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Abstract: The development of spectral methods of remote sensing, including measurement of a
photochemical reflectance index (PRI), is a prospective trend in precision agriculture. There are many
works which have investigated the connection between photosynthetic parameters and PRI; however,
their results varied and were sometimes contradictory. For this paper, we performed a meta-analysis
of works in this field. Here, only linear correlations of PRI with photosynthetic parameters—including
quantum yield of photosystem II (∆F/Fm’), nonphotochemical quenching of chlorophyll fluorescence
(NPQ), and light use efficiency (LUE)—were investigated. First, it was shown that the correlations
were dependent on conditions of PRI measurements (leaf or canopy; artificial light or sunlight).
Second, it was shown that a minimal level of the photosynthetic stress, and the variation of this level
among investigated plants, can influence the linear correlation of PRI with ∆F/Fm’ and NPQ; the
effect was dependent on conditions of measurements. In contrast, the distribution of LUE among
plants did not influence its correlation with PRI. Thus, the meta-analysis shows that the distribution
of photosynthetic parameters among investigated plants can be an important factor that influences
the efficiency of remote sensing on the basis of the PRI measurement.

Keywords: light use efficiency; meta-analysis; nonphotochemical quenching; photochemical
reflectance index; photosynthesis; plant; PRI; quantum yield of photosystem II; remote sensing

1. Introduction

Plants growing under natural conditions can be affected by various environmental stressors,
including drought [1–3], salt stress [4–7], temperature stress [2,8–10], light stress [10,11], etc.
The stressors decrease the probability of survival and productivity of plants; in particular, they damage
the photosynthetic process [12]. Early monitoring of these damages plays an important role in precision
agriculture and ecological monitoring. As a result, remote sensing of the photosynthetic process is an
important practical problem [13–15]. There are many methods that can be used for the analysis of the
photosynthesis process in plants; in particular, pulse-amplitude-modulation (PAM)-fluorometry [16,17],
JIP-test [18–20], and analysis of CO2 exchange [21–25]. These methods are very effective in the
laboratory. However, their use for remote sensing of the photosynthetic process under environmental
conditions is very limited. Currently, remote sensing of photosynthetic parameters in plants is often
based on reflectance indices. In particular, they include:
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- a photochemical reflectance index (PRI), which shows changes in the xanthophyll cycle [26];
- a normalized difference vegetation index (NDVI) [27], an optimized soil-adjusted vegetation

index (OSAVI) [28], and an enhanced vegetation index (EVI) [29,30], which quantitatively show a
photosynthesizing biomass;

- a chlorophyll index (CI), which shows chlorophyll content in leaves [31,32]; and
- a structural independent pigment index (SIPI), which is connected to the ratio of carotenoids to

chlorophylls [33].

There are other reflectance indices, see [34,35].
These indices are important tools for the remote sensing of the photosynthetic process in plants.

In respect to the monitoring of fast changes in the photosynthetic process in plants (especially,
photosynthetic stress), PRI is the most interesting reflectance index. This index, which is related
to the fast transition in the xanthophyll cycle, is based on the rapid decrease of reflectance at 531 nm
that is caused by the dissipation of light energy associated with xanthophyll de-epoxidation [26,36].
It is known that the de-epoxidation of xanthophylls plays an important role in the increase of
nonphotochemical quenching of fluorescence of chlorophyll (NPQ) under stress conditions [12,37].
Thus, it can be expected that PRI is strongly connected with NPQ (and other photosynthetic parameters)
under different environmental conditions.

There are numerous works that investigate the correlation between PRI and NPQ under different
stressors [38–44]. Connections between PRI and other photosynthetic parameters, including a
quantum yield of photosystem II (∆F/Fm’) [38,41,42,45–49], photosynthetic light use efficiency
(LUE) [3,48,50–55], and net CO2 uptake [47,56–59], are actively being investigated. However, the
results of these different works vary considerably, e.g., the linear correlation coefficients between PRI
and NPQ can range from −0.90 [38,49,60] to +0.86 [41] in different investigations. It is probable that
differences are mostly connected to the various conditions of the investigations, e.g., PRI seems to be
more responsive to chlorophyll content then to the xanthophyll cycle over long time periods [48]. As a
result, an analysis of factors influencing the connection between PRI and photosynthetic parameters is
very important for the practical application of the photochemical reflectance index. A meta-analysis of
literature data seems to be an effective method for finding a solution to this problem. There are several
works [15,61] that are devoted to the meta-analysis of results of PRI measurements. In particular,
these works investigated the influence of different spatial scales (leaves, canopy, or ecosystem) and
time scales (daily or seasonal) of PRI measurements on photosynthetic parameters. A determination
coefficient (R2) was used in the works [15,61] as the quantitative criterion for the description of the
relationship between physiological processes and the photochemical reflectance index. However,
these studies, which were the basis of the meta-analysis, used different regression curves (e.g., linear,
logarithmic, or exponential functions), making their comparison with using R2 more difficult. Analysis
of only linear correlation coefficients can eliminate these difficulties. Another weakly studied factor is
the influence of the distribution of photosynthetic parameters in investigated plants on PRI.

Thus, our work was devoted to the meta-analysis of the connection between PRI and
photosynthetic parameters. Only linear Pearson correlation coefficients were analyzed in this
work. Influence of the photosynthetic parameters on the photochemical reflectance index was
also investigated.

2. Methods

2.1. Main Principles of Data Analysis

The analyzed works, which investigated the relationship between PRI and photosynthetic
processes in plants, are shown in Table 1. For preparation of this list, we performed a wide search of
works devoted to PRI investigation (including searching such sources as Web of Science and PubMed,
Google searches, and searches in lists of references in articles). After that, we used the following
criteria of for the selection of data for further analysis:
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- We used only the photochemical reflectance index calculated with an equation PRI = R531 − R570
R531 + R570

where R531 and R570 were reflectance at 531 and 570 nm;
- We analyzed correlations of PRI with the quantum yield of photosystem II (∆F/Fm’), the

nonphotochemical quenching of chlorophyll (NPQ), and the light use efficiency (LUE). ∆F/Fm’
and NPQ were used because these parameters show the efficiency of photosynthetic light
reactions and the response of photosynthetic machinery to stressors. LUE was used for the
estimation of efficiency of photosynthetic assimilation;

- We used only linear correlations between PRI and photosynthetic parameters. These correlations
were taken from papers or were calculated on the basis of the determination coefficient (in case
of a linear regression) or were calculated on the basis of data from the articles. If correlation
coefficients, determination coefficients for linear functions, or graphical data with changes of
photosynthetic parameters and PRI were absent, we did not include these works in the analysis;

- We analyzed the investigation of PRI on the levels of leaves and canopy. Data that were registered
by satellites were not used in the analysis.

Table 1. List of works, which were analyzed in the meta-analysis, and details of measurement of
photochemical reflectance index (PRI) and photosynthetic parameters in each work. LUE = light
use efficiency; ∆F/Fm’ = quantum yield of photosystem II; NPQ = nonphotochemical quenching of
chlorophyll fluorescence.

Year Reference Scale Source of Light Species/Vegetation Type Parameters

1994 Peñuelas et al. [56] Canopy Sunlight Sunflower LUE *

1995 Peñuelas et al. [62] Leaves Artificial light

Hedera canariensis, Phaseolus
vulgaris, Rhus integrifolia,

Heteromeles arbutifolia, Agave
americana, Opuntia ficusindica

and Cereus hexagonus

∆F/Fm
’, LUE ***

1996 Filella et al. [50] Leaves/Canopy Sunlight Barley LUE *

1997 Gamon et al. [63] Canopy Sunlight

Phaseolus vulgaris,

∆F/Fm
’ ***

Gossypium barbadense,
Helianthus annuus,

Zea mays,
Nicotiana tabacum,

Trifolium repens,
Aesculus californica,
Cercis occidentalis,
Platanus racemosa,
Populus fremontii,

Quercus lobata,
Vitis californica,
Vitis girdiana,

Heteromeles arbutifolia,
Ligustrum japonicum,

Quercus ilex,
Prunus ilicifolia,
Quercus agrifolia,

Quercus chrysolepis,
Hedera canariensis,

1997 Peñuelas et al. [3] Leaves Sunlight Quercus ilex, Phillyrea latifolia ∆F/Fm
’, LUE *

2000 Méthy [64] Leaves Artificial light Quercus ilex ∆F/Fm
’ **

2000 Nichol et al. [51] Canopy Sunlight

Populus tremuloides, Corylus
cornutta, Rosa woodsii, Pinus

banksiana, Menyanthes trifoliata,
Carex and Eriophorum spp, Betula
pumila, Larix laricina, P. glauca,

Arctostaphylos uva-ursi,
Vaccinium vitis-idaea, Cladina spp,

Alnus crispa, Picea mariana

LUE **
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Table 1. Cont.

Year Reference Scale Source of Light Species/Vegetation Type Parameters

2002 Nichol et al. [65] Canopy Sunlight

Pinus sylvestris, Abies siberica,
Picea

LUE **abies, Pinus siberica,
Sorbus aucuparia, Abies siberica,

and Betel pendula

2002 Strachan et al. [66] Canopy Sunlight Maize LUE **

2002 Trotter et al. [67] Canopy Artificial light

Hebe townsonii, Carex buchanani
Ocoka, Metrosideros excelsa,

Pittosporum eugenioides, Hebe
‘Otari Delight’, Grisilinea littoralis,

Hebe pimeleoides, Pittosporum
tenuifolium ‘Shirley’

LUE **

2002 Winkel et al. [68] Leaves Sunlight Chenopodium quinoa ∆F/Fm
’, LUE **

2004 Evain et al. [38] Leaves/Canopy Artificial light Grapevine ∆F/Fm
’, NPQ ***

2005 Gamon [69] Leaves Sunlight

Anacardium excelsum, Carica
papaya, Cecropia longipes,

Enterolobium cyclocarpum, Ficus
insipida, Luehea seemannii, Piper

reticulatum, Pseudobombax
septenatum and Maclura tinctoria

∆F/Fm
’ *

2005 Inamullah and Isoda [39] Leaves Sunlight Soybean and cotton ∆F/Fm
’, NPQ *

2005 Nakaji et al. [70] Canopy Sunlight Larix kaempferi LUE *

2005 Raddi et al. [71] Leaves Artificial light

Medicago sativa,

NPQ **

Phragmites australis,
Rubus fruticosus,

Silybum marianum
Populus euroamericana,
Fraxinus angustifolia,

Alnus glutinosa
Quercus ilex

Pinus pinaster and
Pinus pinea

2005
Serrano and Peñuelas

[52]
Canopy Sunlight

Quercus

LUE **
ilex, Phyllirea latifolia,

Arbutus unedo,
Erica arborea, Juniperus oxycedrus

and Cistus albidus

2006 Guo and Trotter [72] Leaves Artificial light

Ackama roseafolia,

∆F/Fm
’, LUE ***

Brachyglottis repanda, Fejoa
selloiana, Rhaphiolepsis indica,

Grisilinea littoralis, Corynocarpus
laevigatus,

Pseudopanax arboreus, Olearia
ilicifolia, Pinus patula, Dodonaea

viscose, Pinus radiata,
Viburnum marisii and Populus

deltoides

2006 Inoue and Peñuelas [73] Leaves Sunlight Soybean LUE *

2006 Nakaji et al. [74] Canopy Sunlight Japanese larch LUE *

2006 Nichol et al. [75] Canopy Sunlight Rhizophora mangle
∆F/Fm

’, NPQ **and Avicennia germinans

2006 Sims et al. [76] Canopy Sunlight
Adenostoma fasciculatum,
Adenostoma sparsifolium,
Arctostaphylos pungens

LUE ***

2006 Weng et al. [77] Leaves Artificial light Mangifera indica, podocarpus nagi,
alnus formosana ∆F/Fm

’***, NPQ**

2008 Hall et al. [78] Canopy Sunlight
Douglas fir, western red cedar

and LUE **
western hemlock

2008 Nakaji et al. [53] Canopy Sunlight Japanese larch, Japanese cypress,
hybrid larch and dwarf bamboo LUE *
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Table 1. Cont.

Year Reference Scale Source of Light Species/Vegetation Type Parameters

2008 Naumann et al. [79] Canopy Sunlight Myrica cerifera ∆F/Fm
’ **

2008 Naumann et al. [80] Canopy Artificial light Myrica cerifera ∆F/Fm
’ **

2008 Peguero-Pina et al. [40] Canopy Sunlight Quercus coccifera NPQ ***

2009 Busch et al. [81] Leaves Artificial light Jack pine ∆F/Fm
’, NPQ **

2009 Middleton et al. [82] Canopy Sunlight Douglas fir LUE **

2009 Naumann et al. [45] Canopy Sunlight Myrica cerifera and Iva frutescens ∆F/Fm
’ **

2010 Ibaraki et al. [46] Leaves Artificial light Strawberry, lettuce and potato ∆F/Fm
’ **

2010 Ibaraki and Gupta [83] Leaves Artificial light Potato ∆F/Fm
’ **

2010 Naumann et al. [84] Canopy Artificial light/
Sunlight Elaeagnus umbellata ∆F/Fm

’ **

2010 Sarlikioti et al. [41] Leaves Artificial light Tomato ∆F/Fm
’, NPQ ***

2010 Shahenshah et al. [42] Leaves Sunlight Cotton and Peanut ∆F/Fm
’, NPQ *

2010 Weng et al. [85] Leaves Artificial light/
Sunlight Mango ∆F/Fm

’ **

2010 Wu et al. [86] Canopy Sunlight Wheat LUE **

2011 Ripullone et al. [47] Leaves Sunlight

Arbutus unedo, Quercus ilex,

∆F/Fm
’ **

Quercus pubescens, Quercus cerris,
Quercus robur, Cannabis sativa,

Fagus sylvatica and
Populus euroamericana

2012 Ač et al. [87] Canopy Sunlight
(Festuca rubra, Hieracium sp.,

Plantago sp, Nardus stricta and
Jacea pseudophrygia

LUE ***

2012 Osório et al. [43] Leaves Artificial light Ceratonia siliqua ∆F/Fm
’ *

2012 Porcar-Castell et al. [48] Leaves Sunlight/ Artificial
light Pinus sylvestris ∆F/Fm

’, NPQ,
LUE *

2012 Rahimzadeh-Bajgiran
et al. [88] Leaves Artificial light Solanum melongena NPQ **

2012 Shrestha et al. [60] Leaves Artificial light Rice NPQ ***

2012 Weng et al. [89] Leaves Artificial light
Pinus taiwanensis, Stranvaesia

∆F/Fm
’ **niitakayamensis, two

Miscanthus spp. and mango

2012 Zinnert et al. [7] Canopy Artificial light Baccharis Halimifolia and
∆F/Fm

’, NPQ **Myrica cerifera

2013 Cheng et al. [90] Canopy Sunlight Maize LUE **

2013 Liu et al. [54] Canopy Sunlight Maize and winter wheat NPQ **

2013 Rossini et al. [91] Canopy Sunlight Maize ∆F/Fm
’ **

2014 Hmimina et al. [55] Leaves Sunlight Quercus robur and Fagus sylvatica ∆F/Fm
’, LUE **

2014 Magney et al. [44] Leaves Artificial light
Sunflower, wheat, Quercus

NPQ **macrocarpa, Betula papyrifera,
and Populus tremuloides

2014 Soudani et al. [92] Canopy Sunlight Quercus
LUE **robur, Quercus petraea, Quercus

ilex, Carpinus betulus

2015 Rossini et al. [93] Canopy Sunlight Maize ∆F/Fm
’ **

2015 Šebela et al. [94] Leaves Artificial light Rice ∆F/Fm
’ *

2015 van Leeuwen et al. [95] Canopy Artificial light Douglas fir LUE **

2015 Wu et al. [96] Canopy Sunlight Wheat LUE **

2017 Chou et al. [49] Canopy Sunlight Maize ∆F/Fm
’, NPQ **

2017 Zhang et al. [97] Canopy Sunlight Erica multiflora ∆F/Fm
’ **

2017 Zhang et al. [98] Leaves Sunlight Quercus ilex ∆F/Fm
’ **

* the linear correlation coefficient was shown in this work; ** the linear correlation coefficient was calculated on
the basis of the determination coefficient of linear regression in this work; *** the linear correlation coefficient was
calculated on the basis of graphical dates from this work.
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It should be noted that leaves and canopy levels are widely used scales of PRI
measurements [15,61]. Measurements of PRI in leaves are often based on the application of
spectrometers and specific systems of PRI measurement (e.g., PlantPen PRI 200) or systems of
PRI imaging [15,61]. Measurements of PRI in the canopy of leaves (from single plant or group
of plants) can be also based on the application of spectrometers or multispectral and hyperspectral
cameras [15,61], which can be placed on a mobile platform (e.g., drone) or fixed at a certain distance
from the canopy [35,38]. Photosynthetic parameters in leaves (in particular, ∆F/Fm’, NPQ, and LUE)
can be measured by standard methods, including PAM-fluorometry [16,17] and analysis of CO2

exchange [21–25]. However, the application of these methods on the canopy level is a very difficult
problem. In this case, photosynthetic parameters are often measured in only some leaves from the
canopy, which are used for PRI measurements [36,40].

In some works, the authors investigated several plants and/or analyzed the influence of different
factors separately. In these cases, each connection between PRI and photosynthetic parameters was
analyzed independently in each investigated variant. Averaged correlation coefficients and their
standard errors were used for analysis. Significance of differences between groups was calculated
using the Student’s test.

2.2. Analysis of the Influence of Distribution of Photosynthetic Parameters among Investigated Plants on
Connection of these Parameters with PRI

Figure 1 shows a common design for analysis of the influence of distribution of photosynthetic
parameters among investigated plants on connection of these parameters with PRI. First, in each
analyzed variant, all experimental values of photosynthetic parameters (NPQ, ∆F/Fm’, or LUE)
were sorted in ascending order, with each experimental value showing NPQ, ∆F/Fm’, or LUE for a
single plant or single group of plants. After that, the minimal (Pmin) and maximal (Pmax) values
of photosynthetic parameters (NPQ, ∆F/Fm’, or LUE) among investigated plants (or groups of
plants) were calculated. Pmin and Pmax were calculated in each analyzed variant from literature
data. Pmin of NPQ and Pmax of ∆F/Fm’ and LUE showed the minimal level of photosynthetic stress
among investigated plants, because the action of stressors increases nonphotochemical quenching and
decreases the quantum yield of photosystem II [7,41,47,99] and light use efficiency [55,56]. Another
parameter that was used was the difference between maximal and minimal values of NPQ, ∆F/Fm’, and
LUE (∆Pabs = Pmax − Pmin). We assumed that the difference reflected the variation of the photosynthetic
stress level among investigated plants (or groups of plants) in the analyzed variant.

Second, all analyzed variants were sorted from minimum to maximum of ∆Pabs and Pmin or Pmax.
After that, they were divided into two approximately equal groups. The first group (“low”) included
∆Pabs and Pmin or Pmax with values lower than the median value. The second group (“high”) included
∆Pabs and Pmin or Pmax with values higher than the median value.

Finally, averaged ∆Pabs and Pmin or Pmax and averaged correlation coefficients of PRI with NPQ,
∆F/Fm’, or LUE, and their standard errors were calculated for each group. Significance of differences
between groups were calculated using the Student’s test. In a similar manner, we also analyzed data
with specific conditions of measurements of PRI (leaves or canopy, artificial light, or sunlight).
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Figure 1. The common design of the analysis of influence of photosynthetic parameter distribution
on investigated plants for their connection with PRI. Pmin is the minimal value of NPQ among plants
(or groups of plants) in each analyzed variant; Pmax is the maximal value of ∆F/Fm’ or LUE among
plants (or groups of plants) in each analyzed variant; ∆Pabs is the difference between Pmax and Pmin for
∆F/Fm’, NPQ, and LUE in each analyzed variant.

3. Results

3.1. Connection of PRI with Photosynthetic Parameters under Different Measurement Conditions

Figure 2a shows that the linear correlation coefficients between PRI and photosynthetic
parameters, which were calculated on the basis of all investigated variants, were moderate, and
had absolute values from 0.5 to 0.6. Correlations between PRI and ∆F/Fm’ and PRI, and LUE were
positive, whereas the correlation between PRI and NPQ was negative.
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coefficients of PRI with ΔF/Fm’ (n = 110), LUE (n = 63), and NPQ (n = 50); (b) Average correlation 
coefficients of PRI with ΔF/Fm’, LUE, and NPQ for measurements of the photochemical reflectance 
index in leaves (n = 86, n = 15, n = 38, respectively) and canopy (n = 24, n = 48, n = 12, respectively); (c) 
Average correlation coefficients of PRI with ΔF/Fm’, LUE, and NPQ with measurements under 
sunlight (n = 52, n = 54, n = 33, respectively) or artificial light (n = 58, n = 9, n = 17, respectively). * the 
groups significantly differed from another one (p < 0.05, Student’s test). 

Further, we investigated correlations between PRI and photosynthetic parameters when the 
reflected light was measured from the leaves or canopy surface. Figure 2b shows that the correlation 
coefficient between PRI and NPQ for canopy measurements was higher than the coefficient for 
leaves measurements. A similar tendency was observed for the correlation coefficient between PRI 
and ΔF/Fm’, although it was not significant. In contrast, the correlation coefficient between PRI and 
LUE for leaves measurements was higher than the coefficient at canopy measurements. 

Figure 2. The connection of PRI with the quantum yield of photosystem II (∆F/Fm’), nonphotochemical
quenching (NPQ), and light use efficiency (LUE). (a) Average correlation coefficients of PRI with ∆F/Fm’
(n = 110), LUE (n = 63), and NPQ (n = 50); (b) Average correlation coefficients of PRI with ∆F/Fm’, LUE,
and NPQ for measurements of the photochemical reflectance index in leaves (n = 86, n = 15, n = 38,
respectively) and canopy (n = 24, n = 48, n = 12, respectively); (c) Average correlation coefficients of PRI
with ∆F/Fm’, LUE, and NPQ with measurements under sunlight (n = 52, n = 54, n = 33, respectively) or
artificial light (n = 58, n = 9, n = 17, respectively). * the groups significantly differed from another one (p
< 0.05, Student’s test).

Further, we investigated correlations between PRI and photosynthetic parameters when the
reflected light was measured from the leaves or canopy surface. Figure 2b shows that the correlation
coefficient between PRI and NPQ for canopy measurements was higher than the coefficient for leaves
measurements. A similar tendency was observed for the correlation coefficient between PRI and
∆F/Fm’, although it was not significant. In contrast, the correlation coefficient between PRI and LUE
for leaves measurements was higher than the coefficient at canopy measurements.

The analysis of the influence of the light source (artificial light or sunlight) on correlations
between PRI and photosynthetic parameters was performed later. It could be seen that the correlation
coefficients of PRI with ∆F/Fm’ and LUE were significantly higher under artificial light than under
sunlight (Figure 2c). The difference between the correlation coefficients of PRI and NPQ was not
significant. However, we did observe a tendency of correlation increase under artificial light (Figure 2c).
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3.2. Influence of Distribution of Photosynthetic Parameters among Investigated Plants on Connection of These
Parameters with PRI

First, we analyzed the influence of the Pmin of NPQ and Pmax of ∆F/Fm’ and LUE, which showed
the minimal level of photosynthetic stress among investigated plants in each analyzed variant (see
details in Section “Analysis of the Influence of Distribution of Photosynthetic Parameters among
Investigated Plants on Connection of these Parameters with PRI” and Figure 1), on the connection of
photosynthetic parameters and PRI. All analyzed variants were sorted in accordance to their Pmin or
Pmax and were divided into two groups: low and high value of these parameters. A similar analysis
was performed for ∆Pabs, which shows the variation of photosynthetic stress levels among investigated
plants in each analyzed variant.

It was shown that the differences of photosynthetic parameters between groups with low and
high absolute values of Pmin (Pmax) and ∆Pabs were significant (Figure 3, on the left). The correlation
coefficients between quantum yield of photosystem II and PRI at high Pmax and ∆Pabs (r = 0.75 and 0.73,
respectively) were significantly higher than ones at low Pmax and ∆Pabs (r = 0.47 and 0.49, respectively)
(Figure 3a). The absolute correlation coefficients between NPQ and PRI at low Pmin and high ∆Pabs
(r = −0.61 and −0.63, respectively) were higher than ones at high Pmin and low ∆Pabs (r = −0.36
and −0.34, respectively) (Figure 3b). In the case of LUE (Figure 3c), we did not observe significant
differences between the groups with low and high Pmax and ∆Pabs. Thus, it was probable that the
correlations between PRI and ∆F/Fm’ and PRI, and NPQ were higher in the analyzed variants that
included plants with low photosynthetic stress (low Pmin of NPQ and high Pmax of ∆F/Fm’) and
had high variation of the photosynthetic stress levels (high ∆Pabs). This effect was not observed for
correlations between LUE and PRI.
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Figure 3. The influence of the distribution of ∆F/Fm’ (a); NPQ (b) and LUE (c) among investigated
plants for the connection between these photosynthetic parameters with PRI at all variants of
measurements. Average values of Pmin (Pmax) and ∆Pabs are shown on left panels, average correlation
coefficients are shown on right panels. The label “low” indicates groups with low Pmin (Pmax) and
∆Pabs; the label “high” indicates groups with high Pmin (Pmax) and ∆Pabs. “Low” groups had n = 55
(∆F/Fm’), n = 25 (NPQ), and n = 31 (LUE); “high” groups had n = 55 (∆F/Fm’), n = 25 (NPQ), and
n = 32 (LUE). * the group significantly differed from another one (p < 0.05, Student’s test).

3.3. Influence of Distribution of Photosynthetic Parameters among Investigated Plants on Connection of These
Parameters with PRI Measurements in Leaves and Canopy

Further, we examined the influence of the photosynthetic parameter distribution among
investigated plants on correlations between PRI and ∆F/Fm’, PRI and NPQ, and PRI and LUE with
measurements of PRI in leaves and canopy. In this case, we analyzed only experiments that investigated
PRI in leaves or only experiments that investigated PRI in canopy. Analysis of each group (leaves
or canopy) was analogous to the previous analysis (see above). It should be noted that differences
of photosynthetic parameters between groups with low and high absolute values of Pmin (Pmax) and
∆Pabs were significant for all measurements (Figures 4 and 5, on the left).
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Figure 4. The influence of the distribution of ∆F/Fm’ (a); NPQ (b) and LUE (c) on investigated plants for
the connection between these photosynthetic parameters with PRI at measurements of the photochemical
reflectance index in leaves. Average values of Pmin (Pmax) and ∆Pabs are shown on left panels, average
correlation coefficients are shown on right panels. The label “low” indicates groups with low Pmin (Pmax)
and ∆Pabs; the label “high” indicates groups with high Pmin (Pmax) and ∆Pabs. “Low” groups had n = 43
(∆F/Fm’), n = 19 (NPQ), and n = 8 (LUE); “high” groups had n = 43 (∆F/Fm’), n = 19 (NPQ), and n = 7
(LUE). * the group significantly differed from another one (p < 0.05, Student’s test).
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Figure 5. The influence of the distribution of ∆F/Fm’ (a); NPQ (b) and LUE (c) on investigated plants for
the connection between these photosynthetic parameters with PRI at measurements of the photochemical
reflectance index in canopy. Average values of Pmin (Pmax) and ∆Pabs are shown on left panels, average
correlation coefficients are shown on right panels. The label “low” indicates groups with low Pmin (Pmax)
and ∆Pabs; the label “high” indicates groups with high Pmin (Pmax) and ∆Pabs. “Low” groups had n = 12
(∆F/Fm’), n = 6 (NPQ), and n = 24 (LUE); “high” groups had n = 12 (∆F/Fm’), n = 6 (NPQ), and n = 24
(LUE). * the group significantly differed from another one (p < 0.05, Student’s test).
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On the basis of works that investigated leaves, we showed that the correlation between PRI and
quantum yield was high at high Pmax and ∆Pabs (Figure 4a) and the correlation between PRI and NPQ
was high at high ∆Pabs and low Pmin (Figure 4b). In contrast, the correlation between LUE and PRI
was high at both values of Pmax and ∆Pabs (Figure 4c). The analysis of works that investigated PRI in
canopy showed that significant differences between groups with low and high Pmin or Pmax and ∆Pabs
were absent (Figure 5). It should be additionally noted that absolute values of correlation coefficients
of PRI with NPQ and ∆F/Fm’ were high (about 0.75–0.85) in both groups with measurement in canopy.
Influence of photosynthetic parameter distribution among investigated plants on correlations between
PRI and LUE were absent in all variants.

3.4. Influence of Distribution of Photosynthetic Parameters among Investigated Plants on Connection of These
Parameters with PRI at Measurements under Sunlight and Artificial Light

Finally, we investigated the influence of the photosynthetic parameter distribution among
investigated plants on correlations of PRI with ∆F/Fm’, NPQ, and LUE with measurement of
photosynthetic parameters and the photochemical reflectance index under sunlight and artificial
light. The analysis was similar to the analysis that was described in the previous section. It should
be noted that differences of photosynthetic parameters between groups with low and high absolute
values of Pmin (Pmax) and ∆Pabs were significant at all light conditions (Figures 6 and 7, on the left).
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Figure 6. The influence of the distribution of ∆F/Fm’ (a); NPQ (b) and LUE (c) on investigated plants for
the connection between these photosynthetic parameters with PRI with measurements under sunlight.
Average values of Pmin (Pmax) and ∆Pabs are shown on left panels, average correlation coefficients are
shown on right panels. The label “low” indicates groups with low Pmin (Pmax) and ∆Pabs; the label
“high” indicates groups with high Pmin (Pmax) and ∆Pabs. “Low” groups had n = 26 (∆F/Fm’), n = 16
(NPQ), and n = 27 (LUE); “high” groups had n = 26 (∆F/Fm’), n = 17 (NPQ), and n = 27 (LUE). * the
group significantly differed from another one (p < 0.05, Student’s test).
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Figure 7. The influence of the distribution of ∆F/Fm’ (a); NPQ (b) and LUE (c) on investigated plants
for the connection between these photosynthetic parameters with PRI at measurements under artificial
light. Average values of Pmin (Pmax) and ∆Pabs are shown on left panels, average correlation coefficients
are shown on right panels. The label “low” indicates groups with low Pmin (Pmax) and ∆Pabs; the label
“high” indicates groups with high Pmin (Pmax) and ∆Pabs. “Low” groups had n = 29 (∆F/Fm’), n = 8
(NPQ), and n = 4 (LUE); “high” groups had n = 29 (∆F/Fm’), n = 9 (NPQ), and n = 5 (LUE). * the group
significantly differed from another one (p < 0.05, Student’s test).
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Under sunlight, we observed dependencies of correlations of PRI with ∆F/Fm’ and NPQ on Pmax

or Pmin and ∆Pabs (Figure 6a,b). Correlation coefficients of PRI with LUE did not significantly differ in
groups with different Pmax and ∆Pabs (Figure 6c). Similar trends were observed under artificial light
(Figure 7). However, significant differences were shown only between correlation coefficients of PRI
with ∆F/Fm’ in groups with low and high Pmax of the quantum yield of photosystem II. It should be
noted that absolute values of correlation coefficients of PRI with NPQ and ∆F/Fm’ under artificial light
(about 0.6–0.8) were higher than ones under sunlight (about 0.2–0.7).

These results are in accordance with the results of analysis in the previous section: the correlations
of PRI with ∆F/Fm’ and NPQ were affected by the photosynthetic parameter distribution among
investigated plants; however, this effect was reduced with a strong connection between PRI and
these photosynthetic parameters (investigations under artificial light). Influence of the photosynthetic
parameter distribution among investigated plants on correlations between PRI and LUE was absent in
all variants.

4. Discussion

Precision agriculture [14,100–103] requires the development of methods of remote sensing of fields
and fast analysis of the derived data. The prospective direction of field monitoring is in the application
of spectral indices [41,104,105] due to their connection to physiological processes [15,61] and the
damage caused by stressors and pathogens in plants [102,106,107]. These indices can potentially
be used for the detection of different types of stressors in the early stages of their action [102,107].
The application of a combination of spectral indices can be an additional tool for the improvement of
the identification of plant stressors.

Measurement of the photochemical reflectance index is a potentially effective tool for the remote
sensing of plants in the field [15,63,108]. There are numerous experimental studies [49,54,66,86,90,93,96]
that were devoted to the analysis of the connection between PRI and photosynthetic parameters.
The results require theoretical investigations that analyze the current experimental data. The meta-analysis
of literature data is an important tool for this analysis [15,61]. In particular, the meta-analysis can
reveal the influence of various factors on the connection between PRI and photosynthetic parameters.
The meta-analysis in our work shows several important points which are briefly summarized in Table 2.

Table 2. Average correlation coefficients of the photochemical reflectance index with photosynthetic
parameters and influence of distribution of these parameters among investigated plants on the
connection between PRI and ∆F/Fm’, NPQ, and LUE with different conditions of measurements.

Conditions of Measurement Analyzed Parameter or Effect ∆F/Fm’ NPQ LUE

Scale

Leaves
Average correlation coefficient 0.58±0.05 −0.40±0.08 0.77±0.03

Influence of Pmax (Pmin) +++ +++ −
Influence of ∆Pabs +++ +++ −

Canopy
Average correlation coefficient 0.72±0.05 −0.77±0.05 0.46±0.08

Influence of Pmax (Pmin) − + −
Influence of ∆Pabs − − −

Source of light

Sunlight
Average correlation coefficient 0.50±0.08 −0.41±0.08 0.50±0.07

Influence of Pmax (Pmin) +++ +++ −
Influence of ∆Pabs +++ +++ −

Artificial light
Average correlation coefficient 0.71±0.04 −0.65±0.11 0.75±0.04

Influence of Pmax (Pmin) +++ − −
Influence of ∆Pabs − − −

“+++”, the effect was significant (p < 0.05); “+”, tendency was observed (0.05 < p < 0.1); “−”, the effect was not
significant (p > 0.1). Red color shows a low correlation coefficient (0.3–0.5); blue color shows a moderate correlation
coefficient (0.5–0.7); green color shows a high correlation coefficient (0.7–0.9).

First, our results showed (Figures 2b, 4a,b and 5a,b, Table 2) that values of correlation coefficients
of PRI with ∆F/Fm’ and NPQ, when PRI was registered in canopy, were higher than the coefficients
when PRI was registered in leaves. It is probable that this effect was caused by the decrease of
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noise in PRI measurements due to the averaging of data in the investigation on the canopy level.
In contrast, the correlation coefficient of PRI with LUE was minimal for the investigation of the
photochemical reflectance index in canopy and maximal at its investigation in leaves. These results
may be due to methodological reasons because measurement of CO2 assimilation, which is the basis of
the LUE calculation [62,65], is mainly analyzed in leaves under controlled conditions (CO2 and H2O
concentrations, light intensity and spectrum, temperature often regulated). That is, the analysis of LUE
and PRI at the leaves level tends to be more accurate than the comparison between PRI in canopy and
LUE in leaves.

Second, we showed that the correlation coefficients between PRI and photosynthetic parameters
under artificial light were higher than those coefficients under sunlight (Figures 2c, 6 and 7, Table 2).
It can be presumed that the positive effect of artificial light is caused by the minimization of fluctuations
of PRI, ∆F/Fm’, NPQ, and LUE. In contrast, measurements under sunlight can be disturbed by
fluctuation of light intensity [42,70,81,85], changes in angle of incidence of light [82,109,110], etc.

Third, the photosynthetic parameter distribution among investigated plants can strongly influence
the connection of PRI with ∆F/Fm’ and NPQ (Figure 3, Table 2). However, the influence of the LUE
distribution among investigated plants on the connection of PRI with this photosynthetic parameter
was not observed (Figures 3c–7c, Table 2).

In particular, it was shown that the correlation coefficients were increased with a decrease
of the minimal level of photosynthetic stress among investigated plants in the analyzed variants.
The effect may be due to the complex mechanisms of photosynthetic stress in plants. It is known that
changes in PRI are mainly connected with redox processes in the xanthophyll cycle [26,36], which is
regulated by pH in the lumen of chloroplasts [111]. Transitions in the xanthophyll cycle can influence
the nonphotochemical quenching and the quantum yield of photosystem II [111,112]. However,
these photosynthetic parameters can be also affected by other mechanisms. In particular, different
components of NPQ can be affected by the pH-dependent protonation of PsbS proteins [37,111], state
transition [37,113,114], and photoinhibition [115]. The contribution of these processes to the total NPQ
depends on environmental conditions [115,116] and the time of their development [117]. The quantum
yield of photosystem II is connected with all components of NPQ [113,118,119] as well as with the
ratio of the linear and cyclic electron flows [117,120], production of reactive oxygen species [121], etc.
Also, there are additional factors which can complicate interaction between photosynthetic parameters
and PRI under the action of stressors. In particular, an increase in transthylakoid ∆pH, which can be
stimulated during photosynthetic stress, causes chloroplast shrinkage, and this shrinkage probably
participates in PRI changes in the range of seconds [15,38]. In contrast, very long-term stress can
change the content of chlorophyll and the pool size of the xanthophyll cycle pigments. It is known that
similar changes can also influence PRI [48,122].

Thus, it can be speculated that the investigation of plants with high photosynthetic stress (with the
high minimal level of the photosynthetic stress among these plants) must be accompanied by numerous
mechanisms of changes in NPQ and ∆F/Fm’, including mechanisms which are not connected to
changes in PRI. Under these conditions, the connection of PRI with NPQ and ∆F/Fm’ can be disturbed.
It is very probable that this effect can be stimulated by fluctuations of environmental conditions at
measurement (in particular, changes in light intensity). That is, it should be low at the high correlation
between PRI and photosynthetic parameters and it should be high at the low correlation. In reality,
our results showed (Figures 4–7, Table 2) that the influence of the minimal level of photosynthetic
stress on the connection of PRI with NPQ and ∆F/Fm’ was low at the high correlation between the
photochemical reflectance index and photosynthetic parameters (canopy or artificial light). In contrast,
the influence was high at the moderate correlation of PRI with NPQ and ∆F/Fm’ (leaves or sunlight).

Influence of variation of the photosynthetic stress level among investigated plants (the difference
between maximal and minimal values, ∆Pabs) on the correlation of PRI with NPQ and ∆F/Fm’ was
also observed (Figure 3, Table 2). The high correlation between PRI and photosynthetic parameters
was at high ∆Pabs and the low correlation was at the low ∆Pabs. This effect was observed (Figures 4–7,



Remote Sens. 2018, 10, 771 16 of 25

Table 2) at the moderate correlation of PRI with NPQ and ∆F/Fm’ (leaves or sunlight) and was absent
at the high correlation (canopy or artificial light). This result seems expected because the influence
of fluctuations on the correlation coefficient should be decreased with the increase of variation of
the photosynthetic stress level among investigated plants. For the practical problem of field remote
sensing, the results show that application of PRI can be more effective in the investigation of the effects
of strong stressors than in the investigation of weak stressors. However, the minimal level of the
photosynthetic stress among investigated plants should be low (see above), i.e., measurements of
control plants, which are not affected by stressors, are also necessary.

The reasons for the absence of the influence of the minimal level of the photosynthetic stress
among investigated plants and its variation on the correlation of PRI with LUE (Figures 3–7, Table 2)
require future analysis. It cannot be excluded that this absence is caused by a complicated connection
between changes in xanthophyll de-epoxidation (i.e., PRI) and changes in CO2 assimilation (i.e., LUE).
The de-epoxidation can directly change NPQ and ∆F/Fm’; however, its influence on CO2 assimilation
is not direct. Changes in linear and cyclic electron flows, transthylakoid proton gradient, and
synthesis of Adenosine Triphosphate (ATP) and Nicotinamide Adenine Dinucleotide Phosphate
(NADPH) [123] can participate in the induction of changes in CO2 assimilation after changes in the
xanthophyll de-epoxidation.

5. Conclusions

As a whole (Figure 8), our meta-analysis shows that the linear correlation coefficients between
PRI and photosynthetic parameters depend on variable conditions of the environment, including
scale of measurements (leaves or canopy) and light conditions (sunlight or artificial light). Further,
the distribution of photosynthetic parameters among plants (a minimal rate of photosynthetic stress
and a variation of the photosynthetic stress level among investigated plants) can influence the linear
correlation of PRI with the photosystem II quantum yield and nonphotochemical quenching; the effect
is also dependent on conditions of measurements. In contrast, the distribution of light use efficiency
among plants did not influence its correlation with PRI.

It is known that the photosynthetic parameters can be modified by numerous factors, including
light intensity, temperature, drought, etc. [124]. It is very probable that even a crude guess of the range
of photosynthetic parameters can allow one to estimate the efficiency of the PRI in an accurate analysis
of photosynthetic stress in plants. The mathematical modeling of photosynthetic processes and PRI
can be potentially used for a crude guess of the photosynthetic parameters under specific conditions.
Moreover, the modeling can be an additional tool for the analysis of the connection between reflectance
indices and photosynthetic parameters [109,125,126]. Development of these models can be used as a
solution to the fundamental and applied problems in the field of remote sensing with PRI.

Presently, there are several mathematical models describing the optic properties of leaves and
canopy [127–132] and connection of these properties with the content of photosynthetic pigments in
leaves [133–136]. Detailed models of PRI, which include a description of the geometry and discontinuity
of canopy and different depth penetrations of light into the canopy, are developed on the basis of these
models [109,137,138]. Also, linear and nonlinear regressions are widely used to describe the connection
between PRI and photosynthetic parameters [62,76,124,137,139]. Development of mechanistic models
of PRI and photosynthetic processes is another important method of PRI simulation [109]. In light
of the strong connection between PRI and photosynthetic stress [39,40,49], development of detailed
models of the relationship between PRI and NPQ is a very important task. Only a few models of the
connection between PRI and NPQ have been developed [126]; thus, the problem is very topical.
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