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Abstract: The accurate ground-based cloud classification is a challenging task and still under
development. The most current methods are limited to only taking the cloud visual features into
consideration, which is not robust to the environmental factors. In this paper, we present the
novel joint fusion convolutional neural network (JFCNN) to integrate the multimodal information
for ground-based cloud classification. To learn the heterogeneous features (visual features and
multimodal features) from the ground-based cloud data, we designed the proposed JFCNN as
a two-stream structure which contains the vision subnetwork and multimodal subnetwork. We also
proposed a novel layer named joint fusion layer to jointly learn two kinds of cloud features under one
framework. After training the proposed JFCNN, we extracted the visual and multimodal features
from the two subnetworks and integrated them using a weighted strategy. The proposed JFCNN
was validated on the multimodal ground-based cloud (MGC) dataset and achieved remarkable
performance, demonstrating its effectiveness for ground-based cloud classification task.

Keywords: ground-based cloud classification; joint fusion convolutional neural network;
multimodal information; feature fusion

1. Introduction

Nowadays, many practical applications, such as optical remote sensing application [1], weather
prediction [2], precipitation estimation [3] and deep space climate observatory mission [4], require
accurate cloud observation techniques. However, cloud observation is currently performed by
professional observers, which is traditionally labor-intensive and prone to producing observation errors.
Hence, many efforts have been made for automatic cloud observation [5–9]. As a key issue of cloud
observation, the automatic cloud type classification is a very challenging task due to extremely variant
cloud appearances under different atmospheric conditions and therefore it is still under development.

Different measuring instruments have been employed by numerous researchers to obtain the
necessary data for cloud classification. The measuring instruments consist of ground-based and
satellite-based equipment [10]. The satellite-based equipment has a wide view field and provides
large-scale cloud information over continents, while the ground-based equipment has a limited
view field and is usually fixed at a specific location for cloud observation. It therefore appears
reasonable to consider ground-based instruments for continuous local cloud observation. The existing
ground-based sky imaging devices include whole-sky imager (WSI) [11], total-sky imager (TSI) [12],
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infrared cloud imager (ICI) [13], all-sky imager (ASI) [14], whole-sky infrared cloud-measuring system
(WSIRCMS) [15], etc. They could produce the most available amount of cloud data and, consequently,
offer researchers an opportunity to understand the cloud conditions better.

Benefiting from these cloud data, the ground-based cloud classification methods have emerged in
large numbers. Buch et al. [16] treated texture measures, position information and pixel brightness as
features, and employed binary decision trees to classify cloud types. Heinle et al. [17] selected seven
color features, four textural features and cloud cover ratio, resulting in twelve features, to distinguish
the cloud into seven classes. Liu et al. [18] extracted several structural features from the segment images
and edge images, such as cloud gray mean value, cloud fraction, edge sharpness, and cloud mass
and gap distribution parameters. Singh and Glennen [19] evaluated five different feature extraction
methods for cloud classification, namely autocorrelation, co-occurrence matrices, edge frequency, Law’s
features and primitive length. Liu et al. [20–23] presented several approaches to learn discriminative
texture features, such as an ensemble approach of multiple random projections, the salient local
binary pattern, the soft-signed sparse coding and the mutual information learning features. Zhuo and
Cao [24] proposed a three-step algorithm, including applying the preprocessing color census transform,
capturing global rough structure information and obtaining the cloud type. Xiao et al. [25] proposed to
extract the texture, structure, and color visual descriptors for cloud representation in a joint manner.
Specifically, these features contain scale invariant feature transform (SIFT) [26], the census transform
histogram and some statistical color features.

Recently, the deep convolutional neural networks (CNNs) have shown promising capabilities
in many research tasks [27–32]. The most competitive advantage of deep CNNs is that they are
capable of learning high-level features adaptively from the raw input data through multiple nonlinear
transformations. Thus, they are automatically able to capture the representative features to a great
extent. Inspired by this property, several researchers resort to the deep CNNs to extract visual
features for ground-based cloud classification, and promising results have been achieved. For example,
Ye et al. [33] first extracted the deep visual features from convolutional layers and then adopted
a series of methods, i.e., fisher vector encoding and cloud pattern mining and selection, to improve the
differentiation of different cloud types. Shi et al. [34] employed the max or average pooling scheme
on the feature maps to extract deep convolutional activations-based features. It should be noted that
these features are not only from the shallow convolutional layers but also from the deep convolutional
layers of the CNN. The classification performance of a fully connected (FC) layer for ground-based
cloud is evaluated as well.

However, most existing methods only employ visual features to distinguish the
ground-based cloud, which is not robust to environmental factors. For example, Figure 1 shows
two cloud images with the same type (cumuls), yet they appear different in shapes, illuminations,
and occlusions. Figure 1c shows their corresponding multimodal information, where we can see that
the multimodal information is rather stable and less affected by environmental factors. Moreover,
the cloud type is influenced by these multimodal information, i.e., temperature, humidity, pressure
and wind speed. Specifically, air is made up of molecules of elements in gaseous state and minute
dust particles. The rays of the sun heat the earth surface, which in turn heats the air. The more heat,
the faster the molecules move, causing different in temperature and air pressure. The unequal heating
of the atmosphere results in air masses with different densities of thicknesses. Humidity is the measure
of water vapor in the atmosphere. When air rises and cools, clouds form and humidity increases.
Wind is moving air caused by differences in air pressure, which moves from an area of higher pressure
to an area of lower pressure. The greater the differences in air pressure, the greater the wind speed.
Winds bring in different air masses and therefore form different cloud patterns. Hence, the multimodal
information could describe the cloud completely and fusing the visual features with the multimodal
information could further improve the classification performance.
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Figure 1. Illustration of ground-based cloud data with the same type (cumulus): (a,b) ground-based
cloud images from cumulus; and (c) the corresponding multimodal information of (a,b).
In (c), the Arabic numbers along the horizontal axis correspond to the multimodal information,
i.e., temperature, humidity, pressure, wind speed, maximum wind speed and average wind speed.
The vertical axis in (c) indicates the value of the multimodal information, which is normalized to the
range of 0 to 255.

Information fusion has shown promising performances in different research fields [35–39].
The existing approaches usually fuse information at three levels, i.e., the feature level, matching-score
level and decision level. For the score-level and decision level, some information may be lost in the
fusion process as the multi-dimensional features are simply compressed into one match score or a final
decision. For the feature level fusion, the resulting feature set is with richer information of the input
data, and therefore fusion at such level is most likely to provide the desired classification performances.
In general, the existing feature level fusion techniques can be classified into two subsidiary sets,
i.e., feature extraction-based and feature selection-based methods [40]. For the feature extraction-based
method, several feature sets are grouped into one union-vector. For the feature selection-based method,
all features are primarily aggregated together and then an appropriate method is adopted to select
features. CNNs are treated as a kind of feature selection-based methods because CNNs could learn the
complementary representations from intermediate layers. However, few works have been done for
multimodal ground-based cloud classification. The major challenges in fusing the cloud visual features
and the multimodal information can be contributed to two aspects. On the one hand, the nature of
the cloud image and the multimodal information is radically different. Concretely, the mathematical
expression of cloud image is a matrix, while the multimodal information is a vector. On the other
hand, they contain different semantic information. Hence, CNNs cannot be directly applied to cloud
classification with multimodal information.

In this paper, a novel deep model named joint fusion convolutional neural network (JFCNN) is
proposed for multimodal ground-based cloud classification. The proposed JFCNN mainly consists
of two subnetworks (vision subnetwork and multimodal subnetwork) and one joint fusion layer.
The vision subnetwork utilizes the CNN model for learning visual features, which could process
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the matrix data. Meanwhile, the multimodal subnetwork employs multilayer perceptron to learn
the multimodal information, which is designed for the vector data input. For the subsequent fusion,
the outputs of two subnetworks possess the same dimension. To combine the strengths of the two
subnetworks and leverage their complementary properties, we propose a novel layer named joint
fusion layer, which has the ability to fuse the heterogeneous features. We only utilize one loss function
to optimize the proposed JFCNN, which could jointly learn the discriminative features for cloud
images and multimodal data under one framework. The experimental results indicate the effectiveness
of the proposed method for the multimodal ground-based cloud classification.

The rest of the paper is arranged as follows. In Section 2, we describe the proposed JFCNN
architecture and provide the implementation details. Section 3 presents a brief introduction about the
dataset and baselines followed by the analyses of experimental results. Finally, we conclude this paper
in Section 4.

2. Methods

In this section, we first describe the overall framework of the proposed JFCNN. Then, we introduce
the feature fusion strategy for ground-based cloud data. Finally, the implementation details
are presented.

2.1. Overall Architecture

The overall architecture of the proposed JFCNN is shown in Figure 2. It mainly consists of
five parts, i.e., two subnetworks, one joint fusion layer, one FC layer and the loss function. The vision
subnetwork is used for learning cloud visual features, which is based on the widely-used ResNet-50 [41].
The architecture of ResNet-50 is summarized in Table 1. The building block shown in the brace of
the third column includes three convolutional layers. For example, conv3 x has four building blocks.
For each building block in conv3 x, 1× 1, 3× 3 and 1× 1 indicate the size of filters, respectively, and 128,
128 and 256 represent the number of filter banks, respectively. In addition, the max pooling layer
and the average pooling layer are connected to the outputs of the first and last convolutional layers,
respectively. More information about the ResNet-50 can be referred to [41]. Note that, in the vision
subnetwork, the final FC layer is removed, and the output of the average pooling layer is treated as
the input of the joint fusion layer, which is a 2048-dimensional vector.

The multimodal subnetwork is designed for learning multimodal information of ground-based
cloud and it contains six FC layers. The number of neurons in f c1 is 64 and increases by a factor of
2 up to 2048 in f c6. The FC layer could be considered as a special case of convolutional layer with the
kernel size of 1× 1. The output of f c6 is fed into the joint fusion layer, which is a 2048-dimensional
vector as well.

After learning the visual features and the multimodal features, the join fusion layer is proposed
to integrate them. The joint fusion layer is formulated as

f = ( f1 + α f2)
2, (1)

where f1 and f2 are the outputs of the vision subnetwork and the multimodal subnetwork, respectively,
and α is used to balance the significance of multimodal feature f2. Note that the dimensions of f , f1

and f2 are all 2048. We add an FC layer ( f c7) after the joint fusion layer and the neuron number of f c7
is consistent with the number of cloud classes.

For the classification task of multimodal ground-based cloud, we apply the softmax operator on
the output of f c7 to generate a probability distribution with values between 0 and 1 over K cloud classes.
The softmax operator is formulated as

yk =
exk

∑K
t=1 ext

, (2)
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where K is the number of cloud classes, xk is the output value of the k-th neuron in f c7, and yk ∈ [0, 1]
is the predicted probability value of the k-th class.

Figure 2. Architecture of the proposed JFCNN. In the multimodal subnetwork, the number below each
layer denotes the number of neurons. The blue solid and dashed lines denote the forward and back
propagation processes, respectively.

Table 1. Architecture of the ResNet-50. Herein, “stride 2” denotes the filter slides with the step of
two pixels.

Name Output Size ResNet-50

conv1 112× 112 7× 7, 64, stride 2

conv2 x 56× 56

3× 3, max pooling, stride 2

1× 1, 64
3× 3, 64
1× 1, 256

}
×3

conv3 x 28× 28
1× 1, 128
3× 3, 128
1× 1, 512

}
×4

conv4 x 14× 14
1× 1, 256
3× 3, 256

1× 1, 1024

}
×6

conv5 x 7× 7
1× 1, 512
3× 3, 512

1× 1, 2048

}
×3

f c 1× 1 average pooling

1000 neurons
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We employ the cross-entropy loss to measure the performance of the proposed JFCNN, and it is
formulated as

L = −
K

∑
k=1

qklog yk, (3)

where qk is the ground-truth probability. qk = 0 for all k except qj = 1 when j is the ground-truth label.
The cross-entropy loss will give a high penalty when the predicted probability diverges from the
ground-truth label. Thereby, minimizing Equation (3) is equivalent to maximizing the expected
log-likelihood of a label, where the label is selected according to the maximum distribution value yk.

2.2. Feature Fusion

After training the proposed JFCNN, we extract f1 as the visual features, and f2 as the multimodal
features. Both features contain some complementary information and describe different characteristics
of the ground-based cloud. Hence, combining them could further improve the discriminative ability
of features. The integration features, which are used as the final cloud features, can be formulated as

F = g( f1, f2), (4)

where g(·) is the fusion function. For simplicity and efficiency, g(·) is formulated as

g( f1, f2) = [ f T
1 , λ f T

2 ]
T, (5)

where [·, ·] indicates the operation of concatenating two vectors, and λ is the coefficient to adjust the
significance of the multimodal features.

In other words, the proposed JFCNN has two great properties. Firstly, the two subnetworks
could learn the discriminative features for heterogeneous features. Concretely, the input cloud image
is a matrix, while the input multimodal information is a vector. The two kinds of features contain
different semantic information. Thus, cloud images and multimodal information are heterogeneous
features. The two subnetworks could learn them at the same time, and obtain the discriminative
features. Secondly, the joint fusion layer could make it possible to fuse the heterogeneous information
in the framework of CNN.

2.3. Implementation Details

For the ground-based cloud visual information, we first resize all the training ground-based
images to 256× 256 with the preserved aspect ratio. Then, all the images are subtracted from the mean
values computed on the images in the training set in RGB channels. Finally, each training image is
randomly cropped into 224× 224. The multimodal information includes six aspects, i.e., temperature,
humidity, pressure, wind speed, maximum wind speed and average wind speed, and each aspect
is in the form of scalar. We concatenate the six scalars into a six-dimensional vector. To enhance
the compatibility, the number ranges of the multimodal information are first projected to 0 to 255,
respectively. Then, each aspect is subtracted the corresponding mean value which is computed
on the training set. We implement a shuffle strategy to the training set, and feed the processed
cloud images and the multimodal information into the vision subnetwork and the multimodal
subnetwork, respectively. It should be noticed that the cloud image and the multimodal information
are one-to-one relationship.

The ResNet-50, that is pre-trained on the ImageNet dataset, is employed to initialize the vision
subnetwork. The weights of FC layers are initialized by the random values which subject to a standard
normal distribution. The bias of FC layers are initialized to zero.

We adopt the stochastic gradient descent (SGD) [27] to update the parameters of the proposed
JFCNN. In the backpropagation, after calculating the gradients of the fusion function, the results are
sent the two subnetworks to update the parameters. The number of training epochs is set to 30 and the
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batch size is set to 32. The weight decay is set to 0.0005 and the learning rates are set to 0.0002 and
0.0001 alternately during the iteration process. To avoid overfitting, we adopt the dropout strategy [42]
after the joint fusion layer and the drop rate is set to 0.9.

During the test phase, the cloud images and the multimodal information are dealt with the same
pre-processing as the training stage. Afterwards, we feed forward them into the JFCNN, and obtain
the final representations according to Equation (5).

3. Results and Discussion

In this section, the proposed JFCNN is compared with a series of state-of-the-art methods on the
multimodal ground-based cloud (MGC) dataset. We first introduce the MGC dataset. Then, we give
a brief introduction about the baselines. Next, we conduct extensive experiments on the MGC dataset
to test the performance of the proposed JFCNN. Finally, we analyze how the parameters influence the
classification performances.

3.1. Dataset

The MGC dataset collected in China mainly contains two kinds of ground-based cloud
information, i.e., the cloud images and the multimodal cloud information. The cloud images with
the size of 1056× 1056 are shot at different times by a sky camera with fisheye lens. The fisheye lens
could provide a wide range observation of the sky conditions with the horizontal and vertical angles of
180 degrees. Meanwhile, the multimodal cloud information is collected by a weather station, including
temperature, humidity, pressure, wind speed, maximum wind speed and average wind speed.
Note that the maximum wind speed and average wind speed are computed over each minute. It is
worth mentioning that the sky camera and the weather station work concurrently, and, accordingly,
each cloud image corresponds to a set of multimodal data. The MGC is a very challenging dataset
due to the large intra-class and small inter-class variations, and it contains a number of 3711 labeled
cloud data. According to the International cloud classification system criteria published in the World
Meteorological Organization (WMO), and the visual similarity in practice, the sky conditions are
divided into seven classes: cumulus, cirrus and cirrostratus, cirrocumulus and altocumulus, clear sky,
stratocumulus, stratus and altostratus, cumulonimbus and nimbostratus. Besides, it should be noted
that cloud images with cloudiness no more than 10% belong to clear sky. The number of cloud samples
in each class is diverse from each other, and the detailed numbers are summarized in Table 2. Herein,
the Arabic numerals from 1 to 7 denote the labels of cloud classes. Figure 3 exhibits some cloud samples
from each class, and the multimodal information is embedded in the corresponding cloud image.

Table 2. The sample number of each cloud class on the MGC dataset.

Label Cloud Type Number of Samples

1 Cumulus 330
2 Cirrus and cirrostratus 585
3 Cirrocumulus and altocumulus 537
4 Clear sky 699
5 Stratocumulus 534
6 Stratus and altostratus 543
7 Cumulonimbus and nimbostratus 483

Total number 3711

The MGC dataset is randomly split into training set and test set. The training set contains
two-thirds of the cloud samples from each class and the test set is grouped by the remaining ones from
each class. The split process is conducted 10 times independently, and the average accuracy over these
10 random splits is treated as the final ground-based cloud classification accuracy. For the sake of fair
comparison, all the experiments follow the same experimental setup.
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Figure 3. The cloud samples on the MGC dataset. The Arabic numeral below each sample denotes the
corresponding class label.

3.2. Baselines

The following seven baselines are presented to prove the validness of the proposed JFCNN.
(1) BoW [43] model: The bag-of-words (BoW) model is a representative approach to describe

images. We first extract the SIFT features in a dense manner. Then, we utilize K-means algorithm
to learn the dictionary. In our experiments, the dictionary contains 1024 codewords. As a result,
each cloud image is expressed in the form of a 1024-dimensional histogram.

(2) PBoW [44] model: The pyramid BoW (PBoW) model is obtained by incorporating the BoW
model with the spatial pyramid (SP). The PBoW model could learn fine-grained information of cloud
images in different spatial levels. The level number of SP for each cloud image is set to 3. Concretely,
each cloud image has 1, 4, and 16 cells in the three levels, respectively. Thus, each cloud image is
made up of 21 cells. We utilize the BoW model to represent each cell as a 1024-dimensional histogram,
resulting in a 21504-dimensional feature vector for each cloud image.

(3) LBP [45]: The local binary pattern (LBP) is a widely-used texture descriptor, which is robust
to monotonic gray-scale changes caused by illumination variations. In our experiments, the uniform
invariant LBP is applied to represent the ground-based cloud visual features. There are two important
parameters P and R in LBP, where P is sampling points number involved in a circle and R is the
circle radius. The ratio between P and R is fixed to 8:1 with the circle radius 1, 2 and 3, respectively.
Then, the cloud representations from the three different conditions are grouped in a serial fashion.
Hence, each cloud image is represented with a 54-dimensional vector.

(4) CLBP [46]. The completed LBP (CLBP) is evolved from LBP and developed for texture
classification. In CLBP, a local region is represented by its center pixel, and the local differences of
signs and magnitudes. These three components are combined in joint distribution form to obtain the
cloud representation. The parameters P and R follow the same settings in LBP. Then, the three scales
are gathered into one feature vector by concatenating with the dimensions of 2200.

(5) PBoW + CLBP. The PBoW is the learning-based descriptor and CLBP is the hand-crafted
descriptor. We concatenate them to obtain a 23704-dimensional feature vector for each cloud image.

(6) MMI. The multimodal information (MMI) forms a vector [m1, m2, · · · , m6], where m1, m2, · · · , m6

indicate the temperature, humidity, pressure, wind speed, maximum wind speed and average wind speed,
respectively. In our experiments, we normalize the number ranges of the multimodal data into [0, 255],
and treat it as the ground-based cloud representation.

(7) Deep features. For extracting deep visual features, we remove the multimodal subnetwork
and the joint fusion layer in the JFCNN. We denote this deep visual feature as V DF which is
a 2048-dimensional vector. To learn deep multimodal features, we remove the vision subnetwork
and the joint fusion layer in the JFCNN. We denote the deep moltimodal feature as M DF which is
a 2048-dimensional vector.

For fair comparison, the above-mentioned baselines utilize the same training and test sets as the
proposed JFCNN. In addition, the support vector machine (SVM) with radial basis function (RBF)
kernel is used as the classifier for all methods. All the features are normalized by L2-norm before and
after integration or before they are fed into the SVM classifier.
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3.3. Comparison Results and Discussion

In this subsection, we first prove the effectiveness of the multimodal information and the joint
fusion learning for ground-based cloud classification. The experimental results are shown in Table 3.
For better understanding, we first clarify the simplified forms listed in the table. MMI indicates the
six-dimensional feature vector which directly concatenates six kinds of multimodal information
of the ground-based cloud. M DF denotes extracting the deep multimodal features from the
separately learned multimodal network where we remove the vision subnetwork and the joint
fusion layer in the JFCNN. Similarly, V DF is the extracted deep visual features from the separately
learned vision network where we remove the multimodal subnetwork and the joint fusion layer
in the JFCNN. V JFCNN, M JFCNN and J JFCNN indicate the outputs of vision subnetwork,
multimodal subnetwork and the joint learning layer of JFCNN, respectively. JFCNN represent the
weighted concatenation of V JFCNN and M JFCNN as shown in Equation (5). Note that “+ ” denotes
concatenating two feature vectors. For example, V DF + MMI indicates concatenating V DF and MMI,
and so do V JFCNN + MMI, and V DF + M DF.

In general, the compared methods are categorized into four parts, i.e., individual multimodal
representations (MMI, M DF and M JFCNN), individual visual representations (V DF and V JFCNN),
the integration of learned visual features and MMI (V DF + MMI and V JFCNN + MMI), and the
integration of both learned visual features and learned multimodal features (V DF + M DF, JFCNN
and J JFCNN).

Several conclusions can be drawn from Table 3. First, the proposed JFCNN achieves the best result
of 93.37%. Second, the classification accuracy of MMI is 75.42%, which demonstrates the potential
for ground-based cloud classification. It is because the MMI is only a six-dimensional vector and
without any transformation, while the other methods are at least 2048-dimensional vectors and with
learning process.

Third, the integration feature representations (V DF + MMI, V JFCNN + MMI, V DF + M DF
and JFCNN) show better results than any of the individual feature representations (MMI, M DF,
M JFCNN, V DF and V JFCNN). Moreover, the integration of both learned features (V DF + M DF
and JFCNN) performs better than just learning the visual features (V DF + MMI and V JFCNN +
MMI). It is because the integrated feature vectors could combine the complementary information of
the two kinds of features and the integration of both learned features have more discriminability.

Table 3. Classification accuracies (%) of different methods.

Method Accuracy (%)

MMI 75.42
M DF 78.21

M JFCNN 84.55

V DF 85.10
V JFCNN 86.79

V DF + MMI 86.33
V JFCNN + MMI 89.40

V DF + M DF 90.21
J JFCNN 78.82
JFCNN 93.37

Fourth, the jointly learned features overshadow the separately learned features. Concretely,
V JFCNN and M JFCNN exceed V DF and M DF at a percentage of 1.69 and 5.74, respectively.
Moreover, the proposed JFCNN outperforms V DF + M DF. This is because the joint learning can take
into consideration the consistency and complementary information between the two kinds of features
and their relative importance for classification task. However, the V DF + M DF, which separately
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learns the features, has not thoroughly investigated the relationship between the visual features and
the multimodal information.

To demonstrate the effectiveness of the proposed feature extraction (or fusion) method,
we compare it with the end-to-end based methods. The comparison results are listed in Table 4.
Note that Accuracy 1 corresponds to the proposed methods, and Accuracy 2 corresponds to the
end-to-end based methods. Herein, the end-to-end based cloud classification for JFCNN refers to
J JFCNN. In the table, we can see that the results in Accuracy 1 are all better than those in Accuracy 2.
This demonstrates the effectiveness of the proposed feature extraction and fusion strategy.

Table 4. Classification accuracies (%) of comparisons between the proposed methods and the
end-to-end based methods.

Method Accuracy 1 (%) Accuracy 2 (%)

M DF 78.21 75.77
M JFCNN 84.55 83.67

V DF 85.10 76.79
V JFCNN 86.79 81.73

JFCNN 93.37 78.82

Then, to evaluate the robustness of the proposed JFCNN, we enumerate a potential alternative
structure for comparison with the proposed architecture. Specifically, after the average pooling layer in
the vision subnetwork, we add a fully connected layer with 64, 128, 256 and 512 neurons, respectively.
Accordingly, the outputs of the multimodal subnetwork are 64, 128, 256, 512 dimensions, respectively.
Thereby, the input dimensions of the joint fusion layer are reduced. The comparison results shown
in Table 5 are satisfactory. However, the comparison between Tables 3 and 5 demonstrates that the
proposed JFCNN has an advantage over the modified architecture.

Table 5. Classification accuracies (%) under different dimensions of the output of the vision subnetwork
in JFCNN.

Output Dimension Accuracy (%)

64 91.51
128 91.83
256 92.40
512 92.23

Moreover, we conduct an experiment to analyze the classification performance under different
cloud sample numbers. Concretely, we utilize 1/4 (618), 1/3 (824), 1/2 (1237) and all the samples
(2474) in the training set to train JFCNN, respectively. The comparison results are presented in Table 6.
As shown, using more samples leads to higher classification accuracy.

Table 6. Classification accuracies (%) under different number of cloud samples in the training process.

Sample Numbers Accuracy (%)

618 55.53
824 56.75

1237 74.93
2474 93.37

Next, we compare V JFCNN and V DF with some representative visual feaetures, and the results
are listed in Table 7. In Table 7, we can see that V JFCNN and V DF obtain better results than other
shallow visual features. Especially, the gain classification accuracies for V JFCNN and V DF are
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12.15% and 10.46%, respectively, better than PBoW + CLBP which is a combination of learning-based
feature (PBoW) and hand-crafted feature (CLBP). The improvements of the V JFCNN and V DF are
reasonable as they are CNN-based features. The deep architecture of CNNs forces the raw cloud data
through a series of highly nonlinear transformations, and therefore enables the extracted features to be
held with high-level cloud semantic information.

Table 7. Classification accuracies (%) using visual features.

Method Accuracy (%)

BoW 71.97
PBoW 73.26
LBP 62.83

CLBP 71.48
PBoW + CLBP 74.64

V DF 85.10
V JFCNN 86.79

Finally, we evaluate the classification performances of the multimodal information integration
for different methods, and Table 8 lists the classification results. In Table 8, we can see that the
proposed JFCNN significantly boosts the performance and the classification accuracy achieves up
to 93.37%. The promising result owes to the multimodal information integration and the joint
fusion learning strategy. The comparison between Tables 7 and 8 shows that, with integrating MMI,
the classification accuracies in the latter gain competitive edge. This indicates that the multimodal
cloud information is beneficial for the ground-based cloud classification once again.

Table 8. Classification accuracies (%) with multimodal information.

Method Accuracy (%)

BoW + MMI 77.38
PBoW + MMI 77.95
LBP + MMI 70.59

CLBP + MMI 73.99
PBoW + CLBP + MMI 74.72

V DF + MMI 86.33
V JFCNN + MMI 89.40

JFCNN 93.37

The improvement of the proposed JFCNN is quite reasonable. The cloud images are usually with
very large intra-class and small inter-class variations, due to environmental influences of illumination,
occlusion and deformation. A more powerful tool is required to obtain a completed cloud information
and then we employ the weather station to collect the multimodal information. In the meantime,
the proposed JFCNN could jointly learn the cloud visual information and the multimodal information
and extract discriminative features for ground-based cloud data. Accordingly, we can obtain more
accurate cloud representations and make a significant improvement of the classification accuracy.

3.4. Parameter Analysis

There are two important parameters, α and λ, which control the significance of the multimodal
information in Equation (1) and Equation (5), respectively. Appropriate α and λ settings can optimize
the classification results. We first evaluate the performance of α by changing its value for adjusting
the significance of f2 in joint learning. The comparison results of different α settings are illustrated in
Figure 4. In the figure, we can see that, when α is set to 1, the best classification accuracy is obtained.
Then, we evaluate the performance of λ by tuning its value for balancing the significance of f2 in
feature fusion. The comparison results of different λ settings are illustrated in Figure 5. In Figure 5,



Remote Sens. 2018, 10, 822 12 of 15

we can see that, when λ is set to 0.9, the best classification accuracy is obtained. This indicates that
such λ setting can well embody the significance of the multimodal features in the feature fusion stage.

Figure 4. The classification accuracies (%) of the proposed JFCNN with different α.

Figure 5. The classification accuracies (%) of the proposed JFCNN with different λ.

We also evaluate the classification results under different drop rates in the dropout layer of
JFCNN. The drop rates are set to 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, respectively, and the comparison
results are listed in Table 9. The results show that the classification accuracy with the drop rate of 0.9 is
superior to other conditions.

Table 9. Classification accuracies (%) under different drop rates in the dropout layer of JFCNN.

Drop Rate Accuracy (%)

0.2 90.62
0.3 90.05
0.4 88.81
0.5 90.21
0.6 90.94
0.7 90.70
0.8 91.91
0.9 93.37

4. Conclusions

In this paper, a novel method named joint fusion convolutional neural network (JFCNN)
has been proposed for multimodal ground-based cloud classification. The proposed JFCNN is
a two-stream network, including vision subnetwork and multimodal subnetwork. Hence, it can
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process the ground-based cloud visual information and multimodal information under one framework.
In addition, a joint fusion layer has been proposed to jointly learn the two kinds of cloud information.
Hence, we can optimize the feature learning process by fusing the heterogeneous features and obtain
highly discriminative visual features and multimodal features. To evaluate the effectiveness of the
proposed JFCNN, we implemented a series of comparative experiments and the results show that the
accuracy of the proposed JFCNN is in the lead of the state-of-the-art methods.
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