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Abstract: Based on the digital surface model (DSM) and jump point search (JPS) algorithm, this study
proposed a novel approach to detect the optimal seamline for orthoimage mosaicking. By threshold
segmentation, DSM was first identified as ground regions and obstacle regions (e.g., buildings,
trees, and cars). Then, the mathematical morphology method was used to make the edge of
obstacles more prominent. Subsequently, the processed DSM was considered as a uniform-cost
grid map, and the JPS algorithm was improved and employed to search for key jump points in
the map. Meanwhile, the jump points would be evaluated according to an optimized function,
finally generating a minimum cost path as the optimal seamline. Furthermore, the search strategy
was modified to avoid search failure when the search map was completely blocked by obstacles
in the search direction. Comparison of the proposed method and the Dijkstra’s algorithm was
carried out based on two groups of image data with different characteristics. Results showed the
following: (1) the proposed method could detect better seamlines near the centerlines of the overlap
regions, crossing far fewer ground objects; (2) the efficiency and resource consumption were greatly
improved since the improved JPS algorithm skips many image pixels without them being explicitly
evaluated. In general, based on DSM, the proposed method combining threshold segmentation,
mathematical morphology, and improved JPS algorithms was helpful for detecting the optimal
seamline for orthoimage mosaicking.

Keywords: orthoimage mosaicking; seamline; digital surface model; jump point search algorithm

1. Introduction

Image mosaicking is an essential step in production of large-scale digital orthophoto maps
(DOM). At present, human intervention is still needed during the production to prevent the seamline
from passing through obvious ground objects such as buildings, trees, and cars, which may cause
dislocations and fractures to final mosaic DOM [1–4]. Therefore, how to detect an optimal seamline
while avoiding obvious ground objects, to obtain a high-quality orthoimage, has become one of the
research hotspots in the field of computer vision, photogrammetry, and remote sensing [2,4–8].

The process of seamline detection can be divided into two major steps: (1) generating a
map composed of obstacle and non-obstacle regions (or a continuous weighted map) for seamline
detection; (2) using different techniques to determine the seamline in generated map. Traditional
methods [2,5,8–15] used the per-pixel-based gray information (e.g., grayscale and gradient difference,
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image edge, color, and texture information) of DOM pair’s overlap to generate a cost map, and then
different path planning algorithms such as Dijkstra’s algorithm [16], snake model [5], A* algorithm [17],
graph cuts [18] and dynamic programming algorithm [19] were applied to determine a minimum cost
path as the final seamline. For example, the Dijkstra’s algorithm was first used to detect the seamline
in difference images of DOM pairs for mosaicking by Davis [9], while the algorithm complexity would
be too high. Kerschner [5] proposed a twin-snake model to detect an optimal path with the lowest
difference in combination of grayscale, colors, and textures as the seamline. However, the iterative
search was easy to stop at the minimum of the local energy and the algorithm might only have good
results for forest areas. Zhang et al. [10] used ant colony algorithms for seamline extraction, which
could avoid crossing obstacles and regions with large color contrast, but it was sensitive to the number
of ants and might tend to get local optimal solutions. Chon et al. [11] added the minimizing of the
local mismatch algorithm to optimize the Dijkstra’s algorithm. The method could effectively suppress
the local maximum gray scale with a minimal objective function, and a better seamline was detected.
Yu et al. [2] combined image similarity constraints (including information of color, edge, and texture),
image saliency and location constraints to generate a total cost image, and then determined the optimal
seamline with a dynamic programming algorithm.

The seamline extracted by the abovementioned methods based on gray difference information
of the overlap could roughly avoid obstacles, which might be attributed to the fact that that
information could only reflect the approximate ranges of the obstacles, and those ranges were usually
non-continuous. The whole information of ground objects would be positive for optimal seamline
detection. As a result, some researchers utilized DOM pairs to obtain object-based information of
ground obstacles for detecting the seamline. For example, Pan et al. [4] presented a method based on the
parallax map with semi-global matching (SGM) algorithm to obtain obstacle regions. Then, the skeleton
line was generated, and the Dijkstra’s algorithm was applied to search for the seamline in the skeleton
network. A similar method was proposed by Yuan et al. [20], while the greedy snake algorithm [21]
was used to generate a seamline in processed parallax image. Li et al. [22] attempted to use the deep
convolutional neural network (CNN) to classify the overlap region of the DOM pair into surface
objects and assigned weights to each pixel according to the classification probabilities. Then, graph
cuts algorithm was used to find the optimal seamline. The algorithm was effective, while the training
sample was needed, and the algorithm might take a long time. Dong et al. [23] developed a method
based on a parametric kernel graph cuts segmentation algorithm with a global cost map to avoid
the seamline crossing obvious objects. Some other researchers used extra data to obtain obstacles in
the search map, such as digital surface model (DSM) data [3,21,24,25], light detection and ranging
(LiDAR) point cloud [26], vector building maps [27], and vector road data [28,29]. Meanwhile, different
algorithms were used to determine the final seamline in the search map.

For recognizing obstacle regions, those researches based on object-based information maps
derived from original DOM needed a more complex calculation process, making it difficult for
practical DOM production. Those with extra data could obtain high-quality seamlines with a lower
consumption of time and resources. As for a seamline search strategy, most existing algorithms chose
to search the seamline pixel by pixel in the search map. The search efficiency should be furthermore
improved. As a result, this study presented a novel seamline detection approach based on DSM and
an improved jump point search (JPS) algorithm.

The JPS algorithm [30,31] is an online path-finding algorithm based on uniform-cost grid map,
which is usually used to optimize the A* algorithm. The algorithm is efficient and has been applied to
many path-finding fields such as robotics and games, while it has not been examined in the field of
image mosaicking. The standard JPS algorithm was improved in this study to overcome its limitations
and make it more effective for optimal seamline detection. The evaluation function was optimized with
central constraint to make the seamline near the centerline of image pair’s overlap region. Moreover,
the search strategy of the JPS algorithm was modified to avoid search failure when the search map was
completely blocked by obstacles in the search direction. The main steps of the method were as follows:
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first, the overlap of DSM was processed and divided into obstacle regions and non-obstacle regions.
Second, the mathematical morphology method was used to make the obstacles more prominent,
generating a uniform-cost grid map. Then, improved JPS algorithm was applied to search for the jump
points in the map and ignore other pixels that did not need to be explicitly considered. Meanwhile,
an evaluation function was defined to estimate the moving cost of each jump point. Finally, an optimal
path would be generated as the final seamline after evaluating those jump points. Comparison of the
proposed method and the Dijkstra’s algorithm was carried out based on two groups of image data
with different characteristics.

2. Methods

The proposed method was mainly divided into two major parts: (1) generation of obstacle regions;
(2) seamline detection based on improved JPS algorithm. Those two parts are described further in the
next two sections (Sections 2.1 and 2.2).

2.1. Generation of Obstacle Areas

2.1.1. Selection of the Search Map

The essence of the seamline extraction is to find an optimal path avoiding crossing obstacle regions
in the search map [20]. In many existing methods, difference image of DOM pair was used directly
or indirectly to obtain obstacle regions in the search map. As shown in Figure 1a,b, DOM pair was
obtained based on digital elevation model by digital differential rectification. Projection differences still
existed in those areas above the ground such as buildings, trees, and cars. As a consequence, the edge
of these regions was usually shown as the region with large gray value in the greyscale difference
image (Figure 1c). It could be seen in Figure 1c that the edge of obstacles was non-continuous, and the
gray value of the roof was usually small, leading to the seamline passing through the buildings.
The characteristics in Figure 1c might be similar to other feature maps directly obtained from original
DOM such as edge image (Figure 1d). Figure 1e was a grayscale map of original DSM. Compared to
the difference image, it directly reflected the height and range information of ground objects, which
could be used to make the seamline avoid crossing those areas. Therefore, the DSM was chosen as the
search map.

Figure 1. Different images of image pair’s overlap region. (a) left digital orthophoto map (DOM);
(b) right DOM; (c) difference image of (a,b); (d) edge image of (a); (e) digital surface model.

2.1.2. Threshold Segmentation Operation

Threshold segmentation method was used to divide the DSM grayscale map of the image pair’s
overlap into obstacle regions and non-obstacle regions. If the topography of the survey region was
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relatively flat, the image could be directly segmented according to a global threshold, as shown in
Figure 2a. However, in some regions with large terrain variation, the gray value of the ground region
in DSM grayscale map was quite different. As a result, the segmentation result might be poor with
using the global threshold, as shown in Figure 2b. Therefore, local adaptive threshold segmentation
method [32] was used to produce a binary image with better quality. The grey value of each pixel
could be calculated by

result(r, c) =

{
255, i f source(r, c) > T(r, c)

0, otherwise
(1)

where result(r, c) is the calculated grey value of the pixel in row r and col c; source(r, c) is the source
grey value of the pixel in row r and col c; The threshold value T(r, c) is the mean of the N ∗ N
neighborhood of the pixel in row r and col c minus an adjustment constant C.

Usually, an adjustment was not needed, and the value C could be set to zero. The blocksize
N could be determined by experience or a trial-and-error process to produce a better segmentation
image. Generally, when the value N was set smaller, some details could be preserved while there
might be holes in obstacle regions (shown in Figure 2c). On the other hand, when the value was set
larger, particularly obvious obstacles could be accurately detected while some details may be lost
(shown in Figure 2d), and a longer calculation time was needed. As a result, the strategy in this
study was to choose a smaller value as well as to ensure that obvious non-ground objects could be
effectively segmented with smallest possible holes in obstacles (Those holes could be filled after being
processed with morphological opening operation (described in Section 2.1.3)). An example can be seen
in Figure 2e with N = 85 and C = 0 (two values were used in both experiments in this study).

Figure 2. Comparison of different threshold segmentation results (subsets of original DSM, pixel size
of DSM2 is 1500 × 4000). (a) Based on global threshold of 10; (b) based on global threshold of 40;
(c) based on an adaptive threshold with N = 25 and C = 0; (d) based on an adaptive threshold with
N = 165 and C = 0; (e) based on an adaptive threshold with N = 85 and C = 0.

2.1.3. Morphological Opening Operation

If the seamline was searched directly in the binary segmented map of DSM, it might be full of
twists and turns because of noise pixels in segmentation image. Furthermore, the outlines of obstacles
in DSM and DOM were not completely match due to different projection types. As a result, when
the seamline was too close to the edges of the obstacle regions in the DSM, it might have crossed
the edge of those regions in the DOM. Therefore, the DSM segmentation image was processed with
morphological opening operation [32]. First, the image was eroded with a small convolution kernel to
eliminate grayscale changes caused by small noise pixel areas, then dilated with a large convolution
kernel to fill the holes of obstacle regions and make the edges of obstacles extend out. As a result,
the final seamline could deviate from buildings, cars or trees in the mosaic image. Figure 3a,b showed
the results of morphology opening operation.
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Figure 3. Results of mathematical morphology processing (subsets of original processed DSM with
pixel size 1500 × 4000). (a) Segmentation image of DSM; (b) image after morphological erosion;
(c) image after morphological dilation, i.e., the result of the opening operation.

2.2. Seamline Detection Based on an Improved JPS Algorithm

The JPS algorithm was first proposed by Daniel Harabor and Alban Grastien [30,31] to find
path on uniform-cost grid map, which can speed up A* algorithm by an order of magnitude [30].
The thought of the algorithm is to follow some rules (for details see Section 2.2.1) to jump over many
pixels that do not need to be explicitly considered in the grid map. As a result, the path symmetry
(an illustration can be shown in Figure 4) is broken, avoiding unnecessary symmetric path search
process and greatly improving the search efficiency [30,31,33].

Figure 4. An illustration of the path symmetry. Red arrows represent search direction of two nodes
in the grid and bold black lines are different paths between two nodes, often they are symmetrical,
because the only difference between them lies in the order of movement.

In this study, the processed binary image of DSM was considered as an 8-connected grid map.
Each pixel in the processed DSM corresponded to a grid node in the grid map. When the start and
finish point of the seamline were determined, the JPS algorithm was used to find the jump points in
the map. Meanwhile, the search cost of each jump point was evaluated to generate an optimal path as
the final seamline with minimum cost.

2.2.1. The Principle of JPS Algorithm

The main steps of the JPS algorithm include: (1) recognizing and removing unrelated nodes in the
grid map, also called node pruning; (2) searching for key jump points in the grid map. JPS algorithm
works with the two following rules:

Node Pruning Rules: Define the cost of one straight move step as 1, one diagonal move step as
√

2.
For the given node x reached via a parent node p(x) in the grid map, the node n (n ∈ neighbours(x))
will be pruned from its neighbor node set neighbours(x) if one of the following three principles
is satisfied:
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(1) There is a path π′ = < p(x), n > from node p(x) to node n, that is strictly shorter than the path
π = < p(x), x, n > from node p(x) to node n via node x.

(2) There is a path π′′ = < p(x), y, n > from node p(x) to node n via node y, that is strictly shorter
than the path π = < p(x), x, n > from node p(x) to node n via node x.

(3) There is a path π′′ = < p(x), y, n > from node p(x) to node n via node y, with the same length
as the path π = < p(x), x, n > from node p(x) to node n via node x, but path π′′ moves earlier
than path π with a diagonal type.

Figure 5 shows the examples of node pruning, those nodes marked with grey color will be pruned.
In Figure 5a, the node 1, 2, 5, and 6 are pruned due to rule (1), the node 3 and 7 are pruned due to
rule (3). In Figure 5c, the node 4 and 6 are pruned due to rule (1), the node 1 and 7 are pruned due to
rule (2). As a result, only those nodes marked with white need to be considered, which are called the
natural successors of the node x. Furthermore, as shown in Figure 5b,d, when neighbours(x) contains
obstacles, a small set of up to k (0 ≤ k ≤ 2) additional nodes (marked with red circle in in Figure 5b,d)
is needed to be considered, these nodes are called forced neighbors of the current node x.

Figure 5. Examples of node pruning. Black arrows mean moving to node x from p(x), black blocks are
an obstacle, grey blocks are pruned nodes, white blocks are nodes needed to be considered, and red
circles mean the nodes are forced neighbors of the node x.

Jumping Rules: When JPS algorithm performs search process, the node pruning rule is followed
recursively to prune the set of neighbors around each node, replacing each neighbor node n with a
so-called jump point successor and skipping all unvisited nodes in the grid map. The recursion will stop
when encountering an obstacle or a jump point is found in the search. Jump points have neighbors
that cannot be reached by an alternative symmetric path and the optimal path must go through this
jump point. The recursion search process of a jump point is described as follows:

(1) Straight moves: from the start node x, respectively move to different neighbor nodes according to
the straight natural successor directions, the node n ∈ neighbours(x):

(a) If node n has forced neighbors, return node n as a jump point successor of the node x;
(b) If node n is an obstacle or out of the map, just ignore this direction;
(c) If nothing happens, repeat the above search process from the node n.

(2) Diagonal moves: from the start node x, respectively move to different neighbor nodes according
to the diagonal natural successor directions, the node n ∈ neighbours(x):

(a) If node n has forced neighbors, return node n as a jump point successor of the node x;
(b) If node n is an obstacle or out of the map, just ignore this direction;
(c) Implementing straight moves from the node n, if there is a jump point successor of the

node n, then return the node n as a jump point successor of the node x;
(d) If nothing happens, repeat the above search process from the node n.

As shown in Figure 6a, move to the node x from its parent node p(x) and recursively apply the
straight node pruning rules to prune the nodes in the grid map until the node y is found. Since the node
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y has a forced neighbor z, the node y is marked as a jump point successor of the node x. In Figure 6b,
Since the node y has a jump point successor y′ (with a forced neighbor z), the node y is returned as a
jump point.

Figure 6. Examples of straight (a) and diagonal (b) jumping. Black blocks are obstacles, grey blocks
are pruned nodes, the dashed arrows mean the search processes return no jump points, and the solid
arrows mean finally a jump point successor is found.

According to node pruning rules and jumping rules, those nodes that do not need to be accessed
in the grid map can be pruned and only some jump points will be considered in the search algorithm.
Notice that the process of node pruning is performed entirely online, the algorithm includes no
preprocessing operation and has no memory overhead [30].

2.2.2. Optimal Seamline Detection

When mosaicking orthoimage in practical production, the initial seamline network could be
generated by the method of the area Voronoi diagram with overlap [6,34]. Then, the seamline was
optimized according to the start and target point of polygon edges in seamline network. To avoid the
case that the begin point and target point of the initial seamline were in the obstacle region, the points
needed to be dynamically adjusted in actual search process. The specific method is: take the initial
point O as the origin, increase the radius R gradually from zero, and randomly select the non-obstacle
point in generated circle as the new start point or target point. In this study, R ∈ (0, 0.25 ∗ width],
where width represents the width of the original image.

In seamline optimization process, when a jump point n was found in the processed map of DSM,
the search cost of the node n was calculated by

f (n) = g(n) + h(n) (2)

where f (n) is an estimate of the minimum cost from start point to target point via the node n. h(n)
represents the cost moving from point n to the target point, which can be calculated by Manhattan
distance that moves only along the horizontal and vertical directions. g(n) represents the cost moving
from start point to point n via different intermediate points. It can be calculated by a recursive function:

g(n) = g(p(n)) + cost(p(n), n) (3)

where p(n) is the parent node of the node n, cost(p(n), n) means the moving cost from node p(n) to
the node n.

The aerial digital image is usually obtained with a pattern of central projection. In center of the
projection, the image quality is higher due to the smaller geometric distortion, which is the same as
DOM obtained after digital differential rectification [6,10]. Therefore, the optimal seamline should
meet the principle that the seamline should be close to the centerline (initial seamline) of the image
pair’s overlap region [2,10,20,26]. Thus, the evaluation function f (n) was optimized with a central
constraint to make the seamline closer to centerline of the overlap. The search cost of the node n would
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become higher when the distance from node n to the centerline increased. The function f (n) after
optimization was defined as

f (n) =

(g(n) + h(n)) ∗
(

1 + η ∗ d
dmax

)
, i f d ≤ dmax

+∞ , otherwise
(4)

where d is the distance from node n to the centerline of the image, as shown in Figure 7, dmax is the
maximum allowable distance offset from centerline of the overlap area, and η is an influence factor.
In general, the factor η could be set to a value ranging from 0.5 to 1, ensuring optimized function had
an appropriate influence on the final seamline. In this study, η = 0.7.

Figure 7. An illustration of each distance (or moving cost) in the search process. Black rectangle region
is the overlap region of the image pair and black squares are obstacles.

In actual search process, the open list and the close list were set up to store the unprocessed and
processed nodes respectively. The steps of searching for the seamline with improved JPS algorithm
were as follows:

(1) Add the start node to the open list, set the close list to empty, and start search from start node to
all neighbor nodes separately.

(2) If there were nodes in the open list, select the node n with the lowest cost value f (n). If node n
was the target node, then the path search was completed, otherwise it would be removed from
the open list and added to the close list, and no longer needed to be evaluated.

(3) From the node n, search for the jump point t (node t) in the direction of its natural successors:

(a) If there was no returned node or the returned node t was in the close list, just ignore it;
(b) If the returned node t was not in the open list, add the node t to the open list and calculate

its g(n), h(n), and f (n) values. Regard the node n as the parent node of the node t and
record the parent direction of the node t;

(c) If node t was in the open list, calculate the new g(n) value to see whether it was lower
than the previous g(n). If so, change its parent to the node n and calculate its f (n) value.

(4) Repeat the step (2) to step (3) until the target node was found, the optimal path was then generated
according to the recorded parent direction. Figure 8 is an illustration of the path search process.
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Figure 8. An illustration of JPS algorithm for detecting the seamline.

In some extreme cases, the processed DSM map might be completely segmented by obstacles in
the search direction, which led to the failure of the seamline search. In actual search process, the path
search would fail when the open list was empty due to that there were no jump points to be evaluated.
The solution to this situation in this study was as follows: select the node n with the lowest value h(n)
(meant the node n was closest to the target node) in the close list, and generate a path from start point
to the node n according to the parent direction of each node; then cross obstacles from the node n in a
straight line parallel to the overlap’s centerline; continue the search process with the first non-obstacle
point as a new start point until the search was successful. Figure 9 is the illustration of the approach to
this situation.

Figure 9. An illustration of forcing the seamline to cross an obstacle. Select the node with the lowest
h(n) in the close list, then cross the obstacle forcibly from the left green circle to the right green circle.

3. Experiment and Results

3.1. Design of Experiments

To verify the feasibility and validity of the proposed seamline detection method in this study, two
groups of experiments with different DOM and DSM data were carried out. Area 1 was used for image
pair mosaicking in experiment I, and area 2 was used for multi images (a strip containing 5 images)
mosaicking in experiment II. The characteristics of two test areas are shown in Table 1. The original
images were orthorectified and the DSM data of the overlap regions was obtained by SGM [4] algorithm.
The comparative experiments involved the followings: (1) based on the difference images of DOM
pairs and the Dijkstra’s algorithm [9], (2) based on processed DSM and the Dijkstra’s algorithm.

In general, the pixel resolution of aerial remote sensing images is too high. To avoid the
consumption of irrelevant resources and improve the computing efficiency, the overlap regions of DSM
and DOM were processed by down-sampling (bilinear interpolation [32]). After finishing the search,
the node coordinates of the seamline needed be calculated to the original geographic coordinates of the
DOM and DSM. All the algorithms in this study were implemented through C++ (VC14) programming
with OpenCV (3.2.0). The test machine was a 2.60 GHz Intel Core i5-3230m Duo processor with 8 GB
RAM running Windows 10.
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Table 1. Description of two data. DSM: digital surface model.

Area Image Size Spectral
Bands

Ground
Resolution

DSM Grid
Width

Overlap Size for
Processing 1 Area Description

1 7500 × 11,500
pixels R-G-B 15 cm 25 cm 1700 × 4000 pixels

City area with flat ground
and neat

medium-sized buildings.

2 7680 × 13,824
pixels IR-R-G 8 cm 14 cm 1500 × 4000 pixels

Area with small-sized and
detached buildings

surrounded by many trees
1 The overlap images (processed map of DOM and DSM) were processed with resampling to the same ground and
pixel resolution, and the size shown in the table were the approximate pixel resolution of different overlaps.

3.2. Results

The results of experiment I were shown in Figure 10. Figure 10a shows the seamline extracted
by the Dijkstra’s algorithm with difference image, which roughly avoided obvious obstacle regions.
Since those obstacle regions were non-continuous in the difference image, it could be found that
the seamline still crossed several buildings. Examples could be seen in white circles of Figure 10d.
Figure 10b shows the seamline extracted by the proposed method. The extracted seamline was near
the centerline of the image pair’s overlap region. Moreover, the seamline only crossed one building,
and had a good avoidance effect on trees, vehicles, and other objects. Figure 10c shows the seamline
extracted by the Dijkstra’s algorithm with processed DSM. The general effect was similar to the
proposed method because the same search map was used, while the seamline crossed little more
buildings and cars (as shown in white circles of Figure 10f). Reasons of crossing in those two methods
with processed DSM might due to the too large projection difference or low segmentation quality at
those places. Figure 11 shows the overlay of the seamline detected by the proposed algorithm on the
subset of the original DOM pair, difference image, and processed DSM image, respectively. Obviously,
the seamline did not cross any obstacles. In general, in the first experiment, the proposed method
visually outperformed the other two.

Figure 10. Results of seamline extraction and image mosaicking. (a) Seamline (white line) extracted
by the Dijkstra’s algorithm with difference image; (b) seamline extracted by the proposed algorithm;
(c) seamline extracted by the Dijkstra’s algorithm with processed DSM; (d–f) are enlarged display
of the white rectangle areas in (a–c), respectively. The white circles show that the seamline crossed
some buildings.
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Figure 11. Overlaid display of the seamline (red lines) extracted by the proposed method on different
image subsets. (a) Original left digital ortho map (DOM); (b) original right DOM; (c) the difference
image; (d) the processed DSM.

To further test and prove the effectiveness of the proposed method, a larger area containing
5 images was used for seamline extraction in experiment II, and results were shown in Figure 12.
Figure 12a shows the seamline extracted by the proposed method, the overall effect was satisfactory
with only crossing 2 buildings and several cars, and the extracted seamlines were evenly distributed
without intersections in mosaic image. Figure 12c shows the seamline extracted by the Dijkstra’s
algorithm with difference image, which had crossed much more obvious buildings. Examples can
be seen in white circles of enlarged regions (Figure 12e). Furthermore, there were some intersections
between different seamlines in the images. Figure 12d shows the seamline extracted by the Dijkstra’s
algorithm with processed DSM. Compared with the proposed method, the effect was similar while the
seamline crossed more buildings and cars, and phenomenon of seamlines intersections also occurred
without a central constraint. Generally, the proposed method detected a better seamline in experiment
II compared with other two methods.

Figure 12. Results of seamline extraction and image mosaicking. (a) Seamline (white lines) extracted
by the proposed algorithm; (c) seamline extracted by the Dijkstra’s algorithm with difference image;
(d) seamline extracted by the Dijkstra’s algorithm with DSM; (b,e,f) are enlarged display of the white
rectangle areas in (a,c,d), respectively. The white circles show that the seamline crossed some buildings.
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Table 2 shows the statistical assessment metrics for those three seamline extraction algorithms
in two groups of experiments. Obviously, the proposed algorithm had great advantages in terms of
both efficiency (search time and total time) and resource consumption (memory usage) compared with
those two Dijkstra’s algorithms. The process time of seamline detection and image mosaic greatly
decreased with a low memory usage. In addition, the average gray level (G) values of the searched
seamline nodes in difference image were calculated (Table 2). In theory, the better seamline is often
with lower G value. The nodes in the seamline extracted by the proposed method were jump points,
which always located at the edge of obstacle and non-obstacle area. As a result, the proposed method
resulted in better seamlines with higher G values. What’ more, the numbers of obvious objects crossed
by the seamline were obtained by artificial statistics. The proposed method crossed the least obvious
ground objects than the Dijkstra’s method with difference image in both experiments. Notice that
some low ground objects might not be accurately detected in the processed DSM, leading the seamline
easily crossing those objects. As a result, the two DSM-based methods crossed a few more cars than
the method with difference image.

Table 2. Statistics of three methods for the seamline extraction in two experiments.

Exp. Method
Memory

Usage/MB
Search
Time/s Total Time/s

Effect of the Seamline

G Value 2 Number of Object Crossing

I
Method 1 1 1964.7 15.064 22.845 8.93 5 buildings, 11 cars

Proposed algorithm 138.6 0.06 3.234 11.24 1 building, 14 cars
Method 2 1 1968.4 9.276 18.285 12.86 2 buildings, 20 cars

II
Method 1 2688.5 49.46 88.03 9.06 19 buildings, 15 cars

Proposed algorithm 1063.2 0.168 16.472 12.36 2 buildings, 16 cars
Method 2 2688.7 46.84 83.78 13.84 4 buildings, 22 cars

1 Method 1 and 2 mean the Dijkstra’s algorithm with difference image and processed DSM respectively. 2 G value:
Average gray level of seamline nodes in difference image.

The information of seamlines extracted in two experiments was counted. As shown in Table 3,
the numbers of nodes in seamlines extracted by the proposed method were remarkably smaller than
those by Dijkstra’s algorithm for both experiments, owing to that only jump points were considered as
the seamline nodes. Furthermore, in the proposed method the percentages of evaluated nodes in all
pixel nodes of the search map were less than one percent, while in the Dijkstra’s algorithm they were
much larger. For example, for method 1 in experiment I, the proportion of evaluated nodes was up to
ninety-nine percent, almost all the pixel nodes were evaluated. This can explain why the proposed
method performed search so fast than the other two. Last, the average length of adjacent nodes and its
variance in seamlines extracted by the proposed method were calculated. In experiment II the average
length and variance was lower due to the buildings were smaller and surrounded trees were denser.

Table 3. Information of seamlines extracted in two experiments.

Exp. Method Number of
Seamline Nodes

Percentage of
Evaluated Nodes 2

Average
Length 3

Standard
Deviation 3

I
Method 1 1 4807 99.62 — —

Proposed algorithm 620 0.18 5.57 11.89
Method 2 1 4265 60.13 — —

II
Method 1 18,982 88.14 — —

Proposed algorithm 5030 0.60 3.21 6.12
Method 2 17,300 73.78 — —

1 Method 1 and 2 mean the Dijkstra’s algorithm with difference image and processed DSM respectively. 2 Percentage
of evaluated nodes: the percentage of evaluated nodes in all pixel nodes of the search maps. 3 Average Length and
Standard deviation: average length of adjacent nodes in seamlines and its standard deviation, the unit of both is
a pixel.
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The search time of the above three seamline extraction methods under different pixel resolutions
were also calculated. As shown in Figure 13, the search efficiency of the Dijkstra’s algorithm with
difference image was close to that with processed DSM in the same experiment, and the gap depended
on the difference of evaluated node percentages (shown in Table 3) in the search process. What’ more,
when the image resolution increased, the time consumption of the Dijkstra’s algorithm was greatly
increased, while the JPS algorithm did not increase much, due to that the number of jump points
detected in new image did not increase a lot than before. In fact, the efficiency of JPS algorithm was
also affected by the density of obstacles. The search process would accelerate if there were fewer
obstacles in the map, because most pixels in the map were pruned and fewer jump points were
detected. In general, with the increase of image resolution, the advantage of the proposed algorithm
was more obvious.

Figure 13. Process time for improved JPS algorithm based on processed DSM (the proposed method),
the Dijkstra’s algorithm with difference image (method 1), and the Dijkstra’s algorithm based on
processed DSM (method 2) under different pixel resolutions. The overlap images was set to an initial
size (shown in Table 1), then they were processed with down-sampling scales (from 1.0 to 0.1) to
different pixel resolutions for processing.

4. Discussion

In this study, a novel seamline detection method based on improved JPS algorithm was proposed.
The obtained results showed that the improved JPS algorithm was helpful for orthoimage mosaicking,
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and the seamline detected by the proposed method can effectively avoid passing through obvious
objects on the ground with less resources consumption.

Many seamline detection methods were based on the grayscale difference information of the
DOM pair’s overlap [2,5,8–15], and the resulting seamlines could roughly avoid obstacle regions.
Since the obstacle regions were normally non-continuous in the final cost map (e.g., in the difference
image or edge image the grey value of building edges is large while it is usually small for roofs),
the seamline might still cross some obvious ground objects. As a result, this study was consistent
with Chen et al. [3], Zuo et al. [21], and Zheng et al. [24,25], who chose to detect the seamline based
on a DSM, because it directly reflects the height information and range of objects on the ground
and helps to make the seamline avoid crossing these regions. Furthermore, in this study threshold
segmentation and morphology operation were combined to process the DSM to make the seamline
aloof from obstacles. Comparative experiments showed that the seamlines detected based on the DSM
were better and more reliable than those based on the difference images.

In contrast to other researches based on a DSM, this study first used an improved JPS algorithm to
search for the optimal seamline. The algorithm only considered the key jump points as the nodes of the
final seamline and skipped other unrelated pixels rather than searching on a per-pixel basis, such as the
Dijkstra’s algorithm [9], A* [26] or weighted A* [24]. Profiting from this, the search time and memory
usage were greatly reduced in the proposed method. Meanwhile, the number of nodes in the seamline
was much lower and the seamline was less circuitous, which were better for image mosaicking [35].
Furthermore, after optimizing the evaluation function with central constraint, the final seamlines
were more likely to be near the centerlines of the image pair’s overlap areas. Although the seamlines
extracted by the proposed method were better, due to the jump points always located at the edge
of obstacle and non-obstacle area, the G values of the seamlines’ nodes derived from the proposed
algorithm in the difference image were larger than those derived from the Dijkstra’s algorithm with
difference image [9].

In the proposed method, the effect of seamline detection was closely related to the quality of
original DSM and threshold segmentation result, because these two factors directly affected the final
accuracy of the search map. Considering that the improved JPS algorithm could search for optimal
seamline on the grid map composed of obstacle and non-obstacle regions, it might work well with the
parallax image obtained by SGM algorithm [4], vector building maps [27] or the cost map classified by
CNN [22], assuming that the calculation process with large resources consumption was acceptable in a
real mosaicking process.

It should be noted that the study still had some limitations. First, the forcibly cross operation
should be further optimized to make the seamline cross fewer obstacle pixels. In addition, when the
flight height is too low, or the aerial area is filled with very high buildings, the projection difference
of obstacles in final obtained DOM pairs will be too large. As a result, the detected seamline may be
too close to the edge of these obstacles or even cross them. An orthoimage elevation synchronous
model [3] may solve this problem while the additional digital terrain model data is needed. Lastly,
the ground region was usually marked as a non-obstacle region, which might cause the seamline
to pass through areas with large color differences on the ground. In the future, color and spectral
information of ground objects will be added to optimize the seamline.

5. Conclusions

This study introduced a novel seamline detection approach based on DSM and an improved
JPS algorithm. First, the DSM of the DOM pair’s overlap region was divided into the obstacle
region and the non-obstacle region by combining threshold segmentation and morphological methods.
Then, the improved JPS algorithm was used to prune unrelated pixels and detect jump points in the
processed DSM. According to an optimized evaluation function, the cost of each jump point was
estimated to obtain a minimum cost path as the final optimal seamline. Two groups of experiments by
using improved JPS algorithm with processed DSM, and the Dijkstra’s algorithm based on difference
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image and processed DSM of DOM pair’ overlap, were carried out respectively. Results showed
that the proposed JPS algorithm was effective and reliable for seamline detection, and the resulting
seamlines could effectively avoid crossing obvious ground objects such as buildings, trees, etc.
Since the JPS algorithm skipped a lot of pixel nodes that did not need to be evaluated, the quality of
the finial seamline and image mosaic efficiency were greatly improved compared to the other two
seamline extraction methods. In general, based on DSM and the proposed method combing threshold
segmentation, mathematical morphology, and improved JPS algorithms was helpful for detecting the
optimal seamline for orthoimage mosaicking.
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