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Abstract: Image registration is a common operation in any type of image processing, specially in
remote sensing images. Since the publication of the scale–invariant feature transform (SIFT) method,
several algorithms based on feature detection have been proposed. In particular, KAZE builds
the scale space using a nonlinear diffusion filter instead of Gaussian filters. Nonlinear diffusion
filtering allows applying a controlled blur while the important structures of the image are preserved.
Hyperspectral images contain a large amount of spatial and spectral information that can be used
to perform a more accurate registration. This article presents HSI–KAZE, a method to register
hyperspectral remote sensing images based on KAZE but considering the spectral information.
The proposed method combines the information of a set of preselected bands, and it adapts the
keypoint descriptor and the matching stage to take into account the spectral information. The method
is adequate to register images in extreme situations in which the scale between them is very different.
The effectiveness of the proposed algorithm has been tested on real images taken on different dates,
and presenting different types of changes. The experimental results show that the method is robust
achieving image registrations with scales of up to 24.0×.

Keywords: hyperspectral data; image registration; KAZE features; remote sensing

1. Introduction

The advances in sensor development in the last decades allow us to obtain hyperspectral images
(HSI) at a lower cost than before. Each pixel of these images contains a continuous spectrum that is
formed by hundreds of narrow bands. As a result of this high spectral resolution, objects, plant species,
and land–cover classes among others, can be distinguished with higher accuracy. Thanks to this large
amount of available information, the use of hyperspectral remote sensing images has been extended
to a multitude of applications such as vegetation science [1], land use classification [2], geology [3],
quality control [4], and change detection [5] among others.

A previous fundamental task in many of these applications is the registration of images of the
same scene which have been taken at different times from different viewpoints and which, furthermore,
present changes in objects, in illumination, etc. The goal of the registration is to determine the geometric
transformation that aligns the images. There are different types of registration algorithms due to
the variety of images and the conditions that the method has to handle. They can be classified
into two categories according to their nature [6]: area–based and feature–based methods. In the
first group, the methods based on correlation between images [7], mutual information (MI) [8],
and Fourier transform [9] stand out. These methods work directly with image intensity unlike
feature–based methods which seek to detect distinctive features in objects or interest points at a

Remote Sens. 2018, 10, 756; doi:10.3390/rs10050756 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2753-5390
https://orcid.org/0000-0001-9279-5426
https://orcid.org/0000-0002-5304-1426
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/10/5/756?type=check_update&version=2
http://dx.doi.org/10.3390/rs10050756


Remote Sens. 2018, 10, 756 2 of 26

higher level. Feature–based methods extract significant regions, lines or points that must have certain
characteristics: invariant to geometric transformations, good localization accuracy, and be insensitive to
image degradation effects. This high level representation makes feature–based methods more resilient
to illumination changes, intensity changes introduced by noise, and changes introduced by the use
of different sensors. On the other hand, area–based methods are computationally more efficient and
work better on images that are not so rich in details, e.g., medical images.

Due to the fact that remote sensing images are rich in details such as lines, edges, corners,
regions, etc., and they normally present illumination changes, feature–based methods are the preferred
approach when dealing with this type of images. The scale–invariant feature transform (SIFT) [10] is
the most popular feature–based algorithm. It consists of four stages: scale–space extrema detection,
keypoint localization, orientation assignment, and keypoint description. In the first step, a Gaussian
scale space is created performing Gaussian convolutions and interpolations. The original images
are smoothed at different levels using Gaussian filters and at different scales. The result is a
multi–resolution pyramid of the images. This way, the characteristic of invariance to image scaling
is achieved. Afterwards, a difference of Gaussian (DoG) is obtained to detect the keypoints. A point
is considered keypoint if it is the local minimum or maximum compared to its 26 neighbours
(8 neighbours at the same scale and 9 at the adjacent scales) of the DoG scale space. Once candidate
keypoints are obtained, the second step carries out a selection to discard low–contrast keypoints,
and their location and scale are accurately determined. In the third step, one or more consistent
orientations are assigned to each keypoint to achieve the rotation invariance. It is calculated from the
orientation histogram formed from the gradient orientations of points within the region of the keypoint.
The size of this region depends on the scale and the gradient magnitude. Finally, in the last step,
a 128 value descriptor for each keypoint is generated from a set of weighted histograms of the gradient
orientation computed on different regions of the normalized neighbourhood. Then, the keypoints
of each image are matched according to a ratio of the Euclidean distance between descriptors.
The matched keypoints are used as control points to recover the image transformation in order
to align the images.

Some approaches were proposed following the SIFT scheme. The Speeded Up Robust Features
(SURF) [11] was proposed to be computed much faster than SIFT. This method exploits integral
images to build the scale space. This is an approximation of the Gaussian scale space that reduces the
computation time. Regarding the descriptor, it is formed only by 64 dimensions and the orientation
is estimated using the Haar wavelet. The problem of the techniques to build the scale space in SIFT
and SURF is that they do not respect the edges of the images, degrading important details at the same
level as noise. Therefore, we are losing precision to detect keypoints and distinctiveness. KAZE [12]
proposes the use of a nonlinear diffusion filter to build the scale space applying a selective blurring.
This way, the noise is blurred but the details and edges are preserved. Moreover, it uses the M–SURF
descriptor [13] which is faster and handles the boundaries better than the original SURF descriptor.

These feature–based methods are commonly well–known due to their effectiveness but they
are not suitable for some applications. The binary descriptors are an alternative to the SIFT and
SURF descriptors in cases where the speed–up is more important than the effectiveness. This type of
descriptors provide a more efficient matching and are more compact to store thanks to their binary
descriptor. The computation of the Hamming distance is used to match the keypoints. It can be done
in a single instruction, i.e., its computation is cheaper than the Euclidean distance saving computation
time in large sets of features. In the last decade, many feature–based methods including a binary
descriptor have been proposed in the literature: BRIEF [14], ORB [15], LATCH [16], and A–KAZE [17],
among others. Many of these also accelerate the scale space building process, e.g., A–KAZE uses a
pyramidal Fast Explicit Diffusion (FED) scheme for building it much faster.

However, all these algorithms were developed to work with greyscale or RGB images, and not
to deal with the spectral information available in multi and hyperspectral images. In order to
register multispectral images, some authors proposed modifications to SIFT. In this line, Ref. [18]
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suggested adding a scale restriction criteria to remove incorrect matching points in multispectral remote
image registration. In addition, Ref. [19] also proposed applying an orientation restriction. A similar
approach was followed by [20], who proposed a descriptor vector with 4 orientation bins instead of
8. These restrictions were also adapted to SURF in [21]. Moreover, Ref. [22] presented an approach
that uses the spectral information of neighbouring keypoints in addition to the descriptor to discard
false matches. However, these methods only use one band of each image to perform the registration,
i.e., they do not use all the available spectral information. Ref. [23] introduced an interest point
detector for hyperspectral images that uses principal component analysis (PCA) in order to reduce
the dimensionality. For each PCA component, a scale space is built. Ref. [24] presented a method
where the scale space is created using a nonlinear diffusion equation taking into account the spectral
information. The keypoint localization consists in comparing each pixel vector to its neighbourhood
according to their spectral signature. None of these methods is based on KAZE.

In this article, we present an automatic algorithm, called HSI–KAZE, to register hyperspectral
remote sensing images taking into account the spectral information. It consists of a trade–off solution
between KAZE and A–KAZE for hyperspectral images (HSI), and it is based on a pyramidal nonlinear
scale space and on M–SURF descriptors. The algorithm is oriented towards extreme situations in
which the images are very different in terms of scale, rotation, and other variations. An example of the
registration problem considered in this work can be seen in Figure 1. Section 2 presents a review on
the original KAZE. The proposed algorithm is described in Section 3. In Section 4, the results obtained
under different images and under different conditions are discussed. Finally, some conclusions are
given in Section 5.

(a) (b) (c)

Figure 1. Example of registration considered in this work: (a) Reference image (size 1096× 715),
(b) Target image, and (c) Result of the registration process showing the correctly registered
superposition of the reference and target registered image (scale 23.0× and rotation angle 60◦).

2. Description of the KAZE Algorithm

The KAZE algorithm was presented by [12]. It is characterized by building the scale space using a
nonlinear diffusion filter, along with the utilization of the M–SURF descriptors.

The method follows a similar approach to that of SIFT, building a scale space organized into
octaves and, in turn, into scales. The difference lies in the approach to build this scale space.
KAZE replaces the Gaussian approach proposed by Lowe [10] with a nonlinear diffusion filtering
operation. The Gaussian approach blurs both noise and details, losing the natural boundaries of
objects, buildings, etc. The nonlinear diffusion filtering method allows us to realize an adaptive blur
keeping the details unaltered, as shown in Figure 2a. Specifically, KAZE builds the scale space using a
semi–implicit scheme, one of the possible discretizations of the diffusion equations. This scheme is
based on an Additive Operator Splitting (AOS) and is totally stable for any step size.
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(a)

.

(b)

Figure 2. (a) Scale space used by KAZE (b) Pyramidal scale space used by A–KAZE. Each image
represents the first sublevel of the next octave.

The classical nonlinear diffusion for an image X with spatial coordinates (x, y) and time t is
expressed as

∂X
∂t

= div(c(x, y, t) · ∇X), (1)

where div and ∇ are the divergence and gradient operators, respectively, and c is the conductivity
function that allows applying the diffusion to the image structure. Ref. [25] proposes that this function
be dependent on the gradient in order to blur the inside of regions while preserving sharp edges, i.e.,

c(x, y, t) = g(|∇Xσ(x, y, t)|), (2)

where function ∇Xσ is the gradient of a Gaussian smoothed version of the original image X with a
standard deviation σ. The conductivity function g is chosen to promote wide regions,

g =
1

1 + |∇Xσ |2
k2

, (3)

where constant k is the contrast factor that controls the level of diffusion. Following [12,26],
the discretized version of Equation (1) can be expressed in matrix–vector notation as

Xi+1 − Xi

τ
=

m

∑
l=1

Al(Xi)Xi+1, (4)

where Xi and Xi+1 are the smoothed images at the current and next level, respectively, m is the number
of dimensions of image X (two in our case), τ is the time step size, and Al is the matrix that encodes the
diffusivities for each image dimension (derivatives along the l-th coordinate axis). This way, NL levels
of filtered images are computed, i = 0, . . . , NL − 1.

As we mentioned and following the SIFT approach, this set of levels is mapped over octaves and
sublevels (scales in the SIFT notation) using the octave index o and the sublevel index s. Therefore,
in a scale space of NL = Noct · Nsub filtered images the octaves and sublevels are mapped to their
corresponding scales σi, as follows

σi(o, s) = σ02
o+s

S , i ∈ [0, . . . , NL − 1], o ∈ [0, . . . , Noct − 1], s ∈ [0, . . . , Nsub − 1], (5)
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where σ0 is the base scale level. It is necessary to note that KAZE does not perform a subsampling in
each octave as SIFT does. Nonlinear diffusion filtering is defined in terms of time, so the scale units σi
are mapped to time units ti,

ti =
1
2

σ2
i , i ∈ [0, . . . , NL − 1]. (6)

Summarizing, to build the scale space, KAZE smooths the original image using a Gaussian kernel
of a standard deviation σ0 to reduce noise. Next, the k parameter is obtained as the 70th percentile
of the gradient histogram of this smoothed version of the image. In order to compute Xi+1 from
Xi in Equation (4) a tridiagonal linear system must be solved which can be efficiently done using
Thomas algorithm.

Once the scale space has been built, it is necessary to detect the keypoints, which are points with
certain characteristics (independence of position, robustness against image transformations, and scale
independence). A pixel will be considered as keypoint if it is the maximum of its neighbourhood when
the Hessian matrix is calculated. The determinant of the Hessian matrix at the different σi scale levels
is computed as follows

Xi
Hessian = σ2(XxxXyy − X2

xy), (7)

where Xxx and Xyy are the second order horizontal and vertical derivatives, respectively, and Xxy is the
second order cross derivative. This set of first and second order derivatives are approximated by 3× 3
Scharr filters which provide better rotation invariance than other popular filters [27]. The maximum
is computed at all the scale levels excluding the first and the last scales as well as the image borders.
The neighbourhood is considered in a 3D space considering the 8 neighbours on the same scale and
the 9 neighbours on the upper and lower scales. Therefore, we have 26 neighbours per pixel. To end
with the feature detection step, the location of the extremas, keypoints from now on, is refined in
position and scale using the local interpolation model proposed for SIFT in [10].

The next step of the KAZE algorithm is the orientation assignment for each keypoint. KAZE calculates
the possible orientation through the derivatives around each point within a radius of 6σi, being σi the
scale of the keypoint. Similar to SURF, each derivative in the circular area is weighted with a Gaussian
centred at the keypoint. For each point, the dominant orientation is calculated by summing the
derivatives within a sliding circle window covering an angle of π/3. The sums are represented as
vectors. The dominant orientation is selected from the longest vector. To save computation time,
these derivatives are reused from the location refinement in the previous step.

With the main orientation estimated, the next step is the descriptor construction. KAZE uses
the M–SURF descriptor [13] adapted to its nonlinear scale space. Firstly, for each keypoint, the first
derivatives, Xx and Xy, are computed over a region of size 24σi × 24σi. This region is split into 4× 4
subregions of size 9σi × 9σi with an overlap of 2σi among them in order to avoid the boundary effects.
Each subregion is weighted using a Gaussian (σ = 2.5σi) centred in the subregion centre and the
derivative responses are summed up into a descriptor vector. Next, each subregion vector is weighted
using another Gaussian (σ = 1.5σi) defined over a mask of size 4× 4 and centred on the keypoint.
Both, the samples of the 24σi× 24σi region and the computation of derivatives, are taken into account to
determine the main orientation of the keypoint. Finally, to achieve invariance to contrast, the descriptor
vector is converted into an unit vector.

An accelerated method called Accelerated–KAZE (A–KAZE) was presented in [17]. A–KAZE
is based on a pyramidal nonlinear scale space and on binary descriptors that makes it more efficient
in terms of computation at the cost of accuracy loss. Figure 2b illustrates this scale space. Moreover,
the scale space is built using a Fast Explicit Diffusion (FED) embedded in the pyramidal approach
which is faster than any other discretization scheme [28], e.g., the AOS scheme. A–KAZE proposes an
improvement of the Local Difference Binary (LDB) [29] called the Modified–LDB (M–LDB) that uses
binary tests between the average of areas instead of single pixels, and adds the mean of the derivatives
to the bits for the comparison.
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3. HSI–KAZE: KAZE for Hyperspectral Remote Sensing Images

Hyperspectral remote sensing images are usually rich in edges, corners, boundaries, i.e., a large
set of keypoints is obtained. In addition, they normally have a lot of repeated structures e.g., buildings,
roads, fields, etc. These two conditions make harder registration, as it will need more computation
time for the keypoint matching process, and several keypoints will probably be very similar, making it
difficult to obtain correct matches. In this section, we present an automatic method to register two
hyperspectral remote sensing images called HSI–KAZE that overcomes these limitations. It is based on
KAZE and efficiently uses the spectral information available in the hyperspectral images. The spectral
information is considered by searching for features in pairs of selected bands and by adding a spectral
part to the descriptor. The main contributions of the method are the following:

• Band selection. A feature extraction method is proposed to select a set of most representative
bands according to their entropy and their spectral distance.

• Keypoint detection. An interpolation is applied to the original images in order to highlight details
and extract a large number of keypoints. The scale space is built using a nonlinear diffusion filter
to blur noise and preserve details such as edges. In addition, it follows a pyramid scheme that
improves the robustness to scale invariance. The discretization is carried out using a FED scheme.

• Keypoint description. HSI–KAZE uses a descriptor formed by a spatial and a spectral part:
the M–SURF descriptor and the spectral signature.

• Keypoint matching using spectral information. The matching is based on the distance between
the M–SURF descriptors and the cosine similarity between the spectral signatures. The spectral
information allows refining the matching process discarding outliers.

• Band combination. Each selected band has unique characteristics that are not present in the other
bands. The matched keypoints for the different bands are considered together in order to achieve
a more accurate registration and use all the image information.

• Exhaustive search for registration. All the possible pairs of matched keypoints are considered and
the outliers are discarded using a histogram–based approach.

Figures 3 and 4 show the outline of the proposed algorithm. The first stage performs a band
selection in order to keep only the relevant spectral information and reduce the dimensionality
of the hyperspectral images. In the second and third stages, keypoint detection and keypoint
description, the features of each band are extracted and described. The fourth stage, keypoint matching,
performs the matching of the extracted keypoints of both hyperspectral images. Then, in the fifth
stage, band combination, all the matched keypoints are joined. Finally, in the last stage, registration,
an exhaustive search based on histograms is performed to register the images. The pseudocode of the
algorithm is presented in Figure 5. The main stages of the method are explained in the next subsections.

Reference image

Target image

Band selection
Stage I

Keypoint detection
Stage II

Keypoint description
Stage III

Band
combination

Stage V

Registration
Stage VI

Spatial Spectral

Spatial Spectral

Keypoint
matching

Stage IV

Figure 3. HSI–KAZE algorithm to register two hyperspectral images.
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Figure 4. Flow chart of the proposed HSI–KAZE algorithm to register two hyperspectral images.

HSI–KAZE

Input: Hyperspectral reference image I1 and hyperspectral target image I2 with NT bands.
Output: Scale factor ρ, rotation angle θ, and translation (x, y).

1: Perform feature selection over both images→ B1 and B2 . Band selection

2: for each band b in images B1 and B2 do
3: Extract keypoints of Bb

1 → Pb
1 . Keypoint detection

4: Extract keypoints of Bb
2 → Pb

2 . Keypoint detection
5: Calculate the M–SURF descriptor of each keypoint in Pb

1 . Keypoint description
and append the spectral signature→ Kb

1
6: Calculate the M–SURF descriptor of each keypoint in Pb

2 . Keypoint description
and append the spectral signature→ Kb

2
7: Match keypoints in Kb

1 and Kb
2 → Mb . Keypoint matching

8: end for

9: Combine all the matched keypoints Mb → M . Band combination
10: Perform an exhaustive search to recover the registration . Registration

parameters→ ρ, θ, (x, y)

Figure 5. HSI–KAZE pseudocode.
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3.1. Band Selection

The redundancy of information among bands in hyperspectral images is a well known problem.
The different methods proposed in the literature can be classified into two groups: feature extraction
and feature selection [30].

The first group, feature extraction methods, consists in combining the different bands of the
image into a small set of new features. Some examples are Principal Component Analysis (PCA),
Independent Component Analysis (ICA), or wavelet transforms, among others. These methods
present the drawbacks of performing different transformations for each image and not preserving the
original spectral information, making the feature–based registration methods are unable to identify the
same spatial structures present in both images. This effect has a higher influence when both images
present a large difference in scale, small overlapping areas, or changes in spatial structures due to the
time difference.

On the other hand, the second group, feature selection methods, does not modify the original
data and are essentially limited to choosing a band or a set of distinctive bands. Therefore, it is better
to perform feature selection instead of feature extraction. Many methods choose the bands following a
band selection criterion such as entropy, mutual information and the spectral angle mapper (SAM)
among others. Some others apply a clustering method to group similar bands according different
correlation measures.

In this work, we propose a feature selection method based on entropy and inter–band distance
which is called Entropy–based Band Selection (EBS). A study of different feature reduction methods
according to their effectiveness in order to produce a successfully registration was carried out.
In the feature extraction category, PCA [31] and BandClust [32] are evaluated, and in the feature
selection one, Ward’s Linkage strategy using Mutual Information (WaluMI) [33] and our proposal
(EBS) are considered.

PCA is a well known statistical method to reduce the dimensionality in different types of problems.
The main idea is to eliminate data redundancy present in the bands by means of a high correlation
analysis. PCA generates a new set of linearly uncorrelated variables where the first few retain most of
the variation present in all original variables.

BandClust follows a different approach since it is based on unsupervised clustering. It consists
in splitting the initial set of bands into disjoint clusters according to a mutual information criterion.
Each iteration splits the original set of bands into two clusters. The method stops when the minimum
for the criterion is found. At the end, the average of each cluster is computed to obtain the final
reduced image.

On the other hand, WaluMI performs an agglomerative clustering strategy based on Ward’s
linkage method [34]. At the beginning, each band forms a single cluster. Next, the algorithm searches
for the two clusters with the minimum dissimilarity difference. In order to do that, the dissimilarity
matrix is built based on the mutual information between each pair of bands. In the next steps,
this matrix is updated using Ward’s linkage strategy. Moreover, being feature selection method,
WaluMI chooses the most representative band of each cluster at the end. These representative bands
define the final compressed representation of the image.

The proposed method in this paper, EBS, performs a band selection based on entropy and
inter–band distance. In contrast to the other methods, EBS uses both hyperspectral images. The method
is detailed in the pseudocode shown in Figure 6. First, the entropy of each band of each image is
computed (Figure 6, lines 2–3). Next, the minimum entropy of each band between the two images is
selected (Figure 6, line 4). Finally, the Nb bands of highest entropy with an inter–band distance greater
or equal than DB between consecutive pairs are selected (Figure 6, lines 6–19). Specifically, this check
is performed in line 11, where the candidate to be the next selected band (with index indexE[i]) must
have, at least, an inter–band distance of DB with respect to the previous selected band (with index
indexB[b′]). If it is not possible to select a set of bands with an inter–band distance DB, D is decreased



Remote Sens. 2018, 10, 756 9 of 26

until it becomes possible (Figure 6, line 17). Nb is fixed to 8 and the band separation DB to 20 after
experimental analysis.

Entropy–based Band Selection

Input: Hyperspectral reference image I1 and hyperspectral target image I2 with NT bands.
Output: Set of selected bands B1 and B2
Parameters: Number of selected bands NB, minimum inter–band distance DB.

1: for each band b in images I1 and I2 do
2: e1 ← Entropy of band b of I1
3: e2 ← Entropy of band b of I2
4: E[b]←min(e1, e2)
5: end for
6: Sort the elements of E in descending order, let indexE[i] be the original position of the band before

the sort and indexB[b′] the position of the final selected bands in the hyperspectral image.

7: b′ ← 0, D ← DB
8: while b′ < NB do
9: indexB[0]← indexE[0]

10: for i← 1, NT − 1 do
11: if abs(indexE[i]− indexB[b′]) ≥ D then
12: b′ ← b′ + 1
13: indexB[b′]← indexE[i]
14: end if
15: if b′ = NB − 1 then break
16: end for
17: D ← D− 1, b′ ← 0
18: end while

19: Extract the selected bands of I1 and I2 from the indexes indexB[b′]→ B1 and B2

Figure 6. Pseudocode for the band selection stage of the HSI–KAZE.

3.2. Keypoint Detection and Description

In order to detect a higher number of features and use the spectral information, the proposed
HSI–KAZE presents some modifications in the feature extractor and in the descriptor as compared
with the original KAZE.

The pseudocode of these two stages is shown in Figure 7. The parameter Nsub is fixed to 4 as in
the original KAZE [12]. The optimal number of octaves Noct is calculated as follows [35]

Noct = min

(
8,

⌊
log2

(
min(w, h)

Dsub

)
+ 1

⌋)
+ 1, (8)

where Dsub is the distance of initial upsampling applied to the image, in our case 2 which corresponds
to a 2× interpolation, and w and h are the width and height of the interpolated image, respectively.
First, the upsampling of the original image (Figure 7, line 4) is carried out using bilinear interpolation.
It minimizes aliasing artefacts and allows extracting a higher number of keypoints. Second, the image
data is used without normalization to avoid loss of precision. Third, regarding the scale space, it is
built following a pyramidal scheme as in SIFT (Figure 7, lines 5–18), i.e., the image is subsampled for
each octave using a bilinear interpolation. Moreover, HSI–KAZE uses FED for the discretization of the
diffusion equations such as in A–KAZE (Figure 7, lines 8–17). FED schemes are characterized by their
faster computation, ease of implementation, and higher accuracy than AOS approaches.

Finally, HSI–KAZE uses a descriptor consisting in two parts: the M–SURF descriptor as in the
original KAZE and the spectral signature of the keypoint (Figure 7, lines 24–29). Thus, thanks to the use
of spectral information, a more robust matching is performed. This spectral information corresponds
to the components of the selected bands which provide enough information to discard false matches.



Remote Sens. 2018, 10, 756 10 of 26

This strategy allows saving computation time in comparison with the use of all the bands of the image.
At the end of this stage, a set of keypoints is obtained for each selected band of both images.

Keypoint detection and description

Input: Set of selected bands B1 and B2.
Output: A set of keypoints K for each selected band of both images.
Parameters: Number of sublevels Nsub.

Keypoint detection
1: Calculate the optimal number of octaves Noct according to the spatial size of the images
2: Upsample the images to obtain images whose size is divisible by the number of octaves Noct
3: for each band b in images B1 and B2 do
4: Upsample the band by a factor of 2 using bilinear interpolation
5: stage Build the pyramidal scale space
6: Smooth the upsampled band using a Gaussian filter
7: Compute the contrast factor k from the gradient histogram of the smoothed band
8: sub-stage Build the pyramid using FED scheme
9: for o ← 1, Noct do

10: Subsample the last sublevel image by a factor of 2
11: for s← 1, Nsub do
12: Smooth using a Gaussian filter
13: Compute the conductivity g (Equation 3)
14: Discretized the nonlinear diffusion equation using the FED scheme
15: end for
16: end for
17: end sub-stage
18: end stage

19: stage Locate the keypoints in the scale space
20: Compute the determinant of the Hessian matrix
21: Detect keypoints by searching for points that are the maxima of their neighbourhood→ Kb

1, Kb
2

22: Refine the position and the scale of each keypoint
23: end stage

Keypoint description
24: for each keypoint in Kb

1 and Kb
2 do

25: Calculate the main orientation
26: Compute the M–SURF descriptor
27: Append the spectral signature
28: end for
29: end for

Figure 7. Pseudocode for the keypoint detection and description stages of the HSI–KAZE.

3.3. Keypoint Matching Using Spectral Information and Band Combination

As mentioned in the previous section, HSI–KAZE uses a descriptor is made up of a spatial part
and a spectral one. The M–SURF descriptor is used for the spatial part while the spectral signature of
the point forms the spectral one. The matching process is based on the calculation of the Euclidean
distances for the spatial part and the cosine similarity for the spectral one.

The pseudocode of these two stages can be shown in Figure 8. For each band, we have two sets of
keypoints, one for each image. In this stage, the keypoints of each band are independently matched.
As proposed in [10], a 2–nearest neighbour search using the Euclidean distance is used (Figure 8,
lines 3–10). Two conditions must be fulfilled in order to consider the matching of a pair of keypoints
(Figure 8, lines 11–14). First, the ratio of the Euclidean distances between keypoint p of the reference
image and the two nearest keypoints q and r of the target image must be smaller than a distance
ratio Dratio,

dEuclidean(p, q)
dEuclidean(p, r)

< Dratio, (9)
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where the Euclidean distance is calculated using the M–SURF descriptor of each keypoint and Dratio
was fixed to 0.6 after experimental analyses. It allows us to discard false matches. Second, the cosine
similarity between the spectral signature of keypoints p and q, fp and fq respectively, must be lower
than a value R,

dCosine( fp, fq) < R, (10)

where R is fixed to 0.9 when the images are taken by the same sensor, and to 0.8 when the sensor is
different. Both values were chosen experimentally. The use of the spectral information allows us to
refine the keypoint selection discarding false matches.

Keypoint matching and band combination

Input: A set of keypoints K for each selected band of both images.
Output: Array M of N matched pairs.
Parameters: Distance ratio Dratio, spectral similarity ratio R.

1: N ← 0
2: for each band b in images B1 and B2 do
3: for each keypoint p in Kb

1 do
4: i← 0
5: for each keypoint q in Kb

2 do
6: D[i]← dEuclidean(p, q)
7: i← i + 1
8: end for
9: Sort the array of distances D

10: Select the two nearest keypoints to the keypoint p→ q0, q1
11: if D[0]

D[1] < Dratio and dCosine( fp, fq0 ) < R then
12: Match p and q0 → M[N]
13: N ← N + 1
14: end if
15: end for
16: end for
17: Remove repeated matches in M[N]

Figure 8. Pseudocode for the keypoint matching and band combination.

Once the pairs of keypoints have been obtained for each band, all the pairs are joined at the
end of this stage and. This way, it is possible to detect features that are only present in some bands,
as illustrated in Figure 9. Finally, the repeated matches, which are the result of detecting the same
keypoints in the different scale space levels or bands, are removed.

3.4. Registration

An exhaustive search is used to recover the scale, the rotation angle, and the translation parameters
that solve the registration problem. The method is detailed in the pseudocode shown in Figure 10.
The input is the set of matched pairs of keypoints. First, for each combination of two matched pairs
(4 keypoints), a scale factor, an rotation angle, and translation parameters are calculated (Figure 10,
lines 1–7). Next, a histogram is created using the angle values with a bin size of 5◦ and 2.5◦ overlap
between bins (Figure 10, line 8). The elements of the maximum bin are sorted by their scale factor
in order to obtain the median (Figure 10, lines 9–10). The registration parameters of the median are
finally selected to register the images (Figure 10, line 11).
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Figure 9. Matched keypoints detected in two pairs of bands belonging to the Santa Barbara Front scene
(bands 26 and 93 with scale 9.5×).

Registration stage

Input: Array M of N matched pairs.
Output: Registration parameters (scale factor ρ, rotation angle θ, and translation (x, y)).

1: n← 0
2: for i← 1, N do
3: for j← i + 1, N do
4: Calculate scale factor ρn, rotation angle θn, and translation (xn, yn)

for the pairs M[i] and M[j]
5: n← n + 1
6: end for
7: end for

8: Compute the histogram of the set of n angles
9: Find the maximum bin of the histogram

10: Sort the elements of the maximum bin by their scale value
11: Recover the registration parameters from the median of the sorted elements→ ρ, θ, (x, y)

Figure 10. Pseudocode for the registration stage of the HSI–KAZE.

4. Results and Discussion

This section presents some experimental results obtained by the HSI–KAZE algorithm using
different hyperspectral remote sensing images. First, the test images and the experimental conditions
are described in Section 4.1. Then, different feature reduction methods are evaluated in Section 4.2.
In Section 4.3, HSI–KAZE is compared with the original KAZE and with other methods of the literature
in terms of number of successful registered cases. Finally, in Section 4.4, a comparison in terms of
different common measures of the literature is presented and discussed. Finally, the limitations of the
method and future work are introduced.

4.1. Test Images and Experimental Conditions

Seven hyperspectral images are used to evaluate the method proposed in this article. Table 1
provides detailed information for each image: sensor, size, number of spectral bands, spatial resolution,
and location. A false–colour composite of each image is displayed in Figures 11 and 12.
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Table 1. Sensor, size, number of spectral bands, resolution (m/pixel), and location of the test
hyperspectral images.

Image Sensor Size Bands Spatial
Resolution Location

Pavia University ROSIS–03 610× 340 103 1.3 N 45◦12′13.176′′, E 9◦8′11.108′′

Pavia Centre ROSIS–03 1096× 715 102 1.3 N 45◦11′07.4′′, E 9◦8′34.8′′

Indian Pines AVIRIS 145× 145 220 20 Refer to [36]
Salinas Valley AVIRIS 512× 217 204 3.7 Refer to [36]
Jasper Ridge 2006 AVIRIS 1286× 588 224 3.3 N 37◦24′8.5′′, W 122◦14′42.2′′

Jasper Ridge 2007 AVIRIS 1286× 588 224 3.4 N 37◦24′8.5′′, W 122◦14′42.2′′

Santa Barbara Box 2013 AVIRIS 1024× 769 224 15.2 N 35◦18′14.3′′, W 118◦50′22.6′′

Santa Barbara Box 2014 AVIRIS 1024× 769 224 15.2 N 35◦18′14.3′′, W 118◦50′22.6′′

Santa Barbara Front 2009 AVIRIS 900× 470 224 16.4 N 34◦26′24.3′′, W 119◦50′40.0′′

Santa Barbara Front 2010 AVIRIS 900× 470 224 11.3 N 34◦26′24.3′′, W 119◦50′40.0′′

0 200 m

N

(a)

0 400 m

N

(b)

0 1 km

N

(c)

0 0.5 km

N

(d)

Figure 11. Hyperspectral images commonly used for testing in remote sensing: (a) Pavia University,
(b) Pavia Centre, (c) Indian Pines, and (d) Salinas.



Remote Sens. 2018, 10, 756 14 of 26

N

0 1 km

(a)

N

0 1 km

(b)

N

0 5 km

(c)

N
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Figure 12. Second group of the test hyperspectral images: (a) Reference Jasper Ridge image taken
on 5 December 2006, (b) Target Jasper Ridge image taken on 13 August 2007, (c) Reference Santa
Barbara Box image taken on 11 April 2013, (d) Target Santa Barbara Box image taken on 16 April 2014,
(e) Reference Santa Barbara Front image taken on 30 March 2009, and (f) Target Santa Barbara Front
image taken on 30 April 2010.
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The first four images (see Figure 11) are commonly used scenes for testing in the area of
hyperspectral remote sensing [37]. The Pavia images were taken by the ROSIS–03 (Reflective Optics
System Imaging Spectrometer) sensor while Indian Pines and Salinas Valley scenes were taken by the
AVIRIS (Airbone Visible/Infrared Imaging Spectometrer) sensor. The set of target images is created by
applying different scale factors and rotation angles to the original image. This way, we can investigate
all the details in a controlled environment.

The other six images (see Figure 12) are pairs of scenes taken by the AVIRIS sensor at different
dates [38]. Each pair of images presents changes in infrastructures, in buildings, vegetation, objects,
and illumination, among others, as well as different scale factors, orientation and translation. Moreover,
in order to increase the experimental range, different scale factors and rotation angles are applied to
the target image of each pair.

The complete dataset is available in https://wiki.citius.usc.es/hiperespectral:hsi-kaze.
The experiments were carried out on a PC with a quad–core Intel Core i7–4790 CPU at 3.60 GHz

and 24 GB of RAM. The code was compiled using the gcc and the g++ 5.4.0 version under Ubuntu 16.04.
Furthermore, OpenCV 3.2.0.8 and Python were used to obtain results of registration effectiveness for
the original KAZE and A–KAZE methods.

4.2. Evaluation of Feature Reduction Methods

Initially, we have evaluated HSI–KAZE using the feature selection method proposed in this
paper, EBS, and compared with WaluMI [33], another feature selection method, and with both feature
extraction methods: PCA [31] and BandClust [32]. All these methods were described in Section 3.1.

PCA transforms a number of possible variables into a new set of uncorrelated variables where
the first few retain most of the variation of the original data. A different approach is followed by
BandClust which performs an unsupervised clustering and, at the end, the reduced image is the
combination of the bands of the same cluster. On the other hand, WaluMI carries out an agglomerative
clustering strategy based on Ward’s linkage method. The final image is obtained after choosing the
most representative band of each cluster. EBS performs a band selection according to the entropy
between the bands of both images and by complying with a minimum inter–band distance.

As explained in Section 4.1, we carry out an exhaustive set of tests by applying different scales
and rotations to the target image. These exhaustive tests allow evaluating the method in the most
unfavourable situations. The scale ranges go from 1/16× to 25.5× in increments of 0.5× (65 scale
factors). In all cases, the target images are trimmed on the central region to keep the same size as the
original images, as shown in Figure 1b. For each scale factor, 72 rotation angles are applied, from 0◦ to
360◦ in increments of 5◦. Therefore, we have carried out an exhaustive evaluation of 4680 cases for
each scene. For all the methods, 8 bands have been selected in order to make a fair comparison among
proposals, with the exception of BandClust for which the band limits of each cluster for our datasets
are shown in Table 2. In the PCA method the first 8 principal components were selected, while for
WaLuMI the agglomerative clustering is set to stop in 8 clusters.

Table 2. Band limits of each cluster produced by BandClust for all the scenes.

Scene Band Limits of Each Cluster

Pavia University 1–64, 65–103
Pavia Centre 1–23, 24–60, 61–102
Indian Pines 1–38, 39–60, 61–65, 66–79, 80–102, 103–116, 117–149, 150–160, 161–220
Salinas 1–11, 12–23, 24–33, 34–44, 45–61, 62–68, 69–78, 79–83, 84–104, 105–109, 110–121, 122–150, 151–155, 156–204
Jasper Ridge 1–14, 15–37, 38–88, 89–107, 108–111, 112–146, 147–154, 155–162, 163–175, 176–204, 205–209, 210–214, 215–224
Santa Barbara Front 1–15, 16–35, 36–63, 64–87, 88–114, 115–120, 121–174, 175–224
Santa Barbara Box 1–6, 7–36, 37–44, 45–65, 66–71, 72–85, 86–99, 100–125, 126–134, 135–138, 139–152, 153–157, 158–160, 161–165, 166–224

Table 3 summarizes the cases that were correctly registered for each scene using HSI–KAZE
considering different feature reduction methods. The best results are achieved using EBS, 30.71 cases
are correctly registered on average. WaLuMI registers 28.43 cases versus 25.71 achieved by BandClust.

https://wiki.citius.usc.es/hiperespectral:hsi-kaze
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PCA provides worse results because a different transformation is applied to the reference and the
target images, leading to a smaller number of common keypoints present in both images, or even none,
being recovered.

Table 3. Successfully registered cases for each scene using HSI–KAZE with different feature reduction
methods. The number in parentheses summarizes the number of scales that were correctly registered
for all angles. If an angle is incorrectly registered, the whole scale factor is considered incorrect,
i.e., this case is not included in the table. The percentage values are calculated over 65, the number of
scales considered.

Scene PCA BandClust WaLuMI EBS

Pavia University 1/4× to 4.5× (26) 1/9× to 12.5× (32) 1/12× to 13.0× (36) 1/11× to 13.0× (35)
Pavia Centre 1/15× to 18.5× (50) 1.0× to 22.5× (44) 1/14× to 25.5× (63) 1/16× to 24.0× (62)
Indian Pines 1.5× to 3.0× ( 4) 1/4× to 5.5× (13) 1/3× to 5.0× (11) 1/4× to 5.5× (13)
Salinas 1/4× to 4.5× (11) 1/7× to 6.5× (18) 1/7× to 6.5× (18) 1/7× to 6.0× (17)
Jasper Ridge 1/4× to 4.0× (10) 1/9× to 11.0× (29) 1/9× to 8.5× (24) 1/12× to 12.5× (35)
Santa Barbara Front 1/4× to 3.0× ( 8) 1/8× to 9.0× (24) 1/8× to 8.5× (23) 1/9× to 9.5× (26)
Santa Barbara Box 1/2× to 4.0× ( 8) 1/5× to 8.5× (20) 1/9× to 8.5× (24) 1/12× to 8.5× (27)

Number of scalings (average) (16.71) (25.71) (28.43) (30.71)
Number of scalings (percentage) 25.71% 39.56% 43.74% 47.25%

4.3. Registration Effectiveness

In this section, the evaluation of the HSI–KAZE algorithm is presented. Our proposal is compared
with other methods in the literature. In particular, it is compared with two methods based on the Fourier
transform, the Fourier–Mellin invariant symmetric phase–only matched filtering (FMI–SPOMF) [39]
and the HYperspectral Fourier–Mellin algorithm (HYFM) [9], and on the other hand, with the original
KAZE [12] and A–KAZE methods [17].

FMI–SPOMF uses the phase correlation and the log–polar grid to perform a translation, rotation,
and scale-invariant grey–level image registration. However, HYFM was particularly designed for
registering hyperspectral images. It exploits the information contained in different bands and is based
on principal component analysis, multilayer fractional Fourier transform (MLFFT), combination of
log-polar maps, and peak processing.

As explained in Section 2, KAZE is a feature–based method which uses the M–SURF descriptor
and a nonlinear diffusion filter instead of Gaussian filters, as in SIFT, in order to build the scale space
preserving sharp edges and smoothing noise. In contrast, A–KAZE uses a binary descriptor and builds
a pyramidal scale space using a FED scheme which allows faster computation and higher accuracy.
The binary descriptor also allows a faster computation because the matching stage is computed using
the Hamming distance instead of the Euclidean distance.

The evaluation procedure is the same as the one introduced in the previous section. An exhaustive
scaling range from 1/16× to 25.5×, with 72 angles per scale, is applied to the target image. For KAZE
and A–KAZE, the band of highest entropy is selected to perform the registration. On the other hand,
FMI–SPOMF uses the first PCA component to perform the registration, while HYFM uses the first
8 PCA components [9]. The random sample consensus (RANSAC) algorithm was used in KAZE and
A–KAZE in order to compute the registration parameters from the keypoints and is available in the
OpenCV Library.

Table 4 summarizes the cases that were correctly registered for each scene and algorithm.
The proposed method HSI–KAZE provides the best results on average, specifically, 30.71 cases as
compared with 11.43 cases achieved by HYFM. FMI–SPOMF, KAZE and A–KAZE do not recover a high
number of cases because they were developed to work with grey–level images and not to deal with
spectral information. The bests results are achieved for the Pavia Centre and Jasper Ridge scenes in
which a range of 1/16× to 24.0× and 1/12× to 12.5× are successfully registered, respectively.
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Table 4. Successfully registered cases for each scene. The number in parentheses summarizes the
number of scales that were correctly registered for all angles. If an angle is incorrectly registered,
the whole scale factor is considered incorrect, i.e., this case is not included in the table. KAZE and
A–KAZE are applied to the band with the highest entropy. KAZE and A–KAZE use RANSAC.
The percentage values are calculated over 65, the number of scales considered.

Scene FMI–SPOMF HYFM KAZE (RANSAC) A–KAZE (RANSAC) HSI–KAZE

Pavia University 1/5× to 4.5× (12) 1/4× to 5.5× (13) 1/3× to 2.5× ( 6) 1/3× to 2.0× ( 5) 1/11× to 13.0× (35)
Pavia Centre 1/6× to 6.0× (16) 1/5× to 7.5× (18) 1/4× to 5.0× (12) 1/4× to 4.0× (10) 1/16× to 24.0× (62)
Indian Pines 1/2× to 3.0× ( 6) 1/2× to 4.0× ( 8) 1.0× to 2.0× ( 3) 1.0× ( 1) 1/4× to 5.5× (13)
Salinas 1/2× to 4.0× ( 8) 1/2× to 4.5× ( 9) 1/2× to 2.0× ( 4) 1/2× to 2.0× ( 4) 1/7× to 6.0× (17)
Jasper Ridge 1/3× to 2.5× ( 6) 1/5× to 3.0× ( 9) ( 0) ( 0) 1/12× to 12.5× (35)
Santa Barbara Front 1/4× to 2.5× ( 7) 1/4× to 3.5× ( 9) 1.0× to 2.0× ( 3) 1/2× to 2.0× ( 4) 1/9× to 9.5× (26)
Santa Barbara Box 1/2× to 2.0× ( 4) 1/4× to 6.0× (14) 1.0× to 1.5× ( 2) 1/2× to 1.5× ( 3) 1/12× to 8.5× (27)

Number of scalings (average) (8.43) (11.43) (4.29) (3.86) (30.71)
Number of scalings (percentage) 12.97% 17.58% 6.59% 5.93% 47.25%

To make a deeper study, we have analysed the performance of KAZE and A–KAZE replacing
the RANSAC method based on the random sampling theory by the registration method proposed in
HSI–KAZE (see Section 3.4). Table 5 shows the correct registered cases for each scene and method.
The average number of successful registered cases has been doubled for KAZE and A–KAZE for all
scenes, specifically, 9.00 and 8.29 cases have correctly been registered versus 4.29 and 3.86 using the
RANSAC version, respectively (see Table 4). In particular, for Pavia Centre, ranges of 1/7× to 9.0×
and 1/7× to 8.5× have been recovered for KAZE and A–KAZE, respectively. Moreover, KAZE and
A–KAZE outperform HYFM on Pavia Centre and Pavia University scenes but not in the other three
scenes taken at different dates. Using our exhaustive registration method, KAZE and A–KAZE achieve
registering 1 and 2 cases for Jasper Ridge images (Table 5), respectively, instead of 0 where RANSAC
is used (Table 4). Even replacing RANSAC by the proposed registration method in these methods,
HSI–KAZE achieves the best results thanks to exploitation of the spectral information.

Table 5. Successfully registered cases for each scene. The number in parentheses summarizes the
number of scales that were correctly registered for all angles. If an angle is incorrectly registered,
the whole scale factor is considered incorrect, i.e., this case is not included in the table. KAZE and
A–KAZE are applied to the band with the highest entropy. In this case, KAZE and A–KAZE use the
registration method proposed in HSI–KAZE. The percentage values are calculated over 65, the number
of scales considered.

Scene FMI–SPOMF HYFM KAZE A–KAZE HSI–KAZE

Pavia University 1/5× to 4.5× (12) 1/4× to 5.5× (13) 1/5× to 6.0× (15) 1/4× to 4.5× (11) 1/11× to 13.0× (35)
Pavia Centre 1/6× to 6.0× (16) 1/5× to 7.5× (18) 1/7× to 9.0× (23) 1/7× to 8.5× (22) 1/16× to 24.0× (62)
Indian Pines 1/2× to 3.0× ( 6) 1/2× to 4.0× ( 8) 1/2× to 2.5× ( 5) 1.0× to 1.5× ( 2) 1/4× to 5.5× (13)
Salinas 1/2× to 4.0× ( 8) 1/2× to 4.5× ( 9) 1/4× to 3.5× ( 9) 1/3× to 3.0× ( 7) 1/7× to 6.0× (17)
Jasper Ridge 1/3× to 2.5× ( 6) 1/5× to 3.0× ( 9) 1.0× ( 1) 1.0× to 1.5× ( 2) 1/12× to 12.5× (35)
Santa Barbara Front 1/4× to 2.5× ( 7) 1/4× to 3.5× ( 9) 1/2× to 2.5× ( 5) 1/4× to 3.0× ( 8) 1/9× to 9.5× (26)
Santa Barbara Box 1/2× to 2.0× ( 4) 1/4× to 6.0× (14) 1/2× to 2.5× ( 5) 1/4× to 2.0× ( 6) 1/12× to 8.5× (27)

Number of scalings (average) (8.43) (11.43) (9.00) (8.29) (30.71)
Number of scalings (percentage) 12.97% 17.58% 13.85% 12.75% 47.25%

The total number of successfully registered cases considering both the scale factors and angles
of rotation (from the all 65× 72 test cases) is shown in Table 6. HSI–KAZE presents the best results,
it correctly registers 17, 153 cases, i.e., 52.36% of the test cases. These results are very similar to those
already presented in Table 5 in which only the scales in which the 72 angles have been successfully
registered are included.
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Table 6. Number and percentage of successfully registered cases for each scene and method for the
entire test range (from 1/16× to 25.5×, 65 scale factors and 72 angles per scale).

Scene FMI–SPOMF HYFM KAZE A–KAZE HSI–KAZE

Pavia University 999 (21.35%) 1139 (24.34%) 1446 (30.90%) 856 (18.29%) 2781 (59.42%)
Pavia Centre 1268 (27.12%) 1472 (31.45%) 1859 (39.72%) 1829 (39.08%) 4647 (99.29%)
Indian Pines 586 (12.52%) 739 (15.79%) 393 ( 8.40%) 152 ( 3.25%) 954 (20.38%)
Salinas 876 (18.72%) 856 (18.29%) 907 (19.38%) 625 (13.35%) 1312 (28.03%)
Jasper Ridge 663 (14.17%) 697 (14.89%) 148 ( 3.16%) 352 ( 7.52%) 2920 (62.39%)
Santa Barbara Front 733 (15.66%) 859 (18.35%) 873 (18.65%) 799 (17.07%) 2404 (51.37%)
Santa Barbara Box 508 (10.58%) 948 (20.26%) 715 (15.28%) 720 (15.38%) 2135 (45.62%)

Total successful cases 5634 (17.20%) 6710 (20.48%) 6341 (19.36%) 5333 (16.28%) 17,153 (52.36%)

4.4. Measures of Registration Accuracy

In general, a small scale factor range is analysed in the literature, even in many cases, only one
scale. Table 7 summarizes the scale factor range considered in the recent literature. It includes
methods for registering both panchromatic images as well as multispectral (from up to 31 bands)
and hyperspectral (from up to 242 bands) images. In our study, the considered scale factor range
goes from 1/16× to 25.5× (65 scale factors) where for each scale 72 angles are evaluated, as shown in
Tables 3–5. Table 7 also summarizes the most common measures used to evaluate registration methods
in the literature: chequerboard, number of matches, number of correct matches, correct match rate,
root-mean-square error (RMSE) and registration error. For that reason, in this section, a evaluation of
the feature–based methods KAZE, A–KAZE and HSI–KAZE is presented according to these measures.

Table 7. The most common measures used to evaluate the effectiveness, accuracy and robustness of
registration methods in the literature as well as the image type and the scale factor range considered.

Ref. Image Type Scale Factor Range Measures

[18] Multispectral 0.7× to 1.0× Chequerboard, correct match rate, registration error
[19] Multispectral 0.5× to 2.0× Chequerboard, correct match rate, RMSE
[20] Multispectral 1.0× to 2.0× Correct match rate, number of matches
[21] Multispectral 1.0× to 2.0× Correct match rate, number of correct matches, number of matches
[22] Multispectral 1.0× Number of correct matches
[40] Multispectral and hyperspectral 0.7× RMSE
[41] Hyperspectral 1.0× Registration error
[42] Multispectral and hyperspectral 1.0× to 2.0× Chequerboard, number of correct matches, RMSE
[24] Hyperspectral 8.0× Number of keypoints, correct match rate
[43] Multispectral 1.0× Chequerboard, correct match rate, number of correct matches, RMSE
[44] Multispectral and hyperspectral 2.0× Correct match rate, number of correct matches, RMSE
[45] Multispectral and panchromatic 2.8× to 4.0× RMSE
[46] Multispectral 1.0× Number of matches, RMSE
[47] Multispectral 6.0× Chequerboard, number of correct matches, RMSE
[48] Multispectral 0.5× to 1.5× Registration error, chequerboard

The experimental results shown in this section correspond to the pairs of images of the second
dataset described in Section 4.1, but in this case we only consider the original scale factor, the angle
of rotation and the translation, i.e., no additional transformations will be apply to the images.
The reference registration parameters for each scene are shown in Table 8.

Table 8. Reference registration parameters for the second group of the test hyperspectral images.

Scene Scale Factor Rotation Angle (Degrees) Translation (x,y) (Pixels)

Jasper 0.97 −6.05 (−12, 24)
Santa Barbara Front 1.45 3.52 (2, 6)
Santa Barbara Box 1.00 0.00 (33, 40)
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Figure 13 shows the chequerboard registered images for the Jasper Ridge and Santa Barbara
scenes using HSI–KAZE. It can be seen that the borders and objects of the two images are correctly
overlapped even when they were obtained in different dates.

(a) (b) (c)

Figure 13. Chequerboard registered images for the scenes taken by the AVIRIS sensor at different dates:
(a) Jasper Ridge, (b) Santa Barbara Box, and (c) Santa Barbara Front.

Although the number of keypoint matches found by a method does not influence the quality
of the registration, it is interesting to compare the values obtained by the different methods in order
to better explain the registration details. Table 9 compares the number of keypoint matches for each
scene using the methods KAZE, A–KAZE and HSI–KAZE. It is important to note that HSI–KAZE
discards false matches thanks to the use of the spectral signature as part of the keypoint descriptor
(see Section 3.3), as can be seen in the second row for each scene. In the third row, it can be seen that
the elimination of repeated matches performed by HSI–KAZE leads to even a higher reduction of
the final number of used matches. To calculate the number of correct matches shown in this section,
the Euclidean distance between the keypoint of the reference image and the keypoint of the target
image after applying the original transformation is used as error measure. A match is considered
incorrect if the error is higher than 2 pixels.

More detailed results of the registration process are shown in Table 10 in which the number
of matches actually used to register the images is presented. For HSI–KAZE, these matches have
been obtained using the exhaustive research method explained in Section 3.4 which calculates
the registration parameters taken into account all the possible combinations between the matched
keypoints. Then, the histogram of the obtained angles of rotation for all these matches is computed
and the registration parameters of the bin with the maximum value are selected. The final registration
parameters are obtained from the median of the scales of the parameters of this bin. It is important
to note that the matches used for registering the images are entirely correct in the case of HSI–KAZE
as can be seen in the third row of the table, i.e., the correct match ratio is 100%. This correct match
ratio stands at around 83% on average in the case of KAZE and A–KAZE with RANSAC used to filter
incorrect matches.

The RMSE and the registration error are measures frequently used in the literature to evaluate
registration algorithms as seen in Table 7. The registration error is measured in pixels and is computed
as the average Euclidean distance between the keypoints used in the registration of the reference
image and the keypoints used in the registration of the target image after applying the reference
transformation (see Table 8). The results obtained for KAZE, A–KAZE and HSI–KAZE are very similar
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as shown in Table 11. However, it is important to point out that HSI–KAZE allows registering images
for a range of scales much higher than that the obtained by KAZE and A–KAZE, as shown in Section 4.3
in Tables 4 and 5.

Table 9. Comparisons of KAZE, A–KAZE and the proposed method HSI–KAZE regarding the original
number of matches obtained for each scene.

KAZE A–KAZE HSI–KAZE

Jasper

Number of matches 17 23 21,437
Number of matches after spectral discarding - - 21,105
Number of matches after removing repeated matches - - 20,860
Number of correct matches 13 18 20,535

Santa Barbara Front

Number of matches 207 328 44,550
Number of matches after spectral discarding - - 44,490
Number of matches after removing repeated matches - - 43,537
Number of correct matches 176 282 20,741

Santa Barbara Box

Number of matches 307 230 37,185
Number of matches after spectral discarding - - 37,001
Number of matches after removing repeated matches - - 36,314
Number of correct matches 234 171 18,502

Table 10. Comparisons of KAZE, A–KAZE and the proposed method HSI–KAZE regarding the matches
used to register the images.

KAZE A–KAZE HSI–KAZE

Jasper
Number of matches used in registration 17 22 4
Number of correct matches used in registration 13 18 4
Correct match ratio 0.76 0.82 1.00

Santa Barbara Front
Number of matches used in registration 185 262 4
Number of correct matches used in registration 165 234 4
Correct match ratio 0.89 0.89 1.00

Santa Barbara Box
Number of matches used in registration 241 221 4
Number of correct matches used in registration 204 170 4
Correct match ratio 0.85 0.77 1.00

Table 11. Results in terms of RMSE and registration error for KAZE, A–KAZE and HSI–KAZE.

KAZE A–KAZE HSI–KAZE

Jasper RMSE 0.98 1.54 1.35
Registration error (pixels) 0.92 1.38 1.23

Santa Barbara Front RMSE 1.33 1.37 1.44
Registration error (pixels) 1.16 1.18 1.42

Santa Barbara Box RMSE 1.48 1.68 0.72
Registration error (pixels) 1.28 1.44 0.70

Figures 14 and 15 show all the matches obtained for the eight selected bands by HSI–KAZE of
Santa Barbara Front and Jasper scenes. The matches which were discarded by the spectral information
are in brown colour, the correct matches used in registration are green, the remainder of correct matches
are yellow, and the incorrect matches are blue. In these figures it is easy to note that the use of different
pair of bands allows detecting different keypoints due to the different information contained in each
one. The final matches used to register these scenes are obtained from different bands, bands 126 and
146 for Santa Barbara Front, and bands 21, 135 and 207 for Jasper Ridge. Moreover, a high number of
false matches are discarded thanks to the use of the spectral signature, as can be seen, for example,
in Figure 14f.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14. Matched keypoints detected in the eight selected bands ordered by decreasing entropy
from Santa Barbara Front scene with scale 9.5×: (a) Band 46, (b) Band 26, (c) Band 71, (d) Band 126,
(e) Band 93, (f) Band 6, (g) Band 185, and (h) Band 146. Matches discarded after considering spectral
information (brown), incorrect matches (blue), correct matches (yellow), and correct matches used in
registration (green).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15. Matched keypoints detected in the eight selected bands ordered by decreasing entropy
from Jasper Ridge scene with scale 9.0×: (a) Band 46, (b) Band 71, (c) Band 21, (d) Band 94,
(e) Band 135, (f) Band 187, (g) Band 207, and (h) Band 1. Matches discarded after considering spectral
information (brown), incorrect matches (blue), correct matches (yellow), and correct matches used in
registration (green).
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4.5. Limitations of the Method

HSI–KAZE has an upper limit in the scales that can register successfully. Nevertheless, this limit
is higher than the previously proposed methods (see Table 7) thanks to the selection of different bands,
the use of spectral information in the descriptor, and the proposed exhaustive registration method.
An example of the extreme range of scales studied is shown in Figure 1. The higher scale factor,
the harder registration due to the lack of overlapping between the images.

Table 12 shows the computational cost (execution times and memory requirements experimentally
obtained) in CPU for each scene and method considering the last scale successfully registered in Table 5.
Regarding computational time, HSI–KAZE is more costly than the other methods. The reason is the
exploitation of the spectral information and the exhaustive search to recover the registration parameters
considering all the possible pairs of matches that involves higher computational costs. This cost is
reduced by discarding false and repeated keypoint matches, as it was explained in Section 3.3. It is
important to note that FMI–SPOMF, KAZE and A–KAZE were developed to register greyscale or
RGB images and not hyperspectral ones, so they perform the registration by using only a pair of
bands of the images. HYFM uses different pairs of bands as HSI-KAZE, so their execution times are
similar. These computation times can be additionally decreased by projecting HSI–KAZE onto HPC
infrastructures or onto commodity devices such as general purpose GPU (GPGPU).

Regarding the memory requirements, HYFM needs an average of 233.49 MiB. The highest peak of
memory is achieved during the keypoint detection and description stages due to the building of scale
space, and during the keypoint matching stage where all the possible pairs of matches are considered.
KAZE is the method that requires the highest amount of memory. On the other hand, FMI–SPOMF
and HYFM present similar memory requirements due to the highest memory requirement is in the
computation of the principal components (PCA). It is a common stage in both methods for which the
whole hyperspectral image must be in memory.

Table 12. Execution times (in seconds) and memory requirements (in MiB) considering the last scale
successfully registered in Table 5 for each scene and method in CPU.

Scene FMI–SPOMF HYFM KAZE A–KAZE HSI–KAZE Average

Pavia University 30.64 s 123.27 s 1.53 s 1.11 s 67.38 s 44.79 s
30.70 MiB 37.95 MiB 238.26 MiB 169.49 MiB 121.40 MiB 119.56 MiB

Pavia Centre 136.99 s 507.59 s 6.56 s 6.72 s 454.98 s 222.57 s
114.83 MiB 151.78 MiB 547.93 MiB 276.16 MiB 482.22 MiB 314.58 MiB

Indian Pines 1.65 s 6.59 s 0.19 s 0.10 s 4.72 s 2.65 s
6.83 MiB 6.83 MiB 140.78 MiB 130.05 MiB 19.93 MiB 60.88 MiB

Salinas 6.89 s 28.79 s 0.94 s 0.57 s 22.71 s 11.98 s
32.62 MiB 32.62 MiB 188.17 MiB 149.40 MiB 40.57 MiB 88.67 MiB

Jasper Ridge 140.17 s 508.71 s 11.04 s 12.80 s 628.25 s 260.19 s
242.83 MiB 242.83 MiB 541.02 MiB 272.57 MiB 482.24 MiB 356.30 MiB

Santa Barbara Front 33.66 s 120.87 s 4.61 s 4.50 s 226.62 s 78.05 s
170.50 MiB 184.50 MiB 147.02 MiB 209.09 MiB 163.27 MiB 174.88 MiB

Santa Barbara Box 32.47 s 121.93 s 10.29 s 11.00 s 616.88 s 158.51 s
252.87 MiB 252.87 MiB 556.77 MiB 278.06 MiB 324.79 MiB 333.07 MiB

Average 54.64 s 202.54 s 5.02 s 5.26 s 288.79 s 111.25 s
121.60 MiB 129.91 MiB 337.14 MiB 212.12 MiB 233.49 MiB 206.85 MiB

It is important to note that HSI–KAZE is similar to the other methods in terms of RMSE, as can be
seen in Table 11 and discussed in Section 4.4, in spite of the wide range of scales that HSI–KAZE can
recovered. The RMSE is only a measure of precision in the cases correctly registered.
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Finally, HSI–KAZE could fail in the detailed alignment of the images. It searches for a consensus
global affine transformation for the whole image. Due to images usually present different distortions
inconsistently, it will be necessary to apply a fine grained registration in a second stage in order to
correct these distortions with a higher level of detail and decrease the RMSE and the registration error.

5. Conclusions

In this work, a feature–based method for registering hyperspectral remote sensing images called
HSI–KAZE is proposed. It has been designed to register images with large scale factors and any angle of
rotation and translation. HSI–KAZE is based on KAZE but improving the registration effectiveness by
exploiting the spectral information available in the images. The spectral information is considered when
a set of representative bands of the image are selected based on their entropy and spectral distance.
Each keypoint descriptor also incorporates spectral information because it consists of a M–SURF
descriptor and a spectral signature. A combination stage considers together all the keypoints for the
selected bands. HSI–KAZE carries out an exhaustive search for registration using a histogram-based
approach where all pairs of matched keypoint are taking into account.

We have performed several experiments using four well–known hyperspectral images in the
remote sensing area, and three pairs of hyperspectral images taken by the AVIRIS sensor on different
dates. In addition to the changes that the images already present, we have applied additional similarity
transformations to extend our study. Moreover, we have evaluated different band selection methods
present in the literature regarding their effectiveness in terms of registration robustness.

The proposed method has been compared with the KAZE, A–KAZE, FMI–SPOMF, and HYFM
registration methods in terms of successful registrations, number of matches, number of correct
matches, correct match ratio, RMSE and registration error. The results show that the highest number
of correctly recovered scales for all angles are obtained by HSI–KAZE. For example, a scale factor of
24.0× has been recovered in Pavia Centre by the HSI–KAZE method, while for the KAZE method the
maximum achieved scale is 9.0×.

As future work, HSI–KAZE can be used as a first stage of a fine grained multilevel registration
method. HSI–KAZE would perform a high–level registration that would be refined in a second
registration stage to correct geometric deformations at a lower level.
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