme is introduced [41]. As far as the λs is concerned, it is initialized in a way that involves many
deviations in the SPOT-5 image data, which can be expressed as follows:

λs(I) =
ω

100
{σmin, σmin + νs, σmin + 2νs, ..., σmax} (2)

where σmin, σmax and νs are separately assigned to 2.5, 20.5 and 6, which results in thickening and
thinning operations.

The spatial resolution of the SPOT-5 image ought to be considered in adjusting λa with respect to
area attribute, which is mathematically formulated as:

λa(I) =
1000

r
{amin, amin + νa, amin + 2νa, ..., amax} (3)

where amin and amax are initialized with respective values of 1 and 22 with a step size νa of 7, and r
represents the pixel size of the remote sensing data. Here, all the bands except SWIR band provided by
SPOT-5 image were employed to extract spatial features through the APs. As a consequence, a certain
number of thickening and thinning operations are acquired for the area attribute.

3.1.2. LiDAR-Derived Features

Given that LiDAR and multispectral can provide complementary information, the LiDAR-based
features were extracted to classify land cover except spectral features. The LiDAR feature vector
comprises multi-return and intensity LiDAR features, where multi-return LiDAR features can be
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separate into height-based, return-based LiDAR features. The resulting feature vector fLiDAR can be
formulated as follow:

fLiDAR = [ felevation, fintensity, freturn] (4)

(1) Height-based Features

Height information in LiDAR data has demonstrated an importance for the precise description
of vertical structure [18,35]. In this regard, height-based LiDAR features were extracted based on 3D
points heights within each pixel of 10 m spatial resolution.

In this study, the following height metrics were computed: nDSM, mean, mode, standard deviation,
variance, CV (coefficient of variation), skewness, AAD (average absolute deviation), L-moments (L1, L2),
L-moment skewness, L-moment kurtosis, MAD median (Median of the absolute deviations from the
overall median), MAD mode (Median of the absolute deviations from the overall mode), canopy relief
ratio, quadratic mean, cubic mean, and percentile values (1st, 10th, 25th, 50th, 75th, 95th) percentiles.

(2) Intensity-based Features

Given the high separability of spectral reflectance among different materials in the LiDAR sensor’s
spectral range (i.e., near-infrared spectral region), intensity, the radiometric component of LiDAR data,
can be added as an another feature useful for classifying land cover [26,42]. Intensity variables used
in this study were presented: mean, mode, standard deviation, variance, CV, skewness, kurtosis, AAD,
L-moments (l1, l2), L-moment CV, L-moment skewness, L-moment kurtosis, and percentile values as
with the Height-based features.

(3) Multiple-return Features

Based on the geometry of illuminated surfaces, several types of returns could be achieved in terms
of a single pulse emission. However, there is a limited amount of research that has shown the potential
use of multiple returns for land cover classification [43]. In this study, the following multiple-return
variables were adopted:

• abovemean: percentage first returns above mean.
• abovemode: percentage first returns above mode.
• allabovemean: (all returns above mean height)/(total returns).
• allabovemode: (all returns above height mode)/(total returns).
• afabovemean: (all returns above mean height)/(total first returns).
• afafbovemode: (all returns above mode height)/(total first returns).

Moreover, it should be noted that all the datasets were co-georeferenced and resampled to a 10 m
pixel size, which ensures the consistency of corresponding spatial position.

Different feature sets can contribute to improving classification accuracy in a variety of ways.
Feature combination can integrate the advantages of different feature sets and has proved to be effective
in many projects of urban land cover classification. To gain a detailed understanding of what level of
classification result could be obtained by using different scenarios of input features using Random
Forest classifier, seven different scenarios were employed for the image classification experiments,
as shown in Table 2.

3.2. Random Forests Classifier

3.2.1. Algorithm Principle

Random Forests is a popular ensemble learning approach that has been proved to enhance
classification performance significantly and robust to the noise [44,45]. It must be pointed out that
Random Forest has been successfully used for land cover mapping using multisource remote sensing
data [46].
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Table 2. Different scenarios involoved in experiments.

Scenario Number Input Variables Number of Features

Scenario 1 Elevation 25
Scenario 2 Elevation, Intensity 44
Scenario 3 Elevation, Intensity, Multiple-return 50
Scenario 4 Spectral 4
Scenario 5 Spectral, AP(SPOT-5) 52
Scenario 6 LiDAR-derived, Spectral 54
Scenario 7 LiDAR-derived, Spectral, AP(SPOT-5) 102

Random Forests is an ensemble of many classification and regression trees (CARTs) [47].
In training, L CARTs are grown, and each tree is created as follows: (1) bootstrapped samples of
the original training set are generated; (2) the tree with no pruning is grown by using the randomly
selected feature at each code to do the split. During the classification phase, a new pixel is put
down each CART tree, and the output is determined by giving a majority solution over all the trees.
As aforementioned, two parameters are needed to be carefully determined: the number of trees (ntree)
and the number of features used for the best split at each node (mtry). In this work, ntree is set to be the
default value of 500 [46]. mtry is fixed to the square root of the number of input features.

3.2.2. Feature Importance

Random Forests can generate a quantification of the relative importance of input features, which is of
great value for land cover classification using multi-source variables.

The importance of input feature Xi can be described as follows. For each tree t of the forest,
bootstrapped samples of the training set are applied to the model training, about one-third of the
remaining sample set, refer to an out-of-bag (OOB) sample, is used to assess the model performance.
Denote by errOOBt the error on this OOBt samples. errOOBi

t is defined as the error, which is computed
by using the randomly permuted values of Xi in OOBt. The importance of variable of Xi can be
expressed as:

VI(Xi) =
1

ntree

ntree

∑
t=1

(errOOBi
t − errOOBt) (5)

where the sum is over all CARTs t of the Random Forests, and ntree is the amount of CARTs included
in the Random Forests.

3.3. Accuracy Assessment

Ground reference data was divided into training and validation. 5514 reference points were
randomly selected for the training, and the remaining 90% reference data were used for the validation.
The number of pixels belonging to training and test data is depicted in Table 1. Classification accuracies
were summarized based on confusion matrices and derived accuracy metrics. The accuracy metrics
consisted of overall accuracy (OA), class-specific accuracy (CA), User’s accuracy (UA) and Producer’s
accuracy (PA). The UAs and PAs present information about the commission and omission errors in
connection with individual classes, respectively, while the OA represents the percentage of correctly
classified pixels. We run 30 times to report the averaged classification accuracies for the purposes
of avoiding biased evaluation. In addition, the McNemar z-score was performed to quantitatively
measure the differences between different classification scenarios.

The McNemar z-score were conducted by the results generated from only one independent run,
whose classification result was closest to the averaged accuracy.
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3.4. Classification Uncertainty

Classification uncertainty make the use of the spatial variation of the classifier performance and
can be regarded as an advantageous measure to supplement the statistical accuracy metrics from
the confusion matrix [48,49]. It should be noted that Random Forests has been employed to provide
uncertainty information in the classification of land cover. A significant output of the RF classifier
is a probability vector. It contains the class probabilities associated with a pixel x for all classes
under consideration: px = (p(1), p(2), ..., p(c)), where p(i) represents the probability of a pixel being
classified into class i, and c is set to be the total number of land cover categories (seven in this study).

Shannon entropy (H) as a quantitative measure of uncertainty can provide the information
contained in the probability vector Px, which has been shown the capable of indicating the classifier
performance [50]:

H = −
c

∑
i=1

p(i)log(p(i)) (6)

The value of entropy H can reach the maximum value 0.85 when all classes have equal probability
(p(i) = 1/7), whereas entropy is equal to 0 for a pixel whose maximum probability is 1. The value of
uncertainty was scaled to the interval [0, 1] in this study. To acquire the uncertainty values per class,
we calculate the median values of entropy H per land cover category.

4. Results

4.1. Classification Results

4.1.1. Classification Using LiDAR Data Alone

First, the classification results of only LiDAR are presented. As shown in Figure 2, the exclusive
use of LiDAR-derived height features (Scenario 1 in Table 2) gave rise to the lowest overall classification
accuracy 83.17%. The inclusion of intensity information (Scenario 2 in Table 2) increased overall map
accuracy to 87.09%, 3.92% higher than Scenario 1. The result of McNemar z-score statistical test
suggested the statistically significantly improvement with a 95% confidence level. Another 0.60%
improvement was gained with the incorporation of multiple-return features (Scenario 3 in Table 2).
In spite of the slight improvement, the result from the McNemar z-score statistical test between
Scenario 2 and Scenario 3 indicated that the addition of intensity measures could achieve significantly
better classification results.

Table 3 displays the accuracies per class using LiDAR data only. It is apparent that using all
input features provided by LiDAR data (Scenario 3) produced better or comparable producer’s and
user’s results compared to that of Scenario 1 and Scenario 2. While there are five out of the seven land
cover categories were recorded with User’s accuracies higher than 80%, and Producer’s results higher
than 80% were produced for four out of the seven land cover classes. The urban land cover classes
can be reclassified into three groups. The first group is comprised of classes with high producer’s
and user’s accuracies, including building land, cropland, water, and woodland. The second group
consists of classes with higher user’s accuracy but lower producer’s accuracy, the grassland class is
included. From Table 4, this can be attributable to the fact that grassland was mainly misclassified bare
soil and building land. The third group contains the classes with lower producer’s and user’s results,
including building land and road. We can take bare soil as an example to explain this phenomenon.
The class bare soil was confused by falsely including pixels from cropland and road, resulting in lower
user’s accuracy. Bare soil was mainly misclassified as building land and road, thus causing lower
producer’s accuracy.

The land cover map produced by using all LiDAR-derived features revealed some problems
(Figure 3a). Woodland was misclassified as building land over a large area. Bare soil was not well
distinguished from other land cover classes and was primarily misclassified as building land.
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Figure 2. Overall classification accuracies with different input feature scenarios. The red line inside
the box represents the median. The bottom and top of the blue boxes are the first and third quartiles.
As for the whiskers, the lowest datum represents the lowest value still within 1.5 IQR (IQR = third
quartile—first quartile) of the lower quartile, and the hightest datum represents the highest value still
within 1.5 IQR of the upper quartile. Red crosses indicated the outliers.

Table 3. Averaged PA and UA per land cover class achieved from 30 times by using Random Forests
classifier. The input scenarios are derived from SPOT-5 and LiDAR data separately.

Class
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

PA% UA% PA% UA% PA% UA% PA% UA% PA% UA%

BS 58.10 61.97 67.18 71.06 65.78 70.70 72.04 72.46 84.91 89.55
BL 93.71 81.46 94.65 83.62 94.95 84.73 90.18 85.00 94.92 90.13
CL 74.22 80.52 84.09 87.43 84.01 87.27 79.53 75.57 93.72 92.78
GL 53.19 66.67 66.78 85.41 66.19 85.46 71.26 80.79 78.76 92.30
RD 52.76 58.51 62.78 77.09 61.53 77.13 34.64 56.83 59.18 81.15
WT 97.47 98.34 98.62 98.55 98.55 98.45 98.57 99.15 98.67 99.41
WL 72.73 88.97 78.57 90.95 81.78 91.41 93.74 91.49 97.10 94.62

OA 83.17 ± 0.30 87.09 ± 0.24 87.69 ± 0.28 86.51 ± 0.28 92.54 ± 0.20

Note: BS = Bare Soil; BL = Building Land; CL = Cropland; GL = Grassland; RD = Road; WT = Water;
WL = Woodland.

Table 4. Example confusion matrix for 7-class urban land cover classification derived from SPOT-5
image and its spatial information using the Random Forests classifier (Scenario 3).

Reference Data
Tot. UA%

BS BL CL GL RD WT WL

BS 618 14 56 48 57 3 35 831 74.37
BL 144 8604 92 96 496 16 744 10,192 84.42
CL 38 31 1159 14 30 15 22 1309 88.54
GL 43 4 4 426 8 0 8 493 86.41
RD 119 99 69 26 1029 17 24 1383 74.40
WT 5 23 19 0 2 4251 8 4308 98.68
WL 47 268 13 28 24 4 3928 4312 91.09

Tot. 1014 9043 1412 638 1646 4306 4769 22, 828 ‡

PA% 60.95 95.15 82.08 66.77 62.52 98.72 82.37 87.68 †

‡ Total samples; † Overall accuracy (%). Note: BS = Bare Soil; BL = Building Land; CL = Cropland;
GL = Grassland; RD = Road; WT = Water; WL = Woodland.
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(a) Urban land cover map from LiDAR data (Scenario 3)

<Double-click here to enter title>

(b) Urban land cover map from SPOT-5 image (Scenario 5)

<Double-click here to enter title>

Bareland Building Cropland Grass Road Water Woodland
(c) Urban land cover map from the fusion of SPOT-5 and LiDAR data(Scenario 7)

Figure 3. Classified urban land cover maps generated by Random Forests classifier with different
input variables.

4.1.2. Classification Based Only on SPOT-5 Image

We explored the potential of spectral and spatial features derived from the SPOT-5 image for
classifying urban land cover classes. The potential of spectral information for classification (Scenario 4
in Table 2) was firstly investigated, leading to an overall classification accuracy of 86.51% (Figure 2).
In contrast, the overall classification increased by 6.03% when spatial features were concatenated to
spectral measures (Scenario 5 in Table 2). The result of the McNemar z-score statistical test indicated
Scenario 5 significantly outperformed the result achieved with dataset Scenario 4 at the 95% level.

Averaged producer’s and user’s accuracies per land cover category with SPOT-5 image only were
presented in Table 3. As we can see from the table, producer’s and user’s accuracies with approximate
or higher than 90% were recorded for building land, water, and woodland classes by using spectral
features only. Producer’s and user’s accuracies were substantially increased when combined with
spatial information. The increases were over 10% in all classes except water, which has been well
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discriminated from other land cover classes. The most noticeable increases in user’s accuracies were
for road (24.32%), cropland (17.21%), bare soil (17.09%), and grassland (11.51%). It is interesting to
observe that although road class achieved relatively high user’s accuracy, the producer’s accuracy was
very low (59.18%). What we can see from the Table 5, class road was mainly misclassified as building
land. This confusion may be caused by the fact that class road looks spectrally similar to building land,
which makes it very difficult to identify these two land cover classes by using features derived from
SPOT-5 image only. Figure 3b shows the classification map derived from the integration of spectral
and spatial information. Even though most of the classes were well identified, the road class still has
the problem on this map. Many of the road sites were misclassified as building land. This may be in
part owing to the reason that there are mixed pixels of building land and road in the urban area.

Table 5. Example confusion matrix for 7-class urban land cover classification derived from SPOT-5
image and its spatial information using the Random Forests classifier (Scenario 5).

Reference Data
Tot. UA%

BS BL CL GL RD WT WL

BS 870 48 1 8 34 0 6 967 89.97
BL 90 8590 33 33 655 42 107 9550 89.95
CL 2 21 1302 32 6 0 11 1374 94.76
GL 10 7 1 519 3 0 5 545 95.23
RD 33 189 7 4 937 1 0 1171 80.02
WT 6 34 18 0 1 4249 7 4315 98.47
WL 3 154 50 42 10 14 4633 4906 94.44

Tot. 1014 9043 1412 638 1646 4306 4769 22, 828 ‡

PA% 85.80 94.99 92.21 81.35 56.93 98.68 97.15 92.43 †

‡ Total samples; † Overall accuracy (%). Note: BS = Bare Soil; BL = Building Land; CL = Cropland;
GL = Grassland; RD = Road; WT = Water; WL = Woodland.

4.1.3. Classification Results Integrating LiDAR Data with SPOT-5 Image

By combining LiDAR data and SPOT-5 image, five dimensions of input variables are included.
To estimate the impact of combinations of SPOT-5 and LiDAR on the classification results, Scenario 6
and Scenario 7 in Table 2 were implemented. It can be seen from Figure 2 that classification accuracy
derived from Scenario 6 using all available input features except spatial information was capable
of classifying different land cover classes to an overall classification accuracy of 91.96%, which is
similar to the classification performance achieved from the best classification using the SPOT-5 image.
When the spatial features were combined for classification, all features together provided the maximum
ability to separate different land cover classes, resulting in an overall map accuracy of 94.59%, and it is
significant at the 95% level as compared to Scenario 6.

Table 6 shows the averaged producer’s and user’s values derived from the combination of SPOT-5
and LiDAR data. When spatial features were employed for classification, the producer’s and user’s
results tended to have significant increases for all of the urban land cover categories except already
well-discriminated water class. The most noticeable increases were for bare soil (10.49%) and grassland
(9.18%), concerning the producer’s accuracy. What stands out in this table is that using all input features
together afforded the maximum discriminative power to distinguish land cover types, leading to the
highest producer’s and user’s accuracies for almost all land cover classes. As the Table 7 illustrates,
although some of the road sites were falsely labeled as building land, higher user’s and producer’s
accuracies were obtained compared to the other scenarios of input features.

By a visual inspection of the classification map (Figure 3c) gained by using all input variables,
there was a better representation of all land cover classes though there are still some pixels belonging
to some road class that is misclassified as building land.
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Table 6. Averaged PA and UA values per land cover class achieved from 30 random trials by
using Random Forests classifier. The input feature scenarios derived from the fusion of SPOT-5
and LiDAR data.

Class
Scenario 6 Scenario 7

PA% UA% PA% UA%

BS 75.71 79.83 86.20 89.85
BL 97.46 89.55 97.52 92.76
CL 87.67 90.71 93.12 95.02
GL 70.79 89.74 79.97 94.36
RD 68.19 84.05 73.27 91.19
WT 99.05 99.48 99.23 99.84
WL 90.87 95.69 96.37 95.40

OA 91.96 ± 0.37 94.59 ± 0.21

Note: BS = Bare Soil; BL = Building Land; CL = Cropland; GL = Grassland; RD = Road; WT = Water;
WL = Woodland.

Table 7. Example confusion matrix for 7-class urban land cover classification derived from SPOT-5
image and its spatial information using the Random Forests classifier (Scenario 7).

Reference Data
Tot. UA%

BS BL CL GL RD WT WL

BS 894 14 8 22 26 0 1 965 92.64
BL 73 8849 56 34 397 29 167 9605 92.13
CL 6 8 1302 23 2 0 17 1358 95.88
GL 3 5 2 510 10 0 14 544 93.75
RD 27 44 10 9 1183 0 3 1276 92.71
WT 0 1 0 0 4 4272 0 4277 99.88
WL 11 122 34 40 24 5 4567 4803 95.09

Tot. 1014 9043 1412 638 1646 4306 4769 22, 828 ‡

PA% 88.17 97.85 92.21 79.94 71.87 99.21 95.76 94.52 †

‡ Total samples; † Overall accuracy (%). Note: BS = Bare Soil; BL = Building Land; CL = Cropland;
GL = Grassland; RD = Road; WT = Water; WL = Woodland.

4.2. Feature Importance

4.2.1. Feature Importance for Urban Scenes

Aside from evaluating the influences of different scenarios of input variables on the overall
accuracies, an assessment of the relative importance of all input variables was carried out to explore
the contribution of each feature to the overall classification accuracy.

By integrating SPOT-5 image with LiDAR data, 102 input variables were contained for each
pixel (Scenario 7 in Table 2). To gain insight into the contribution of each input feature, we conduct
a feature importance analysis. Figure 4 presented the resulting importance of the 102 variables.
From the figure, the nDSM appears the most useful feature in the urban land cover classification.
Furthermore, the feature importance scores for the following LiDAR-derived height features were
also very high, including variance, cubic mean, 75th percentile value and so on. On the contrary,
LiDAR-derived intensity and multiple-return features were found to have little measurable impact
on the classification result. Regarding the spectral features derived from a SPOT-5 image, SWIR
was the most discriminating. The top 10 most important variable consists of four LiDAR-derived
height features (i.e., nDSM, variance, cubic mean, 75th percentiles), SPOT-5 SWIR band and five
spatial features.

To evaluate the contribution of each variable to the map accuracy, the number of input variables
was subsequently reduced on account of the least importance ranking scores, and the corresponding
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overall classification accuracy was calculated (Figure 5). From the figure, it can be seen that the overall
map accuracies tended to decrease slightly when the first 92 lowest important features were removed.
However, the overall accuracies began to fall off rapidly when the remaining 10 most important
features are eliminated one by one.
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Figure 4. Importance of the 102 input features provided by SPOT-5 and LiDAR data.
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Figure 5. Overall classification accuracies in the basis of backward exclusion of the least important
input variables.

4.2.2. Feature Importance Per Land Cover Class

Figure 6 illustrated the relative importances of all available variables for each land cover class.
What we can discover from this figure is that the per-class variable importance varied in a large extent.
Regarding the bare soil class (Figure 6a), the most important features involved in height features
were nDSM and variance, SPOT-5 SWIR band and some spatial features. However, LiDAR-derived
intensity and multiple-return features were not very relevant for the classification of bare soil class.
As far as the building land class is concerned (Figure 6b), high values of importances were focused on
the elevation and spatial variables. The nDSM belonging to height features exhibited an extremely
high value of relevance in terms of the cropland class (Figure 6c). Furthermore, it is worth noting that
LiDAR-derived intensity and multiple-return features seemed to be less valuable than other kinds of
variables. As for the grassland class (Figure 6d), the features with higher values of importances covered
all types of variables except multiple-return features. The feature relevances were more dispersed
between height, intensity, spectral and spatial features for road class, which makes the road class
more difficult to be distinguished (cf. Table 2). As shown in the (Figure 6f), the SPOT-5 SWIR band
played the most important role in discriminating the water class. In addition, some of the height and
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spatial features also contributed greatly to the classification of the water class due to the higher relative
importances. As for the woodland class (Figure 6g), the dominating features concentrated mainly
on height and spatial features, among which the most important variables were the spatial features
derived from SPOT-5 image.
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Figure 6. Feature importance per class by using mean decrease permutation accuracy.
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4.3. Classification Uncertainty

As a complementary metric to the accuracy indices derived from the confusion matrix,
classification uncertainty was implemented to provide another indicator to evaluate the classification
quality within the acquired urban land cover map, which can be conducive to exploring and spatially
locating the superiority of Random Forests with greater detail.

To evaluate the uncertainty of the produced classification maps, median values of the class-specific
uncertainties were computed by means of H (Table 8). What is remarkable in this table is that the
class-specific uncertainties showed obvious differences with respect to different scenarios of input
variables. Results indicated that feature combination can tend to decrease classification uncertainty
for different land cover classes, but there is no “one-feature-combination-fits-all” solution. In general
terms, relatively high classification uncertainty was obtained for the classification results derived from
using LiDAR data alone (i.e., Scenario 1–3). Scenario 7 using all input variables resulted in relatively
lower classification uncertainty values for most of the classes when compared to other input features
scenarios. The values of median uncertainty (H) differed greatly between the land cover classes in the
study area.

Table 8. The values of median uncertainty (H) and class-specific accuracies (CA) for each of the land
cover classes achieved by different input feature scenarios. The values of minimum median uncertainty
and maximum class-specific accuracies are in boldface.

Scenario Number
BS BL CL GL RD WT WL

H CA H CA H CA H CA H CA H CA H CA

Scenario 1 0.63 0.56 0.29 0.93 0.31 0.75 0.65 0.53 0.62 0.53 0.00 0.98 0.09 0.73
Scenario 2 0.58 0.68 0.28 0.94 0.21 0.86 0.54 0.65 0.53 0.60 0.00 0.99 0.12 0.78
Scenario 3 0.60 0.67 0.26 0.95 0.20 0.86 0.52 0.65 0.54 0.61 0.00 0.99 0.12 0.81
Scenario 4 0.43 0.69 0.21 0.91 0.43 0.81 0.38 0.71 0.37 0.34 0.00 0.98 0.08 0.93
Scenario 5 0.33 0.85 0.17 0.94 0.22 0.96 0.46 0.84 0.37 0.61 0.00 0.99 0.03 0.97
Scenario 6 0.58 0.75 0.22 0.97 0.22 0.90 0.55 0.68 0.51 0.69 0.00 0.99 0.09 0.89
Scenario 7 0.39 0.86 0.13 0.97 0.16 0.95 0.48 0.81 0.38 0.75 0.00 0.99 0.03 0.96

Note: BS = Bare Soil; BL = Building Land; CL = Cropland; GL = Grassland; RD = Road; WT = Water;
WL = Woodland.

Considering the uncertainty values of the land cover class water, all scenarios of input features
showed low values of Shannon entropy H equal to 0. One more point we can conclude is that it is
not always true that lower uncertainty values correspond to better classification accuracies for all
land cover classes. For instance, Scenario 4 and 7 generated similarly low classification uncertainties
for road class. However, although the classification uncertainty for class road was the lowest when
Scenario 5 was used, road class showed very low classification accuracies in Table 8, which means that
class road was misclassified but with little doubt about the final result. A similar result was found with
respect to the grassland class. Regarding the woodland class, Scenario 5 and 7 all achieved the lowest
value of uncertainty (0.03), corresponding to similar and higher class-specific accuracies. As for the
bare soil class, the results on the classification uncertainty presented significant differences among the
seven different scenarios of input features. The lowest value of classification uncertainty was obtained
by using Scenario 5, but Scenario 5 and 7 all achieved similar and the relatively higher classification
accuracy for the bare soil.

The frequency distribution of H was calculated for the incorrect and correct predictions as shown
in Figure 7, and the mode of these distributions was discussed. As far as the correctly classified pixels
are concerned, a high proportion of pixels were assigned to low values within the [0, 0.1] interval,
and fewer correct predictions were associated with an uncertainty H above 0.5. This illustrates
that a majority of correctly classified pixels were characterized by lower classification uncertainty,
meaning that there was little doubt about the final classification result. Two observations are worth
noting. First, correct predictions mostly had low uncertainties, independent of the input feature
scenarios. Second, combining SPOT-5 and LiDAR gave rise to a higher proportion of low uncertainties
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in comparison with the single data alternatives, namely, the integration of SPOT-5 and LiDAR data
decreased the uncertainty of classification (Figure 7a). A very large proportion of incorrectly classified
pixels yielded the uncertainty values lying within the interval [0.3, 0.9]. This implies that the class
decision was uncertain if the mode voted for the incorrect class. Moreover, it was observed that there
was a large difference between the seven scenarios of input variables (Figure 7b).

To spatially locate and analyze the merits and deficiencies of the classification results by different
input features scenarios, the corresponding classification uncertainty maps were displayed in Figure 8.
As the figure shows, distinct patterns in the distribution of classification uncertainty were depicted.
It is clear that relatively higher values of Shannon entropy H were observed in the uncertainty map
derived from LiDAR data alone, while the uncertainty map derived from Scenario 7 produced lower
uncertainty values when compared to the uncertainty maps based on Scenario 3 and Scenario 5,
especially for building land. The values of classification uncertainty tended to be higher in the eastern
and south-western part of all the classification uncertainty maps, which were located in the peri-urban
area. This phenomenon may have resulted from the mixed pixels, containing mixed characteristics
from two or more land cover classes. Because of this, it can result in confusion in the process of
classification, and assign approximate probabilities to these land cover class, which leads to higher
classification uncertainty H.
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Figure 7. Distribution of H for the corrected classified test samples (a) and incorrect predictions (b) as
resulted from different scenarios of input features.
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Figure 8. Uncertainty maps of the classification results obtained by different scenarios of input variables.

5. Discussion

In this work, SPOT-5 and LiDAR data were used to classify different urban land cover classes
using Random Forest classifier. We investigated the extent of improvement that various scenarios of
input features can bring in classification tasks. Seven feature scenarios were used to incorporate
the advantages of different feature sets, which is summarized in Table 2. When using LiDAR
data only, height-based features generated the lowest classification accuracy when compared to
other scenarios of input features. The addition of intensity information substantially improved the
overall classification accuracy. By adding the return-based features, the overall classification was
further improved. When using spectral features alone derived from the SPOT-5 image, the second
lowest overall classification accuracy was achieved. The overall map accuracy increased by up to
approximately 5% when spatial features were added. It should be noted that by combining SPOT-5
and LiDAR data and using all available features, we obtained the maximum power to discriminate
different land cover categories, resulting in the best classification result.
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By implementing analysis of the relative importance of all input variables, we can conclude that
the nDSM from LiDAR-derived height features appears to be the most important feature in the land
cover classification; this is similar to the findings of some previous studies [18,43]. In addition, the
feature importance scores for the following LiDAR-derived height features were also high, including
variance, cubic mean, 75th percentile value and so on, which means that those LiDAR-derived height
features are also of great importance to the urban land cover classification. However, experimental
results in this study suggested that LiDAR-derived intensity and return information contributed less to
the increment of overall classification accuracy. The SPOT-5 SWIR band is the most beneficial band for
the spectral information. On the other side, many spatial features also achieve high feature importance
scores. The different input features have different contributions to the overall map accuracy (Figure 5).
It is not always the case that more input variables ought to generate higher overall classification
accuracy. In this study, it has been demonstrated that the overall classification accuracy obtained
by using only the 10 most important features is higher than all scenarios of input variables except
Scenario 7 using all available input features. Moreover, feature importance per class revealed that the
per-class variable importances appeared to be greatly variable.

Classification uncertainty analysis can be used as a tool to evaluate the spatial variation of
classification performance, and it has been employed in some previous research [48,50]. However,
there are very few studies focusing on the impacts of the fusion of multispectral and LiDAR data
on the classification uncertainty. The classification uncertainty analysis described in this study are a
first step towards the evaluation of classification performance obtained by the fusion of multispectral
and LiDAR data. Results of classification uncertainty analysis revealed that feature combination
can tend to reduce the classification uncertainty for different land cover classes, but there is no
“one-feature-combination-fits-all” solution. The values of uncertainty (H) showed large differences
between the land cover classes. It is interesting that the water class has extremely low classification
uncertainty, independent of different scenarios of input features. Using all input variables resulted in
lower class-specific uncertainties for most of the land cover types as compared to other scenarios of
input features. In addition to lower classification uncertainty, all input features can tend to generate
a larger proportion of correctly classified pixels with lower uncertainty, which means that there was
little doubt about the final decision if the pixel was allocated with correct land cover class. The spatial
uncertainty analysis showed that there were higher values of classification in the peri-urban area
owing to the effects of mixed pixels.

6. Conclusions

In this work, we explored the use of multi-source remote sensing data to map urban land cover,
with a particular focus on available input variables provided by airborne LiDAR and SPOT-5 data.
The integration of three feature types (i.e., height, intensity and multiple-return) derived from LiDAR
data and multispectral image was firstly used to map the urban land cover. In addition to evaluating
the feature importance of all input features for the land cover classification, we firstly explored the
impacts of the fusion of multispectral and airborne LiDAR data on the classification uncertainty in
this study.

The following findings can be concluded according to the experimental results:

• We found that the integration of LiDAR and multispectral can provide complementary information
and improve the classification performance. The addition of intensity and spatial features are of
immense value for improving the classification accuracy. The exclusive use of LiDAR-derived
height features produces the land cover map with the lowest map accuracy. The best result is
obtained by the combination of SPOT-5 and LiDAR data using all input features.

• Analysis of feature relevance indicated that LiDAR-derived height features were more conducive
to the classification of urban area when compared to LiDAR-derived intensity and multiple-return
features. While the nDSM was the most useful feature in improving the classification performance
of urban land cover, the feature importance scores for the following LiDAR-derived height features
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was also very high, including variance, cubic mean, 75th percentile value and so on. Selecting
only the 10 most important features can result in higher overall classification accuracy than all
scenarios of input variables, except the input feature scenario using all available input features.
As for feature importance per class, the variable importance varied to a very large extent.

• Results of classification uncertainty suggested that feature combination can tend to decrease
classification uncertainty for different land cover classes, but there is no “one-feature-combination-
fits-all” solution. The values of classification uncertainty showed marked differences between the
land cover classes. Lower uncertainties were revealed for the water class. Furthermore, using all
input variables usually resulted in relatively lower classification uncertainty values for most of
the classes when compared to other input features scenarios.

There are some possible developments of this study to be included: (1) to incorporate more
beneficial three-dimensional features from LiDAR to further enhance the classification performance;
(2) to explore the influence of feature selection on the accuracy and uncertainty of urban land cover
classification; (3) to investigate the role of increasing the size of training sets as a possibility to improve
the results.
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