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Abstract: In this study, we develop a vegetation monitoring framework which is applicable at a
planetary scale, and is based on the BACI (Before-After, Control-Impact) design. This approach
utilizes Google Earth Engine, a state-of-the-art cloud computing platform. A web-based application
for users named EcoDash was developed. EcoDash maps vegetation using Enhanced Vegetation Index
(EVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) products (the MOD13A1 and
MYD13A1 collections) from both Terra and Aqua sensors from the years 2000 and 2002, respectively.
to detect change in vegetation, we define an EVI baseline period, and then draw results at a planetary
scale using the web-based application by measuring improvement or degradation in vegetation based
on the user-defined baseline periods. We also used EcoDash to measure the impact of deforestation
and mitigation efforts by the Vietham Forests and Deltas (VFD) program for the Nghe An and Thanh
Hoa provinces in Vietnam. Using the period before 2012 as a baseline, we found that as of March
2017, 86% of the geographical area within the VFD program shows improvement, compared to only a
24% improvement in forest cover for all of Vietnam. Overall, we show how using satellite imagery
for monitoring vegetation in a cloud-computing environment could be a cost-effective and useful
tool for land managers and other practitioners
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1. Introduction

Forest ecosystems provide a wide range of benefits to humans [1-3] but remain under great
pressure due to population growth and economic development. The protection of forests and their
resources is important as local and distant human populations benefit directly from food, fuel, fiber
and eco-tourism from healthy ecosystems. Functioning ecosystems also stabilize the climate, provide
fresh water, control floods, and provide non-material benefits such as aesthetic views and recreational
opportunities [4-8]. Deforestation and degradation are a major source of greenhouse gas emissions,
while forest management and restoration programs can improve livelihoods, create jobs, and improve
economic growth in local communities. They can also lead to healthier environments, functioning
ecosystem services, and reduce global greenhouse gas emissions.

This latter issue, the protection of forest ecosystems and subsequent reduction of greenhouse
gas emissions is an important item in the international environmental fora. REDD+ (Reducing
Emissions from Deforestation and forest Degradation) is a major global initiative which, for example,
aims to reduce land-use related emissions from developing countries. Payment for Ecosystem
Services (PES) is another exemplar initiative, which creates voluntary agreements between individuals
generating benefits from extracting forest resources, and those individuals negatively impacted by
the deforestation [9]. The challenge in all of these initiatives is that developing countries often need
extensive support to implement climate resilient strategies and protect their natural resources for future
generations. Many international Non-Governmental Organizations (NGOs) offer generous support
for the implementation of such strategies, but have strict guidelines on monitoring, evaluation and
report on the impact of the measures which may be difficult for the host country to adhere to without
specialized technical support.

A common method for evaluating the impact of environmental and ecological interventions is the
BACI (Before-After, Control-Impact) method [10]. Figure 1 provides a schematic overview of the BACI
framework. For the intervention area, the before and after variables of interest are measured. These are
compared with the before and after measures of the same variables at a control site. The differences
between the intervention and control sites determine the impact generated by the interventions [11,12].
Other studies have used BACI to study Marine protected areas [13], integrated marsh management [14]
and ecosystem recovery [15].
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Figure 1. Schematic overview of the BACI (Before-After, Control-Impact) framework. For both the
control and impact sites the before and after situations are evaluated. The difference between the two
after situations defines the impact of the measures. Image was modified from [16].
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Monitoring forest ecosystems is important but difficult due to their highly distinctive complex
spatial and temporal patterns [17,18]. Conventional methods for forest evaluation include extensive
field research on a wide range of biophysical parameters such as vegetation health, tree height, tree
cover, species distributions, animal movement patterns, and many more. Important work is being
conducted by the United Nations Food and Agricultural Organization (FAO) in their 5-yearly Global
Forest Resources Assessments [19] where forest area and characteristics are identified. However, these
approaches are expensive in terms of time and resources.

Recent international scientific developments have led to high resolution global satellite derived
data products for assessing the state of vegetation and forest cover for the entire globe. These
products have the resolution and coverage required for an adequate quantitative assessment of many
environmental and ecological features and patterns. Together with recent advances in cloud-based
remote sensing and geo-computational platforms, these technologies have led to greater open
scientific data for use by policy makers and practitioners outside of academia. The hybridization
and simplification of these technologies also allow scientists to provide policy-makers, international
donors, NGOs, and other development partners with tailor-made products to monitor and value their
ecosystems in near real-time, and requiring less advanced technical expertise than in the past.

In this paper we demonstrate a near real-time method for quantifying vegetation using
cloud computing technology and remote-sensing data. We developed a novel custom indicator
to monitor vegetation on a planetary scale, and then combined this with remote-sensing data for near
real-time customized quantification of vegetation change. We demonstrate how new cloud-based
geo-computational technology can be used to temporally, geographically and adaptively filter data
collections, all while performing calculations on a global scale. Finally, we present a case study
how these technologies can help policy makers, project managers and other non-experts to quantify
vegetation for various purposes including monitoring and ecosystem valuation, and allow them to use
the results for local economic and social progress in a developing nation.

2. Methods

We developed a framework to quantify and monitor vegetation using two common
remote-sensing data products that incorporate the Before and After Control Impact (BACI) design [20].
This approach is used in ecology and environmental studies as an experimental design to evaluate
the impact of an environment change on an ecosystem [21]. The framework is based on repeated
measurements of several vegetation variables at various times over an observational period.
Measurements were taken at a location which was known to be unaffected by vegetational change
(control location) and at another location which potentially would be affected this same change
(be explicit) (treatment location) for each timestep [20]. This approach is applicable for evaluating both
natural and man-made changes to an ecosystem especially when it is not possible to randomly select
treatment sites [22]. The framework is based on the Google Earth Engine cloud computing platform,
which is a technology that is able to rapidly deliver information derived from remotely sensed imagery
in near-real time.

2.1. Data

Vegetation conditions of a landscape were calculated from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) products (Table 1). The MODIS EVI
products used in this study are provided every 16 days at 500 m spatial resolution as a gridded
level-3 product. MYD13A1 and MOD13A1 are derived from MODIS Aqua and Terra satellites
respectively and thus have a difference in temporal coverage. Both products contain 12 layers,
including Normalized Difference Vegetation Index (NDVI), EVI, red reflectance, blue reflectance, Near
Infrared (NIR) reflectance, view zenith, solar zenith, relative azimuth angle, Summary QA, detailed
QA and day of the year.



Remote Sens. 2018, 10, 760 40f 13

The MODIS EVI products minimize canopy background variations and maintain sensitivity over
dense vegetation conditions [23]. The blue band is used to remove residual atmosphere contamination
caused by smoke and sub-pixel thin clouds. These products are computed from atmospherically
corrected bi-directional surface reflectance that has been masked for water, clouds, heavy aerosols, and
cloud shadows [24]. Many studies have been conducted which compare the relationship of MODIS
EVI to biophysical conditions and Gross Primary Productivity of an ecosystem (e.g., [25-27]) making it
a suitable remote sensing product for monitoring biophysical variables.

Table 1. MODIS products used to calculate the biophysical health of an area.

Product Time Series Temporal Spatial Sensor

MYD13A1 4 July 2002-present 16 days 500m  MODIS Aqua
MOD13A1 18 February 2000-present 16 days 500m  MODIS Terra

2.2. Vegetation Cover

To quantify changes in vegetation we adopted a climatological change approach. A user-defined
baseline is calculated for a specified region and time period. The baseline defines the initial condition
of the selected area. The baseline is calculated for pixels on a monthly timescale using all images
in the baseline time-series. Equation (1) shows that the average monthly baseline (EVIp,) is calculated
from the monthly EVI maps (EV1, ). The user specified study period is calculated from changes from
the baseline, as shown in Equation (2), where EVIg  is the monthly averaged EVI map. Equation (3)
is applied to calculate the cumulative sum at time £ iteratively over the time-series.

1
EVIg, = E(EVIml +EVIp, + ... + EVIy,) (1)
AEVIs, = EVIs, —EVlIg, )
t
EVI; =) AEVIg, 3)
t=1

Both EVI products, namely, MYD13A1 and MOD13A1 are merged into one image collection.
A time filter is then applied to create two image collections; one for the baseline period and one for the
study period. Box 1 shows the JavaScript code to calculate the monthly EVI anomaly (Equations (1)
and (2)). The monthly means of the baseline are calculated and subtracted from the monthly mean in
the study period. The map function is used to apply the calculation to each month in the study period.
These calculations are executed in parallel on the cloud-computing platform.

The calculation of the cumulative anomaly is computationally most expensive. First, a list with
one image containing zeros is created (see box 2). Next, an image of the sorted (date) image collection
of the anomaly is added to the last image in the newly created list. The iterate function is used to apply
the function (box below) to each image in the collection. The iteration on a sorted image collection
makes the calculation computational more intensive, as the results are dependent on results of the
previous calculation.

2.3. Computational Platform

Recent technological advances have greatly enhanced computational capabilities and facilitated
increased access to the public. In this regard, Google Earth Engine (GEE) is an online service that
applies state-of-the-art cloud computing and storage frameworks to geospatial datasets. The archive
contains a large catalog of earth observation data which enables the scientific community to perform
calculations on large numbers of images in parallel. The capabilities of GEE as a platform which can
deliver at a planetary scale are detailed in Gorelick, et al [28]. Various studies have been carried out
using the GEE at a variety of scales for different purposes (see e.g., [29-31]).
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Box 1. JavaScript code to calculate the monthly EVI anomaly.

// calculate the anomaly
var anomaly = study.map(img){

// get the month of the map
month = ee.Number.parse(ee.Date(img.get("system:time_start")).format("M"))

// get the day in month
day = ee.Number.parse(ee.Date(img.get("system:time_start")).format("d"))

// select image in reference period
referenceMaps = reference.filter(ee.Filter.calendarRange (month,month,"Month"))
referenceMaps = referenceMaps.filter(ee.Filter.calendarRange(day,day,"day_of_month"))

// get the mean of the reference and multiply with scaling factor
referenceMean = ee.Image(referenceMaps.mean()).multiply(0.0001)

// get date
time = img.get('system:time_start')

// multiply image by scaling factor

study = img.multiply(0.0001)

// subtract reference from image
result = ee.Image(study.subtract(referenceMean).set('system:time_start',time))

}
Box 2. JavaScript code to calculate the cumulative anomaly.

// Get the timestamp from the most recent image in the reference collection.
var time0 = monthlyMean.first().get('system:time_start');

// The first anomaly image in the list is just 0
var first = ee.List([ee.Image(0).set('system:time_start', timeO)
.select ([0], ['EVI']1)]);

// This is a function to pass to Iterate().
// As anomaly images are computed and added to the list.
var accumulate = function(image, list) {

// get(-1) the last image in the image collection
var previous = ee.Image(ee.List(list).get(-1));

// Add the current anomaly to make a new cumulative anomaly image.
var added = image.add(previous)
.set('system:time_start', image.get('system:time_start'));

// Return the list with the cumulative anomaly inserted.
return ee.List(list).add(added);
}

// Create an ImageCollection of cumulative anmomaly images by iterating.
var cumulative = ee.List(monthlyMean.iterate(accumulate, first));

The framework to request data, perform spatial calculations, and serve the information in a
browser is shown in Figure 2. The front-end relies on Google App engine technology. Code developed
from either the JavaScript or Python APIs are interpreted by the relevant client library (JavaScript or
Python, respectively) and sent to Google as JSON request objects. Results are sent to either the Python
command line or the web browser for display and/or further analysis. Spatial information is displayed
with the Google Maps API and other information is sent to a console or the Google Visualization API.
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Figure 2. The infrastructure for spatial application development provided by Google. The Google Earth
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Engine consists of a cloud-based data catalogue and computing platform. The App Engine framework
is used to host the Earth Engine application.

3. Results

To demonstrate the computational power of cloud-based geo-computational systems, we applied
an algorithm on a planetary scale using countries as administrative boundaries. Our algorithm was
applied to each country to investigate vegetation from 2015 onwards, using 2002-2015 as a baseline.
We defined areas with a negative cumulative EVI anomaly as locations with vegetation loss, whereas
positive numbers were associated with increased vegetation. The total area under stress can be seen
in Figure 3a. It was found that countries in Africa, South America and South-East Asia have large
areas with negative trends. Countries in Europe only have small areas with a negative trend, with an
exception of Belarus and Ukraine. Similarly, we calculated areas which show a positive trend from the
baseline on a country scale. It can be seen in Figure 3b that East Asia, Central Asia, Europe and North
America have relatively large areas which show increased vegetation or greening. Also, countries such
as Argentina, Paraguay, Uruguay and Australia show notable positive increase in vegetation. On the
other hand, Russia, South East Asia and Africa show a low percentage of areas with positive trends.

Vegetation growth is a highly dynamic process in space and time. to estimate the net changes
resulting in either growth or decline of each country, we used results of Figure 3a,b. The final result
was obtained by calculating the difference between vegetation growth (positive trend) and vegetation
decline (negative trend) over any given area. Negative numbers indicate a net negative trend whereas
positive numbers indicates net greening. These results are shown in Figure 3c. It can be seen that
tropical and sub-tropical regions show mostly negative trends. Also, most countries in Africa show
negative numbers. Countries in Europe, Central and East Asia mostly have positive trends, which
indicates an overall greening of their local environment. Whereas we have a baseline (before) and
study period (after) defined no impact and control were defined.

The results in the previous figures are based on administrative country boundaries for the sake
of simplicity. However, with the sort of geospatial technology we have used for this study, one can
also draw or select custom geographies to investigate trends in cumulative EVI in relation to other
geographies. As noted previously, the ultimate goal of this study was to create a user-friendly interface
that would enable policy-makers, land use managers and other non-technical practitioners to use
advanced monitoring and imaging techniques. Therefore, we developed an Ecological Monitoring
Dashboard (global EcoDash; http:/ /globalecodash.sig-gis.com/; the link and github repository are
in Supplementary Materials), built on the Google App Engine framework, that communicates with
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Google Earth Engine. Figure 4 shows the user interface of the EcoDash tool. Users can here define
the baseline and analysis time periods, as well as define the geographies they wish to compare or
investigate. Users then receive output that includes time series graphs and statistics on the change in
bio-physical health for user-defined regions.
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Figure 3. Cumulative EVI anomaly on a country level.
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Figure 4. A screenshot of the Ecological Monitoring Dashboard (EcoDash) tool developed at
SERVIR-Mekong.

For the final step of this study, EcoDash was applied to demonstrate its usability in a developing
country for land monitoring, with the USAID-funded Vietnam Forests and Deltas (VFD) program.
Vietnam's forests remain under development pressure and their deforestation and degradation are
a source of emissions, while improved management and restoration programs offers opportunities
to sequester carbon and leverage funding to further support management and livelihoods development.
The VFD development program is focused on promoting practices which restore degraded landscapes
and promote green growth in the forestry and agricultural sectors. The component to support adoption
of land use practices and improved and sustainable forest management that slow, stop and reverse
emissions from deforestation and degradation of forests and other landscapes, and can leverage
mitigation finance opportunities which was started in October 2012 in the Nghe An and Thanh
Hoa provinces (Figure 5). Project impacts should include improved biophysical conditions for the
intervention areas, however, no baseline data were available. Then, we used EcoDash to measure and
compare EVI indices in order to estimate the impact of the VFD program. We used the period before
2012 as the baseline, and we used the Nghe An and Thanh Hoa provinces as impact areas, and the
remainder of Vietnam as control areas.

Figure 6 shows the cumulative EVI anomaly for the period 2011-2017 using the previous period
as baseline. The green line shows the net change for the whole country (control-after) and the red line
for the intervention area (impact -after). The blue line shows the difference between the control and
impact topographies/areas. A rapid improvement in vegetation growth can be seen at the onset of
the project in the impact areas, whereas negative vegetation growth was found for the control sites.
Figure 6 clearly shows that the impact area under the VFD program experienced increased vegetation
growth over the course of the project, as compared to the rest of the provinces in Vietnam, which were
under similar environmental conditions such as soil and climate. As of March 2017, 86% of the net
area in the intervention zones show increased vegetation cover while the overall increase in vegetation
for the rest of Vietnam was only 24%. The 2015 drought event can also be seen in Figure 6.
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Figure 5. Location of the intervention area in Nghe An and Thanh Hoa, Vietnam.
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Figure 6. Cumulative EVI anomaly for the VFD intervention areas and Vietnam.

4. Discussion

The EcoDash platform for vegetation monitoring at planetary scale enables users to measure the
relative change of vegetation in an impact area and compare it with a control area over a period of
time. This allows end users to quickly and easily assess impacts of land management projects and
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enables better future planning based on the effectiveness of the various interventions. EcoDash has
limitations that it does not link vegetation dynamics to the biological, climatological, or anthropological
drivers behind vegetation change. Ultimately, land use managers and practitioners need data about
drivers in order to appropriately plan for remediation, however, that is beyond the scope of this study.
Additionally, natural systems are interconnected by feedback between systems [32] and mapping or
measuring such feedback was also beyond the scope of the current study. However, in this study we
did attempt to distinguish natural environmental drivers of vegetative change from anthropogenic
drivers, by including a user-defined baseline for vegetation cover in a similar climatological and
geographical region. The relationship between vegetation growth and ecological feedback loops can
be inferred by the users on a case-by-case basis as each ecosystem/region will have varying drivers
and feedbacks.

EcoDash and its underlying platform are also limited by the relatively coarse spatial resolution
of the products. The spatial resolution for this study was 500 m square image segments. This sort of
resolution is cheaper and easier to produce than finer resolution images/senses, and is adequate for end
users who want to measure large scale temporal change quickly and cost-effectively. However, it must
be noted that many projects related to landscape protection or payment for ecosystem services may
require a higher spatial resolution. The Landsat satellite can provide higher spatial resolution products,
but at the cost of offering a lower temporal resolution. Users could misinterpret the significance of
vegetation change by blindly comparing control and impact areas that are not biophysically similar.
Others have begun to addressed such misinterpretations from econometric and geospatial perspectives,
but further investment is required to globally scale their methods and to transition data processing
to the cloud for global access [33]. The new Sentinel-2 satellite also offers higher spatial resolution data.
However, Sentinel also tends to provide lower temporal resolution data; therefore, even using data
from both of these systems together means that there may be data scarcity in regions with high cloud
cover, as clouds impede a clear view on the vegetation.

All results in this study were computed from satellite data. Therefore, these methods are highly
suitable for areas where on-the-ground data is scarce due to financial limitations and/or inaccessible
terrains. The method described here is also transparent, repeatable and suitable for near real-time
monitoring. Practitioners using such methods need to be aware that satellite measurements can be
affected by atmospheric conditions, errors related to the angle of the sun or sensor characteristics.
Therefore, field validation of results will should always be implemented, where possible, in order
to corroborate and refine results, allowing practitioners to present a more comprehensive picture
of ecological change in their study areas. Finally, it should be noted that the current computational
framework is highly effective for pixel-to-pixel calculations, but less suitable in situations where pixels
in a single map have dependencies.

5. Conclusions

Forest ecosystems are vital for the overall well-being of our planet, as they provide habitat that
maintains biodiversity, they sequester carbon, and they contribute to clean air and water in local
communities, and worldwide. Monitoring changes in vegetation and forest cover is a necessary task for
conscientious land managers in the wake of extensive deforestation, urban growth and other land use
change. Monitoring changes in vegetative cover is also important in the context of various international
initiatives, such as REDD+, which allow developing countries to finance other areas of economic growth
in exchange for land preservation and the concomitant carbon sequestration and reduction in GHG
emissions. Using an interface like EcoDash, previously difficult-to-access earth observations can now
be leveraged by non-technical end users using cloud-based computing platforms such as the Google
Earth Engine, which provides free access and ease-of-use across a vast diversity of users.

In this study, we demonstrated the practical application of this BACI technical framework and
EcoDash user interface both across the globe, and more specifically for the case of the VFD program
for the Nghe An and Thanh Hoa provinces in Vietnam.
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This framework is therefore usable across a planetary scale, and with EcoDash applied on top of
this framework, it is cost-effective and simple to use. This makes it an ideal tool for land use managers,
conservationists, and development organizations worldwide who need inexpensive and quick methods
to assess progress and results of environmental interventions. Ideally, future technologies will be able
to provide higher resolution imagery and sensing so that this framework can be used in applications
that require more fine scale data. Additionally, future sensing and computing technologies will also be
able to help practitioners determine drivers of change, as well as feedback loops between ecosystems.
However, this is an extremely complex topic that will not be easy to solve in the near term. Regardless,
the availability of earth observations and cloud computing platforms are ushering in a new era of
ways in which environmental impacts and interventions can be cheaply and quickly monitored across
vast areas, which should be a boon to development professionals, land managers, urban planners, and
other similar practitioners worldwide.

Supplementary Materials: The online global EcoDash tool is available at: http://globalecodash.sig-gis.com/;
source code for the online global EcoDash application is available at: https://github.com/servir-mekong/
ecodash/tree/global_ecodash/.
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