
remote sensing  

Article

A Descriptor-less Well-Distributed Feature Matching
Method Using Geometrical Constraints
and Template Matching

Hani Mahmoud Mohammed * and Naser El-Sheimy

Department of Geomatics Engineering, University of Calgary, 2500 University Dr. N.W.
Calgary, AB T2N 1N4, Canada; elsheimy@ucalgary.ca
* Correspondence: hmmohamm@ucalgary.ca

Received: 8 April 2018; Accepted: 7 May 2018; Published: 11 May 2018
����������
�������

Abstract: The problem of feature matching comprises detection, description, and the preliminary
matching of features. Commonly, these steps are followed by Random Sample Consensus (RANSAC)
or one of its variants in order to filter the matches and find a correct model, which is usually the
fundamental matrix. Unfortunately, this scheme may encounter some problems, such as mismatches
of some of the features, which can be rejected later by RANSAC. Hence, important features might be
discarded permanently. Another issue facing the matching scheme, especially in three-dimensional
(3D) reconstruction, is the degeneracy of the fundamental matrix. In such a case, RANSAC tends
to select matches that are concentrated over a particular area of the images and rejects other correct
matches. This leads to a fundamental matrix that differs from the correct one, which can be obtained
using the camera parameters. In this paper, these problems are tackled by providing a descriptor-less
method for matching features. The proposed method utilises the geometric as well as the radiometric
properties of the image pair. Starting with an initial set of roughly matched features, we can compute
the homography and the fundamental matrix. These two entities are then used to find other
corresponding features. Then, template matching is used to enhance the predicted locations of
the correspondences. The method is a tradeoff between the number and distribution of matches,
and the matching accuracy. Moreover, the number of outliers is usually small, which encourages the
use of least squares to estimate the fundamental matrix, instead of RANSAC. As a result, the problem
of degeneracy is targeted at the matching level, rather than at the RANSAC level. The method was
tested on images taken by unmanned aerial vehicles (UAVs), with a focus on applications of 3D
reconstruction, and on images taken by the camera of a smartphone for an indoor environment.
The results emphasise that the proposed method is more deterministic rather than probabilistic and
is also robust to the difference in orientation and scale. It also achieves a higher number of accurate
and well-distributed matches compared with state-of-the-art methods.

Keywords: feature matching; homography; fundamental matrix; epipolar geometry; template matching;
normalised cross-correlation

1. Introduction

Feature matching is the basis of many applications in remote sensing, photogrammetry, computer
vision, and several other fields. Examples of feature matching applications include, but not limited to,
photo-mosaicking, three-dimensional (3D) reconstruction, visual odometry, and object tracking. Due to
its importance, feature matching has been the topic of many publications for several years, starting
with Moravec’s corner detector [1]. The conventional methodology of feature matching algorithms
comprises three main steps: detection, descriptors assignment, and preliminary feature matching.
The preliminary feature matching procedure is based on a comparison of the distance—Euclidean
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for instance—between descriptors. Preliminary matching is typically followed by an outlier removal
algorithm such as Random Sample Consensus (RANSAC) [2] and Maximum Likelihood Estimation
Sample Consensus (MSAC) [3]. The RANSAC technique is based on the successive attempts at fitting
a model to a subset of preliminary matched features. Then, the model is gradually enhanced by adding
more corresponding feature points.

Unfortunately, some obstacles usually face such a feature-matching framework. First, the success
of preliminary matching in retaining correct matches is subject to the accuracy of the descriptors
assignment and the amount of information encapsulated in each vector of descriptors. Intensity
gradients and gradient directions are common types of information that are embedded in the
descriptors, whereas valuable information such as the overall geometry of the feature in the image is
usually ignored. Accordingly, some features are incorrectly matched, and other features might not
be matched at all, leading to the second issue involved in this framework. That is, during outlier
removal via RANSAC, mismatched features are rejected without being considered for re-matching.
In other words, features that are incorrectly matched during the preliminary matching stage are
either mistakenly preserved by RANSAC or are ignored permanently. Either way, those features
are considered fruitless or harmful to the model estimation. The third and most critical problem is
the problem of model degeneracy, or more specifically, the degeneracy of the fundamental matrix
relating two images geometrically. It is well known that the most accurate fundamental matrix
is the one obtained from the camera’s intrinsic and extrinsic parameters, but in most cases, the
fundamental matrix is being estimated from the matched features in an image pair. The estimated
fundamental matrix is sensitive to the scene structure, even if it is estimated from inliers only [4].
In other words, the fundamental matrix is sensitive to the distribution of correspondences in scenes
containing multiple depths or complex structures. Here comes the definition of degeneracy as stated by
Torr et al. ”The data are termed degenerate with respect to a model if the underlying set of noise-free
or true correspondences do not admit to a unique solution with respect to that model” [4].

As an example, consider the correspondences in the image pair in Figure 1. Even with perfectly
matched feature points, the estimated fundamental matrix is different from the ideal one that is
obtained from the camera parameters.

Figure 1. (a) Feature correspondences (inliers only); (b) rectification using the estimated fundamental
matrix; (c) rectification using the fundamental matrix as calculated from the camera parameters.

Degeneracy occurs in many cases due to the presence of predominant planar surfaces in the scene.
The term predominant planar surface refers to a planar surface covering most of the area of the image
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with a large number of textures or features. In such a scenario, the large number of matched features
covering this surface tends to enforce RANSAC to follow a model that represents those features
only, while ignoring other features from different depths or planes in the scene. Therefore, the entity
best describes the relationship between data points in a pair of images, on a predominant surface is
a homography rather than a fundamental matrix.

The degenerate fundamental matrix model is not suitable for the representation of all of the data
points, which is similar to how the homography cannot be used to retrieve corresponding features on
non-planar or multiple surfaces. In real case scenarios, it is difficult to find a single global homography
that relates all of the correspondences, especially with images of significant differences in the scene
structure. An alternative was discussed by Chen et al. [5], where the authors proposed to find multiple
planar homographies relating image pairs via Delaunay triangulations.

Although the homography and the degenerate fundamental matrix seem to be of no use in
predicting correspondences between feature points in an image pair, the geometrical information
represented by the homography and fundamental matrix could be of vital importance if combined with
the radiometric properties of the features. However, most of the classical feature-matching algorithms
ignore those geometrical entities in the preliminary matching step.

In this paper, a new method is proposed to handle the problems of feature mismatching and
the degeneracy of the fundamental matrix at the preliminary feature-matching level. The method
finds an accurate set of feature correspondences that are uniformly distributed over the images’
scene structure, along with an accurate estimate of the fundamental matrix and multiple planar
homographies. By uniform distribution, we mean the case in which matched features are distributed
over different depths or planes of the scene, and are not concentrated over a single predominant planar
surface. The method trades off the accuracy with the distribution and number of matched features. It is
worthwhile mentioning that some authors provided solutions to the degeneracy of the fundamental
matrix at the RANSAC level, that is, after the descriptor assignment and the preliminary matching.
However, the proposed method aims at solving this issue and other issues at an earlier stage: just after
the feature detection step. The paper proposes a detect-and-match technique in which the descriptor
assignment step and the descriptors-based preliminary matching step are excluded. Moreover, in most
cases, provided there are both a sufficient overlap and a similar geometry between the image pair,
the number of outliers becomes very small. The small number of outliers allows using least squares
(LS) directly to estimate the fundamental matrix, while the outlier rejection step can still be used only
if needed. Furthermore, the results in Section 3 show that the outliers are within a small radius of the
correct matches as a result of the geometrical constraints. An interesting question is: why can’t we
use LS with descriptor-based methods? The answer is that the outliers arising from the descriptors
comparison are not restricted to certain error thresholds, as they are not geometrically constrained.
Therefore, those outliers can dramatically deteriorate the solution.

The impact of the accuracy of the matches with their number and distribution is significant when
performing 3D reconstruction, either with sparse or dense matching. The sparse point cloud can
be generated by performing intersection or triangulation on a set of matches (tie points). Thus, it is
convenient that the matches are distributed over the overlapping region of the images in order to
retain a realistic structure with fewer gaps in the 3D scene. On the other hand, dense matching usually
begins with the estimation of the fundamental matrix and the rectification parameters. Dense matching
algorithms are then employed to find a disparity map. It is evident that the quality of dense matching
is dependent on both the images’ radiometric properties as well as the rectification parameters. Hence,
to limit the errors in dense matching to the radiometric properties only, we must have an accurate
estimation of the fundamental matrix in order to obtain accurate rectification parameters and hence
a better scanline matching.
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1.1. Related Work

Interest point detection and matching have been gaining lots of enthusiasm since the early 1980s.
In his paper entitled ”Rover visual obstacle avoidance”, Moravec proposed a corner detector called
the interest operator [1]. Later, in 1988, Harris and Stephen refined Moravec’s corner detector [6]
and named it Harris corner detector. The Harris corner detector proved to be robust to variation in
image rotation and small affine intensity changes. However, it was inadequate when the image’s scale
changes. This detector utilises the local autocorrelation function to measure changes of the signal with
patches shifted by a slight difference in directions.

In 1997, Schmid and Mohr showed that they could use local invariant features to find matches
between an image and a database of images for image recognition [7]. In their paper, Schmid and
Mohr suggested rotationally invariant local descriptors, which were useful in the identification of
rotated images. However, since they used the Harris detector, one can infer that their algorithm is
sensitive to image scaling.

As a solution to the scale problem, David Lowe proposed a detector and a descriptor in 1999 [8]
that are invariant under both rotation and scale. Improvements have been made by Lowe since then
until the final appearance of his published work in 2004, which is entitled “Distinctive Image Features
from Scale-Invariant Keypoints”. His paper provided the well-known image detector and descriptor
algorithm: Scale Invariant Feature Transform (SIFT) [9]. SIFT was a breakthrough amongst the image
feature algorithms at that time, as it offered more distinctive features that are invariant under both
scale and rotation. There have been other efforts made towards scale-invariant features, such as the
work by Mikolajczyk and Schmid [10]; In their paper they could select the location of a keypoint
using the determinant of the Hessian matrix and its scale using the Laplacian of Gaussian (LoG). SIFT
approximates the LoG by the Difference of Gaussian (DoG), which enhances the detection efficiency at
no cost. The SIFT detector outperformed its counterparts regarding speed, repeatability, and stability.
However, SIFT computes a histogram of locally-oriented gradients around each keypoint and stores the
bins in a 128-dimensional vector that is still memory and time inefficient, especially when performing
feature matching. Ke and Sukthankar [11] introduced the Principal Components Analysis over SIFT
(PCA-SIFT) to decrease the number of dimensions of SIFT from 128 to 36. Later, it was found that the
PCA-SIFT exhibits rapid matching, but is less distinctive.

In late 2007, Bay et al. [12], proposed a detector and descriptor that they named “Speeded Up
Robust Features” (SURF). Bay et al. utilised the integral images and approximated DoG by a box filter
when detecting the keypoints. The use of box filters with integral images made it feasible to apply the
same Gaussian filter without scaling the image, which leads to the same result at no cost. So, instead
of scaling down the images, as in SIFT, the filter size itself was being increased to have the same effect,
but with less computation time. For the descriptors, Haar wavelet responses in horizontal and vertical
directions were computed, leading to a 64-dimensional vector representing the descriptor, which is
half the size of the SIFT descriptors.

Although Bay et al. claimed that SURF outperforms SIFT in matching accuracy, practical
evaluations revealed other results. For example, per Khan et al. [13], SURF is just as good as SIFT on
most of the tests except for scaling, massive blur, and viewpoint invariance. Another performance
evaluation [14] showed that SIFT outperforms SURF in cases of scaled and rotated images, while SURF
shows better performance in cases of noisy images.

Other efforts were made towards enhancing the speed and memory efficiency of feature
description. In 2010, a new keypoint descriptor called Binary Robust Independent Elementary Features
(BRIEF) was introduced by Calonder et al. [15]. The main contribution of BRIEF was using a smaller
memory size to store the descriptor vector (using only 256 or even 128 bits), and speeding up the
matching process. However, the main drawback of BRIEF was its inability to work with rotated images.
Later in 2011, Leutenegger et al. [16] introduced the Binary Robust Invariant Scalable Keypoints
(BRISK). In their work, the authors treated the descriptor matching as in BRIEF, but with scale and
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rotation invariance. Moreover, the BRISK detector has a degree of modularity that enables it to be used
with other descriptors.

Based on the Features from Accelerated Segment Test (FAST) detector, and the BRIEF descriptor;
Oriented FAST and Rotated BRIEF (ORB) was introduced in 2011 by Rublee et al. [17] to handle the
rotation problem of BRIEF. The method was based on the combination of the popular time-efficient
detector named FAST [18] and BRIEF as a binary descriptor. Scale and rotation were added to FAST.
Furthermore, BRIEF descriptors became rotation-aware.

It is interesting that none of the methods discussed above utilised the geometrical properties
of the features in the images. As discussed earlier, preliminary matching is usually performed on
the basis of the descriptors’ distances. Geometry could be utilised later with RANSAC to filter
correct correspondences. Epipolar geometry was added as a constraint to image matching in 1995
by Zhang et al. [19]. The authors’ method was based on the fundamental matrix estimation and
outlier removal from exact matches. The work was similar to what Torr et al. did in 1993 [20].
Torr et al. used RANSAC to clear the outliers and estimate the fundamental matrix simultaneously.
In those publications, the epipolar geometry was used to filter matches after the preliminary matching
step. This filtering procedure relied on a single model random sample consensus, where only the
geometrical model was used to filter data without considering the appearance of the features.

Isack et al. [21] combined the geometrical models and the appearance of the features in one
regularised energy function. The authors’ framework was built on estimating a model from a set of
initial matches and producing an energy function that contains both geometric and appearance
penalties. The geometric penalty is dependent on the estimated model parameters, while the
appearance penalty is dependent on the angle between the features’ descriptors. After forming
the energy function, the framework solves the generalised assignment problem (GAP) by reducing it
to a linearised assignment problem (LAP). According to the authors, their algorithm showed that it
results in better matching and better model parameters.

To address the degeneracy issue that faces the estimated fundamental matrix, some authors
proposed solutions to the problem at the RANSAC level such as Frahm et al. [22] and Chum et al. [23].
In these publications, modifications were made to RANSAC to be able to estimate the correct model.

A similar work to our proposed method, regarding the uniformity of feature distribution,
was proposed by Tan et al. [24]. However, the authors used the epipolar constraints after preliminary
matching as a function of the descriptors’ distances. The authors computed a fundamental matrix
from the corresponding feature points and filter mismatches using a smoothed disparity check.
The disparity was computed from the estimated fundamental matrix. However, in our proposed
method, the uniformity of feature distribution is achieved at the detect-and-match level, instead of the
RANSAC level. Moreover, as discussed earlier, our proposed method does not rely on descriptors.

1.2. Paper Contribution

The proposed method in this paper is of a different structure than any common feature matching
method. Usually, feature detection, description, and preliminary matching are done separately from
the model estimation. In the proposed method, feature matching and model estimation are achieved
concurrently. Thus, the proposed method competes against the combination of descriptor assignment,
preliminary matching, and model estimation. The method starts with finding a small set of matched
features in an image pair, which we call the seed of matches. To make the method self-contained,
and to ensure that the method is being fully descriptor-less, the seed of matches is found using
template matching. As the regular template matching is neither scale-aware nor orientation-aware,
the Ciratefi method [25] is used in cases of significant difference in scale, orientation, or both between
the pair of images. From the seed, an initial fundamental matrix and a global homography could be
obtained. The next step is to detect the features in the two images. We favour FAST detector for this task,
as it is more rapid and inexpensive to compute compared with other feature detectors. Once a feature
is detected in one of the images (the left image), an approximate position of the corresponding feature
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in the other image (the right image) can be obtained using the geometrical information from the
homography and fundamental matrix. The geometrical approximation is discussed in detail in later
subsections. The predicted position of the features is expected to be inaccurate, as it is affected by
the inaccuracy of the fundamental and homography matrices. However, the rough prediction of the
features’ positions allows us to locate small regions of interest around these features by narrowing the
search space of feature correspondences. To retain the accurate positions of the corresponding features,
we employ template matching via normalised cross-correlation (NCC) over the regions of interest
around the predicted features’ positions.

Without discarding the old matches, adding more correct matches to the seed enables
re-computing a new homography and a new fundamental matrix. Thus, we increase the size of
the seed by adding new matches while concurrently refining the geometrical entities. The algorithm
can be recursively repeated until we find an acceptable number of uniformly distributed matches along
with an accurate fundamental matrix. In cases of image pairs of different orientation, different scale,
or both, the single value decomposition (SVD) is utilised to compute the scale and distortion parameters
between the image pair from the initial homography. Then, they can be recursively re-computed
whenever the homography is refined. The scale and orientation are applied to the templates while
performing the NCC.

The overall methodology allows locating accurate correspondences of features without relying
on descriptors. Thus, it is a move towards more deterministic rather than probabilistic feature
matching. Experiments also show that the algorithm can retain the correct fundamental matrix without
employing RANSAC.

2. Overview of the Proposed Method

This section presents an overview of the proposed method. The usage of epipolar geometry in
estimating approximate locations of the correspondences is introduced first, and then followed by
a discussion of the template matching, and a summary of the proposed methodology. The following
notations are used: Il and Ir are the left and right images, respectively, and q and p denote features in
Il and Ir, respectively. The set of features in Il is Q, and the set of features in Ir is P, such that q ∈ Q
and p ∈ P. In general, the mapping of elements in Q to elements in P must be injective. That is,
each correct match mq,p is associated with a unique q and p. The set of correct matches is denoted
MQP, where mq,p ∈ MQP, F is the fundamental matrix, H is the global homography, and hj is the jth
local homography corresponding to the jth surface in the image. The discrepancy vector is denoted D.
Throughout the paper, the index i corresponds to the ith feature, the index j corresponds to the jth
plane, and the index k corresponds to the kth set of neighbouring points. For example, the vector Dj is
the discrepancy vector associated with the jth plane.

2.1. Epipolar Geometry

Only the ordered pairs (q, p) ∈ Q × P associated with mq,p ∈ MQP are governed by the
epipolar constraints that are expressed in terms of the epipolar lines lq, lp and the fundamental
matrix F. Consider that the global homography H is being computed using the matched features,
which, generally speaking, cannot be used to relate all of the matched pairs (q, p). This is because
homography defines a plane-to-plane relationship, which is not always the case for a pair of images.
For now, suppose that the homography relationship holds with an acceptable error tolerance.

If q and p are written in homogenous coordinates as:

q =
[
qx, qy, 1

]T and p =
[
px, py, 1

]T (1)

Therefore, the homography relationship is approximated by:

p ≈ Hq (2)
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Moreover, the epipolar constraint is also approximated by:

pT Fq ≈ 0 (3)

The lens distortion and other noise factors are not considered for the time being.
In the case of a plane-to-plane relationship, the homography and the fundamental matrix are

related by [26]:
F ≈ [er]×H (4)

where er is the epipole of Ir, and the bracket [ ]× denotes the vector’s skew-symmetric matrix form.
While the homography defines a bijective relation—that is, a one-to-one mapping from Il

to Ir—the epipolar constraints define a one-to-many relation, in which a feature point p in Il is
mapped to the epipolar line lp in Ir. However, the homography is not an accurate relation, unless all
of the features are confined on a plane.

Two remarks should be mentioned regarding the fundamental matrix and the homography. First,
despite the theoretical fact that F should be unique, up to a scale factor, for a pair of images, it was
found to be sensitive to the distribution of the matched features. Therefore, different forms of F
can exist, introducing what is called model degeneracy. The quality of the fundamental matrix is
a function of the distribution of the feature points over the scene structure. The fundamental matrix
estimated from non-uniformly distributed correspondences could be degenerate, and might result in
flawed rectification parameters. It is therefore intuitive to think that the fundamental matrix could be
enhanced by adding more evenly distributed matches over different depths or planes in the scene.

Second, consider the case in which Il and Ir contain multiple depths, or more generally multiple planes.
The global homography H in Equation (2) cannot be used to retrieve the correspondences of features
accurately. Since a homography defines the relation between corresponding points on a plane, different
planes in the scene possess different local homographies. This fact inspired Chen et al. to replace the global
homography by a set of local planar homographies [5].

It is evident that a correct or an ideal fundamental matrix defines an accurate relationship
(constraint) between the features in one image and their corresponding epipolar lines in the other
image. On the other hand, global homography does not in general define an accurate relationship
between corresponding features. However, local homography, if it could be found, can bring accurate
and more informative constraints between corresponding features. Hence, it is valuable to find
a local homography for each plane in the image pair. In this paper, instead of finding a set of local
homographies hj, we find a set of discrepancy vectors Dj as an alternative.

To find the relationship between the local homography hj and the discrepancy vector Dj ,
consider Equation (2) applied in the case of a local homography hj, which clearly has more chance
with respect to H to properly describe the relation between corresponding points in a small area
of the two images. However, bearing in mind that the mathematical relations are still within some
approximations, we can replace Equation (2) by:

pi = hj qi (5)

where qi and pi are the ith matched features in the left and right images, respectively.
Equation (2) should be modified to account for the error that arises in the estimated position of

the feature pi when using the global homography. This can be written as:

pi = Hqi + Di (6)

where the vector Di represents the discrepancy between the estimated feature pi using the global
homography and the correct one, as described in Figure 2. Note that the general assumption for Di in
this equation is to be associated with the feature point qi, i.e., the index of D is i, not j. This assumption
will be modified later.
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To derive the relation between the global and local homographies, at the feature pair (qi, pi),
the vector Di is written in terms of the feature vector qi as:

Di = ε qi (7)

where both Di and qi are homogenous vectors, and ε is a matrix that is not strictly unique. Therefore,
Equation (6) can be written as:

pi = H qi + εqi = (H + ε) qi (8)

Comparing Equation (5) with Equation (8), it can be concluded that the local homography can be
approximated mathematically at the feature pair (qi, pi) by the global homography H plus an error matrix ε:

h = H + ε (9)

From Equation (8), the approximation of the local homography using the matrix ε should be
valid only at the feature pair (qi, pi). Actually, ε might change dramatically over the same surface
represented by the local homography h , especially in cases where that surface is not facing the camera.
Moreover, ε does not have to be unique, as from Equation (7), the entries of ε can be chosen arbitrarily
as long as the equation is valid. Consequently, instead of computing the local homography from
Equation (9), it is more practical to estimate the discrepancy vector Di corresponding to the pair (qi, pi)

and use it in Equation (6) to find an approximation for the feature pi.
The important question now is whether we must estimate a discrepancy vector Di for each feature pair

(qi, pi), or we can assign a single discrepancy vector Dj to a set of neighbouring features. In the situations
in which the image contains a dominant planar surface facing the camera, as in Figure 2, it can be assumed
that one discrepancy vector is approximately constant over a single surface. Therefore, the assumption that
there is a one-to-one correspondence between Dj and hj is relatively valid. It is then enough to find the set
of discrepancy vectors as a representation of the local homographies.

Now, consider the general case of multiple planar surfaces, each of which is of a different
orientation. Take for example images that are taken for indoor environments. In this case,
the discrepancy vector is point-dependent, rather than plane-dependent, i.e., Di changes with (qi, pi).
However, as an approximation, it can be assumed that the vector Di is locally constant for the feature
points that exist in the vicinity of (qi, pi). It will be discussed in Subsection 2.2 how the vector D can be
assigned to a set of feature pairs in the neighbourhood of (qi, pi) using the kD-tree data structure.

That is, for any feature point qi in Il , the corresponding feature point pi is determined by applying
the global homography H and adding the discrepancy vector Dj.

Figure 2. Two images with multiple depths with corresponding homographies. The image pair has
an estimated global homography H (represented by the white arrows). Each depth is characterised
by a homography hi (represented by the yellow arrows), which is in turn in correspondence with the
discrepancy vector Di. The vector Di represents the shift, or error, between the feature’s location as
obtained by the global homography and the one obtained by the local homography.
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Now looking at Equation (3), due to image distortion, errors in camera calibration, and image
noise, the epipolar constraint will be perturbed by a small value arising from such errors.
Hence, the mathematical model in Equation (3) should be modified to account for these errors. The error
term E is added, such that Equation (3) becomes:

pT Fq = E (10)

The term Fq represents the epipolar line in Ir Thus, we can write Equation (10) as pT lp = E ,
which can be expanded as:

ar px + br py + cr = E (11)

where lp = [ar, br, cr]T . Equation (11) states that the feature point p lies approximately on the line
lp with an error E . Therefore, for each detected feature q in Il a corresponding epipolar line lp is
approximately determined. However, we seek an approximation of the corresponding feature point p
rather than lp.

The approximation of p
(

px, py
)

can be determined from Equation (11) with the combination of
another equation, if there is any. Let’s consider that px is known and fixed; then, we can write:

py =
E − ar px − cr

br (12)

The question now is how to fix px. Utilising the global homography and the discrepancy vector,
we can have an estimate of the feature’s location from Equation (6), which is denoted pH . The
estimation of pH from Equation (6) might not be very accurate. Therefore, to reduce the total error in
pH , we could estimate only px using Equation (6), and then use Equation (12) to approximate py. In
other words, we are projecting the point pH on the epipolar line lp in order to find a more accurate
feature point denoted pF (i.e., we are not relying on the homography to estimate both px and py).

Before proceeding with the proposed methodology, it is good to expand the discussion of the
errors associated with the estimation of both the homography and the fundamental matrix. Consider
the set of unfiltered matches Guv such that MQP ⊂ Guv, Q ⊂ U and P ⊂ V where MQP is the set of all
possible correct matches.

Obviously, the size of MQP expands and diminishes based on the filtering criteria. Let’s consider
that the matches are being filtered with RANSAC, or one of its variants, by fitting either a fundamental
matrix or a homography. To expand MQP, it is required to relax the distance threshold of the global
homography model; however, that comes with the price of inclusion of outliers amongst the inliers.
The fundamental matrix model, on the other hand, tends to have more accurate matches.

Figure 3 shows a comparison of the errors and number of matches between two of the models for
a pair of test images. It is evident that more matches are included in the homography model, but with
less accuracy.

The examination of the estimated global homography in the example above shows that it
represents the relation between points on the predominant building façade. Other points off that
building façade would have a discrepancy vector

[
dx, dy

]T from the model. The discrepancy vector D
can be written in terms of dx and d as:

D ≡
[
dx, dy, 1

]T ≈
[
((Hq)x − px) ,

(
(Hq)y − py

)
, 1
]T

(13)
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Figure 3. (a) Matches filtered using the homography model with relaxed distance threshold;
(b) matches filtered using the fundamental matrix model; (c) the error and number of matches in
both filtering models.

As might be expected in the above example, D is almost zero for points on the building façade,
and has larger values for off points. Figure 4 shows the discrepancy profile for the matches of the test
image used in the above example. It can be seen that the profile resembles the different depths in the
test images, with zero discrepancy for the points on the main building façade.

Figure 4. (a) Discrepancy in x-direction; (b) discrepancy in y-direction.
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Now, back to the problem of fixing either px. If we can build a prior profile for D, we could
approximate px using Equation (13).

px can be approximated by:
px ≈ [Hq]x + dx (14)

Equation (12) is then used to find py.
To summarise the geometrical approximation, we first estimate the location of pH given q using

the global homography and the discrepancy D, and finally project the point pH on the epipolar line lp

in order to find a more accurate location of the point pF.
To examine the accuracy of the geometrical approximations, a set of random features in Il were

manually selected with their true correspondences in Ir. These correspondences are again computed
using the geometrical constraints. Subsequently, the error is computed using the manually selected
features’ locations in Ir as a reference.

Figure 5 is a visualisation of the error between different geometrical approximations of p and the
reference. The numerical comparison is demonstrated in Figure 6. From the two figures, it can be seen
that the error in the final approximation is less than 10 pixels for px and py. This might not be the case
in all situations, but it shows that an acceptable initial approximation of the correspondences’ locations
can be obtained using the epipolar constraints.

Figure 5. Geometric approximations of the correspondences’ locations compared to the reference.
The blue points represent the reference, the red marks represent the homography-based estimate,
the black marks are the points after including the discrepancies of neighbouring points, and the green
points are the approximation after projection on the epipolar line.

It might seem from Figure 6 that the error is less before projecting the feature points on the
epipolar line. However, when a better estimate of the fundamental matrix is obtained, the accuracy of
epipolar projection should be improved.

To this end, we have seen that the homography and epipolar geometry could be used to find
an initial approximation of the features pi in Ir, which corresponds to the selected features qi in
Il , provided that a discrepancy profile exists; that is, all of the discrepancy vectors Di are known.
The question arising now is how to estimate and assign a discrepancy vector Di to the feature pi. In the
next subsection, we demonstrate how initial matches are used to estimate and assign the vector Di for
newly detected feature points pi.
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Figure 6. Error (in pixels) of the geometric approximations with respect to the reference.

2.2. Discrepancy Assignment

Let the seed of matches be S =
{
(q, p)

∣∣(q, p) ∈ Q× P, mqp ∈ MQP
}

and let the initial set of
discrepancy vectors be ∆ =

{
Di
∣∣i ∈ Z+, Di ∈ R2}. An initial discrepancy vector Di is defined as in

Equation (13). Where a homography is computed from all of the elements of S , then Di is computed
as the difference between Hqi and pi. Now, each pair (qi, pi) is associated with one vector Di ∈ ∆.
However, each vector Di can be assigned to one or more pairs

(
qj, pj

)
.

If a feature point u in Il is in the neighbourhood of qi, this implies that its corresponding feature
point v is also in the neighborhood of pi. Then, we can safely assign Di, which is associated with
(qi, pi), to (u, v).

Now, the task of checking whether each detected feature point is in the neighbourhood of
(qi, pi) ∈ S or not is time-inefficient. Instead, for each (qi, pi) ∈ S associated with Di, we find a set of
neighbouring points Nqi pi in the neighbourhood of (qi, pi). Each element in Nqi pi is an ordered pair
and is assigned the vector Di. The set of feature pairs (u, v) in the neighbourhood of (qi, pi) is:

Nqi pi = {(u, v)|‖u− qi‖ ≤ ρl , ‖v− pi‖ ≤ ρr} (15)

where ρl and ρr are the distances between two features in Il and Ir, respectively.
To speed up the neighbourhood search and assignment, we organise the feature points in Il and

Ir using the kD-tree data structure [27]; then, we perform a range search to find the neighbourhood
of feature points for each element in the seed, such that each element in the seed is assigned a set of
neighbouring feature points.

It is important to note that some of the neighbouring features
(
uj, vj

)
might belong to a different

plane from that of the pair (qi, pi), which results in the inaccurate assignment of Di. These points will
be either corrected by the template matching or discarded if no correlation peak is found.

2.3. Feature Detection

The detection of features in Il is achieved using the well-known FAST detector, as it is time-efficient
and easily implemented. FAST checks whether a point q is a corner or not by comparing its intensity
Zq against its circle of neighbours. q is considered a corner if it is surrounded by points that are all
brighter than Zq + σ or darker than Zq − σ. σ is a certain chosen threshold, and the circle size could be
chosen as of eight, 12, or 16 pixels. A speed test can be performed over a fewer number of pixels for
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the fast rejection of non-corner points, using the nearest five, seven, and nine pixels. That is, there are
different versions of the FAST detector, namely, FAST-5, FAST-7 and FAST-9, all of which are dependent
on the single parameter t. Normally, multiple adjacent features are detected, which is an issue that
requires non-maximal suppression to be applied on the set of detected features. The FAST detector
is well documented, and more details about the FAST feature detector can be found in the work of
Rosten et al. [18,28].

2.4. Template Matching with Normalised Cross-Correlation

As discussed in the previous subsections, geometrical constraints can predict to a certain accuracy
the location of a feature point pi in Ir corresponding to a selected feature qi in Il . In most cases,
that prediction of pi is not correct and differs from the actual pixel location by a shift (δx, δy).
Consequently, template matching is utilised to correct the pre-estimated location of pi.

There are several reasons for choosing template matching over descriptors when matching
features. First, template matching does not require the computation effort required when matching
via descriptors. Second, the time required for template matching is reduced, since the search image
is now limited to a small region around the predicted feature pi. Moreover, matching time could
be further reduced if an image pyramid is used. Furthermore, in most cases, template matching
avoids mismatches, as the measuring score is maximum at the point of exact concurrence, leading to
more deterministic results than those obtained by the descriptors. Finally, it will be shown that affine
transformation can be applied to the template to cope with the affinity of the search image.

Template matching was defined by Goshtasby [29] as the process of determining the position of
a subimage called the template t(x, y) inside a larger image called the search area s(x, y). In other words,
the template window slides over the image or region of interest and a score is calculated, which is its
maximum at the location of exact concurrence. An example of template matching is depicted in Figure 7.

Figure 7. (a) A sliding window (template) from the left image is moving through the right image.
(b) The normalised cross-correlation (NCC) score is maximum with a peak at the point of concurrence.
(c) NCC (planar view).

The matching score could be the summation of absolute difference, the summation of squared
difference , or the NCC. These are the most common scores used, while there are other scores used in
the literature [30].
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In this paper, NCC is used because it is robust to illumination changes. NCC is defined as [31,32]:

γu,v =
∑x,y(s(x, y)− su,v)

(
t(x− u, y− v)− t

)√
∑x,y(s(x, y)− su,v)

2 ∑x,y
(
t(x− u, y− v)− t

)2
(16)

where su,v and t denote the mean of s and t within the area of the template, respectively. NCC in this
form is too expensive to compute. Lewis [33] proposed the use of recursive summation tables of the
image function to find an approximation of the numerator and denominator of γu,v.

It was shown by Lewis [33] that the fast NCC could reduce the time of matching dramatically.
Furthermore, if fast NCC is considered over a small region of interest, just like in our case, it is expected
to give satisfactory results in a short time.

The main drawback of template matching is that it does not provide a subpixel accuracy by itself.
However, this issue can be solved by using techniques to find matches to the subpixel accuracy. One of the
techniques that is used is to fit a second-degree surface to the correlation coefficients and find its extrema [34].

2.4.1. Window Size Optimisation

The sizes of the template and the source image should be adequately selected to trade off the
time efficiency with the accuracy of matching. The template size can be chosen as a small number of
pixels around the feature point, such as for instance 9 × 9 or 15 × 15. Adjusting the size of the source
subimage is the most significant to the mitigation of matching time. The source image must be selected
around the approximated location of the feature pi in Ir. If the subimage’s size is too small, it might
not include the correct feature, and if it is too large, it will be time-inefficient. Hence, a two-step
approach is proposed to select the size of the subimage properly. First, the size of the subimage can
be related to the discrepancy vector Di. As this vector indicates the deviation of a feature pi from
the estimated homography, it also reflects the uncertainty region in which an approximated point pi
is in the vicinity of the exact feature point p̂i. Therefore, we can initially set the size of the source
subimage to (2dx + 1) (2dx + 1) or simply (2dx + 1) (2dx + 1). Second, to further optimise the NCC
time, instead of sliding the template over the whole source image, only small subimages over the
regions containing the features p can be selected, and the NCC is computed over these subimages
as small source images. Figure 8 shows that a source image may contain a large area of no features.
Consequently, it is time-consuming to include the whole source image when performing NCC.

Figure 8. Instead of sliding the template on a large source image, subimages around the feature points
are selected as source images, in order to reduce the matching time.

2.5. Scale and Orientation Assignment

In matching pairs of images of different scales, orientation, or both, NCC does not perform
accurately unless the rotation and scale of one image, relative to the other, are estimated and applied to
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the template. Utilising the homography H, which is computed from the initial matches of the seed S ,
we can compute the orientation and scale of Ir with respect to Il . Then, we can recursively enhance the
homography by adding more accurate matches, which in turn enhances the accuracy of the estimated
rotation and scale.

Assuming the homography defines a projective transformation between the two images, which is
the general case, SVD is used to extract the rotation angle and the scale from the homography.
Furthermore, we can derive other affinity properties, such as the deformation angle.

The homography H can be written as [35]:

H =

[
A t
VT v

]
(17)

The affine properties are contained in the matrix A, which can be decomposed as:

A = R(θ)R(−φ)W R(φ) (18)

where R denotes the rotation matrix, θ and φ denote the rotation and deformation angles, respectively,
and W is a diagonal matrix containing the scaling parameters.

W =

[
λ1 0
0 λ2

]
(19)

In most applications, λ1 ≈ λ2. That is, the transformation tends to be a similarity. However, even
in the case when λ1 6= λ2, the template could be modified to cope with the transformation.

Using SVD as in Hartley et al. [35], we can express A as:

A = UWVT = (UVT)(VWVT)

= R(θ)(R(−φ)WR(φ))
(20)

where U and V are unitary matrices, and W is a diagonal matrix with non-negative entries. In the
current special case of A being a 2 × 2 matrix, the matrices U, W, and V are of the same size as A.

Therefore, the procedure to compute the rotation angle θ starts with decomposing A, and then
setting R(θ) = UVT . Afterwards, it is straightforward to find θ. Similarly, the scale and the
deformation angle could be easily retrieved.

The next step is to apply the rotation and scale to the template before performing template
matching. This approach of assigning global rotation and scale to the whole image is much faster than
assigning specific orientation and scale to features via descriptors.

2.6. Seed Initialisation

It was decided to discuss the formation of the initial seed of matches in this subsection, as it is
mainly achieved through template matching. In most cases where the images that make up the pair
have approximately the same orientation and scale, template matching via NCC is used to retrieve the
correspondences in the image Ir for some of the selected features in the image Il . First, the two images
are scaled to a proper smaller size. The scale is chosen according to the initial resolution of the image
pair in order to speed up the matching time and preserve the quality of matching at the same time.
The next step is to detect the strong features in Il using FAST. Then, a smaller subset of these features
with well distribution over Il is selected. For each feature in Il , the corresponding feature in Ir is found
using NCC.

In other cases where there is a difference in scale, orientation, or both between the image pair,
the Ciratefi method [25] could be employed to find the initial set of matches, as well as the scale and
rotation angle. Ciratefi is composed of three filters: the first is Cifi, which stands for “Circular Sampling
Filter”; the second is called Rafi, which stands for “Radial Sampling Filter”, and the last is called Tefi,
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which stands for “Template Matching Filter”. The first filter determines a proper scale; the second
detects a probable rotation angle, and the third is a typical template-matching filter. An example of
Ciratefi with rotated images is shown in Figure 9.

Experiments on Ciratefi proved its high accuracy; however, the only drawback is the slow
performance compared with regular template matching. There are a few techniques to shorten the
time of Ciratefi. For example, for images with no projective distortion, the scale and rotation angle
for only one feature can be obtained using Ciratefi, and then regular template matching is used after
applying the scale and rotation to the template image.

In both scenarios, a set of well-distributed matches is found. These matches are then used to
compute the initial homography and fundamental matrix.

Figure 9. Ciratefi template matching; the source image is rotated 45◦ and scaled to 90% of the original
image’s size.

2.7. Summary of the Proposed Methodology

Figures 10 and 11 present an overview of the proposed methodology. Figure 10 describes the
geometric approximation of point correspondence. As discussed earlier, we begin with template
matching to find a seed of matches to estimate an initial homography H and an initial fundamental
matrix F. To generalise, we use Ciratefi for template matching unless there is a prior knowledge about
the scale and orientation, in which case regular template matching is used. As template matching
can generate an accurate set of correspondences, the homography and fundamental matrix can be
estimated directly. We then use H to generate a set of discrepancy vectors Di and assign them to each
matched pair (q, p) . Next, we perform the kd-tree range search to find a neighbourhood of features
Ni for each pair (q, p)i. The search is performed over a set of features, which are detected only once
via FAST feature detector. The vector Di is then assigned to each neighbourhood of points Ni, such that
a discrepancy profile is created for all of the newly added feature points in Ir. Using the discrepancy
profile and the epipolar lines, we can geometrically find an approximated location for each feature
point pi corresponding to a feature qi.

Figure 11 describes the general methodology in which the seed is recursively extended.
The geometric approximation of matches is then applied for each approximation, and template
matching is employed to correct the locations of the features pi. To limit the result to accurate matches
only, feature points with NCC scores of less than 0.9 are rejected. Accurate matches are then added to
the seed, and the matrices H and F are recomputed.

The process in Figure 11 is recursively repeated until the set of FAST features is covered. It is
expected that not all of the features that are detected by FAST be matched, but rather only a subset
of them, as some of the features in the left image do not have correspondences in the right image,
or might have small correlation scores.

The proposed method tries to find matches that are well-distributed over the overlapping area
and the different depths of the image pair, and that are governed by the epipolar constraints.



Remote Sens. 2018, 10, 747 17 of 29

Figure 10. A summary of the geometric approximation of correspondences based on an initial set of
matches (the seed). Features from Accelerated Segment Test (FAST) was used for feature detection.

Figure 11. The proposed recursive method includes the geometric prediction of point correspondence
based on the seed matches, correction via template matching, and seed extension.

3. Results and Discussions

3.1. Experimental Dataset

The proposed methodology was tested using two datasets. The first dataset was provided by the
International Society of Photogrammetry and Remote Sensing (ISPRS) through the ISPRS and EuroSDR
benchmark on multi-platform photogrammetry [36]. This dataset is for the Zollern Colliery (Industrial
Museum) in Dortmund, Germany. The images in this dataset were taken by an unmanned aerial vehicle
(UAV) in a close-range manner. Several images with different characteristics are used from this dataset
to test the proposed methodology. The images used from this dataset are intentionally selected based on
the relative geometry between the image pairs to examine the projective distortion, large baseline, and the
variation in scale and orientation. Therefore, some images are not in the same chronological order as when
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they were taken by the UAV. In practice, successive images are processed together in order to obtain accurate
results. However, this is not always the case in the following experiments.

The other dataset contains one image pair taken by a mobile camera for an indoor environment.
The images were taken by the rear camera of a Samsung Galaxy Note-3, model number: SM-N900W8
(Samsung Electronics Co., Ltd., Suwon, Korea). Images were taken inside one of the engineering buildings
at the University of Calgary, Canada. The images in this dataset were taken by an uncalibrated camera.
Furthermore, the images contain several planar surfaces with different directions, such as the roof and the
walls, and few non-planar objects. So, this dataset provides a challenging scenario for testing the method with
multiple local homographies.

Table 1 lists the image pairs used with their properties. The first image pair is from the ISPRS
dataset, and is characterised by a predominant building façade with multiple depths in the background.
The second image pair is for the same building façade but with a relatively larger baseline and more
scene structure in the background. The third image pair exhibits a different orientation of the camera
from the left image to the right one. The fourth image pair is the same as the first image pair, but with
different scale and orientation. Lastly, the fifth image pair is for the dataset taken by the smartphone,
to emphasise that the method can find good matches even in challenging situations.

Table 1. Images from the two datasets are listed with their different properties.

Image Pair Properties Left Image Right Image

Predominant planar surface
Multiple depths

Image size: 3000 × 2000

Relatively larger baseline
(different scene structures)

Image size: 3000 × 2000

Projective distortion
Image size: 3000 × 2000

Different scale and
orientation (Scale = 0.5,

rotation angle = 45◦)
Image size: 3000 × 2000

Mobile phone images
Indoor environment

Uncalibrated
Different planar surfaces
Image size: 2322 × 4128

3.2. Evaluation Criteria

Visual and numerical indicators are used to evaluate the proposed method and compare it
with other state-of-the-art methods. In most cases, the number of the correct matches obtained by
the proposed method is large enough compared with the number of outliers. This allows solving
for the fundamental matrix via LS, with the option of using outlier rejection techniques if required.
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The proposed method competes as a single procedure against the block of procedures consisting of
a descriptors assignment, preliminary matching, and RANSAC. Therefore, it is being compared with
SIFT, SURF, and ORB before and after their matches are filtered with RANSAC.

Two numerical indicators are used in each of the experiments after filtering the data. The first
is the Percentage of Correct Matches to the Features’ number (PCMF). The second indicator is the
Matching Precision (MP) which is based on the Number of Precise Matches (NPM) and was adopted
by Chen et al. [37]. MP is defined as MP = (NPM/M) × 100%, where NPM are obtained after filtering
the data with RANSAC, and M is the number of all of the matches. The precision of matches is the key
to determining the quality of matching when neither ground truth nor an accurate fundamental matrix
model exists. On the other hand, accurate matches are only determined if ground truth or an accurate
fundamental matrix is obtained from orientation sensors.

For convenience, the number of detected features is approximately fixed in each method to
neutralise the effect of the feature detection step when evaluating the matching process. The number
of features was controlled by tuning the thresholds in each method except in SIFT, in which the images
were resized instead, as SIFT exhibits slow performance when dealing with large images.

To judge the correctness of the matches of each method, the reprojection error is computed using
the known camera matrices of the images. Then, an error threshold of less than 1 pixel is used to reject
incorrect matches, i.e., matches are considered correct if their reprojection error is less than one pixel,
and are considered incorrect otherwise. Hence, another indicator is involved, namely, the Matching
Accuracy MA = NAM/M, where NAM is the Number of Accurate Matches. The camera matrices for
the third pair in Table 1 are not reliable, as there is a time gap between the left and the right images,
which might lead to inaccuracy in the external parameters, especially those obtained from inertial
navigation sensors (INS). Furthermore, the experiments on the third and fourth image pairs in Table 1
are performed to depict the ability of the proposed methodology to work with pairs of different scales
and orientations. Therefore, the accuracy measure is limited to the first and second image pairs only.
Consequently, the number of correct matches is defined as the number of accurate matches in the tests
performed on the first and second image pairs, and defined as the number of precise matches in the
tests performed on the other image pairs.

The results of the experiments are presented in Figure 13 through Figure 18 in terms of the precise
and accurate matches. Additionally, Figure 20 shows the disparity maps computed for the fourth
image pair, which can be considered as another quality measure of the feature matching.

3.3. Matching Performance

The proposed method was tested on the image pairs that are listed in Table 1. The results are
depicted numerically and visually in Tables 2–6 and Figures 13–18, respectively.

The matching precision and accuracy of the proposed method are high compared with the
other methods. Similarly, the percentage of correct matches to the number of features is higher in the
proposed method than in the other methods. This is especially true in comparison to ORB, which shares
the same feature detector as the proposed method.

Histograms were plotted for the reprojection errors of the first and the second image pairs.
The reprojection error is defined as [35]:

Ei =

√
d(qi, q̂i)

2 + d(pi, p̂i)
2) (21)

where (qi, pi) are the matched pair, and q̂i and p̂i are the reprojected points in the left and the right
images, respectively. The term d(qi, q̂i) denotes the Euclidean distance between qi and q̂i. By definition,
the reprojection error is positive, so the histogram is one-sided starting from Ei = 0.

The histograms of the errors are used to determine the threshold at which the matches are rejected.
It was found that the majority of the errors are less than one pixel; therefore, this value was chosen
as a rejection threshold for the incorrect matches. Another advantage of the histograms is that they
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show the upper bound of the errors associated with each method. In the following histogram graphs,
the intervals of errors are limited to [0,5], as most of the significant errors are within this interval.
This is not always the case, since methods such as ORB might exhibit error instability, as will be shown
in the matching test of the second image pair.

The experiment on the first image pair emphasises the difficulty that other methods encounter
when matching images of multiple planes or depths. It can be seen that the precise features in
the first image pair using SIFT, SURF, and ORB are only concentrated on the main building façade,
with very few features or none on the other depths of the image pair. This is a result of using RANSAC,
which tends to find a degenerate model of the fundamental matrix that is different from the ideal
one. It is clear from Table 2 and Figure 13 that the number of precise features is small compared with
the number of accurate features, except for the proposed method. It implies that using RANSAC is
harmful, in some cases, to the accurately matched features. PCMF indicates the effectiveness of the
detect-and-match strategy, as the number of correct matches compared with the detected features
is relatively large in the proposed methods. Furthermore, although the histograms in Figure 12 are
limited to the interval [0, 5], the upper bound of the reprojection error in the proposed method is
25 pixels, while it reaches 656 pixels in SIFT, and thousands of pixels in SURF and ORB. The upper
bound of the reprojection errors can be represented by their standard deviation, which is very small
in the proposed method compared with the other methods. These results support the outliers in the
proposed method being constrained to be within small distances from the correct correspondences.
Therefore, direct LS can perform well in estimating the fundamental matrix, since the effects of those
constrained outliers are insignificant.

Figure 12. Histogram of the reprojection errors for the first image pair. (a) the proposed method;
(b) Scale Invariant Feature Transform (SIFT); (c) Speeded Up Robust Features (SURF); and (d) Oriented
“Features from Accelerated Segment Test” (FAST) and Rotated Binary Robust Independent Elementary
Features (BRIEF) (ORB).
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Table 2. Numerical indicators for the first image pair.

Matching Measures
Matching Methods

SIFT SURF ORB OURS

Number of Features (F) 6559 6640 6500 6463
Number of Matches (M) 2906 3706 3163 4530

Number of Precise Matches (NPM) 2126 1563 422 4484
Matching Precision (MP) 73.16% 42.17% 13.34% 98.98%

Number of Accurate Matches (NAM) 2586 3237 2648 4125
Matching Accuracy (MA) 88.99% 87.34% 83.71% 91.06%

Percentage of Correct Matches to Feature number (PCMF) 39.43% 48.75% 40.74% 63.82%

Figure 13. First image pair with multiple depths, predominant surface and short baseline; accurate
and precise matches using (a) the proposed method; (b) SIFT; (c) SURF; and (d) ORB.

Table 3. Numerical indicators for the second image pair.

Matching Measures
Matching Methods

SIFT SURF ORB OURS

F 5872 5497 5500 5217
M 748 1836 802 3546

NPM 112 113 40 2090
MP 14.97% 6.15% 4.99% 58.94%

NAM 525 498 371 2137
MA 70.19% 27.12% 46.26% 60.27%

PCMF 8.94% 9.06% 6.75% 40.96%

The second image pair is characterised by a large baseline as well as multiple planes, depths,
and scale variation. Similar results to the first test are depicted in Table 3 and Figure 15, except that the
PCMF is lower in this test than that of the first test, which is a result of the smaller overlap and the
change in geometry between the image pair (i.e., scale and depth). The experiment on the second pair
proves the capability of the proposed methodology to work with multiple local homographies that are
different from the global homography.
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Figure 14. Histogram of the reprojection errors for the second image pair. (a) The proposed method;
(b) SIFT; (c) SURF; and (d) ORB.

The histograms of the errors in Figure 14 follow the same pattern as in the test of the first image
pair, except that the error range is now larger due to the less overlap and the geometry difference
between the image pair. The errors associated with the ORB method seem to be the worst, as the
frequency of the errors is significant even at errors of 80 pixels.

Figure 15. Second image pair with large baseline; accurate and precise matches using (a) the proposed
method; (b) SIFT; (c) SURF; and (d) ORB.

The experiment results for the third and fourth image pairs exhibit high geometrical distortion.
These image pairs are selected to examine the robustness of the proposed method to variation in
geometrical properties, such as scale, rotation, and projectivity. The PCMF and MP in Tables 4
and 5 indicate the higher performance of the proposed method compared with the state-of-the-art
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methods. The matching performance is also depicted in Figures 16 and 17. As expected, ORB is of
low performance in both cases. Again, it should emphasised that although ORB uses a modified
version of the FAST detector to account for the rotation and scale, the proposed method outperforms
it significantly. In other words, robust and accurate matches can be obtained based on relatively
weak detectors.

Table 4. Numerical indicators for the third image pair.

Matching Measures
Matching Methods

SIFT SURF ORB OURS

F 6341 6392 6500 6888
M 144 1177 254 1049

NPM 135 349 132 457
MP 93.75% 29.65% 51.97% 43.57%

PCMF 2.13% 5.46% 2.03% 6.63%

Figure 16. Third image pair with projective transformation; precise matches using (a) the proposed
method; (b) SIFT; (c) SURF; and (d) ORB.

Table 5. Numerical indicators for the fourth image pair.

Matching Measures
Matching Methods

SIFT SURF ORB OURS

F 6559 6640 6500 6201
M 1337 1129 1920 2670

NCM 1325 349 1822 2661
PCMF 20.20% 5.26% 28.03% 42.85%

MP 99.10% 29.65% 94.84% 99.63%

Figure 17. Cont.
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Figure 17. Fourth image pair with different orientation and scale; precise matches using (a) the proposed
method; (b) SIFT; (c) SURF; and (d) ORB.

The fifth image pair is chosen to test the proposed method in challenging scene structures. The image
pair contains planes with different orientations and without a single predominant planar surface.
Comparison of the results in Table 6 indicates the notable performance of the proposed method. Furthermore,
the results in Figure 18 reflect the better distribution of the matches obtained by the proposed method than
those obtained by SURF and ORB. In the next subsection, a demonstration of the impact of the matches’
distribution on the disparity map is presented.

Table 6. Numerical indicators for the fifth image pair.

Matching Measures
Matching Methods

SIFT SURF ORB OURS

F 4915 4890 4700 4764
M 1139 1736 1523 3310

NCM 973 1057 1214 3024
PCMF 19.80% 21.62% 25.83% 63.48%

MP 85.43% 60.89% 79.71% 91.36%

Figure 18. Fifth image pair for an indoor environment; precise matches using (a) the proposed method;
(b) SIFT; (c) SURF; and (d) ORB.
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The test results prove the accuracy and robustness of the proposed method over the state-of-the-art
methods. However, some matches are rejected by the proposed method as well as other methods.
The rejected matches of the proposed method are relatively close to the correct matches’ locations.
Thanks to the geometrical prediction step, the outliers are close enough to the correct matches.
This allows using the matches with a LS adjustment to estimate the fundamental matrix. On the
other hand, when dealing with other methods, besides being of a large number, the outliers usually
are inconsistent, such that LS fails to find a correct fundamental matrix. Hence, RANSAC is employed
to filter those outliers, but in many cases, it finds a degenerate model of the fundamental matrix.

Furthermore, in some applications, it might be desirable to detect matches that are within a few
pixels of the correct matches, which make the proposed method more favourable than other methods.

3.4. Processing Time

The average processing time of the state-of-the-art methods, including RANSAC processing time,
versus the proposed method, was calculated in seconds for the first image pair. Figure 19 shows a comparison
of each method’s processing time. It is worthwhile to mention that although the tests were performed on
the same machine, the implementation of the proposed method is not optimised for parallel computing,
which should mitigate the processing time dramatically. The code for SIFT was obtained from Lowe’s
website. It was implemented in C language, but has MATLAB calling functions. The MATLAB built-in
functions were used for SURF, while ORB was implemented using a C++ code with the OpenCV library.
Therefore, only SURF and the proposed method were implemented with MATLAB code, which is known
to be slower than C/C++ codes.

Hence, the proposed method is a tradeoff between accuracy and efficiency, but at the same time
can be optimised for better time efficiency.

Figure 19. Processing time for different methods. Methods are used with Random Sample Consensus
(RANSAC), except the proposed method is used with least squares.

3.5. Applications

As discussed earlier, the uniformity of feature matching is significant to the estimation of
a non-degenerate fundamental matrix and other feature matching-dependent applications, including
sparse point cloud generation.

A noise-free sparse cloud can be obtained by photogrammetric intersection (triangulation) if
there exists an outlier free set of matches. However, accuracy is not the only factor impacting the
quality of the generated point cloud, but also the distribution of the feature points. For example,
the concentration of the feature points around a specific region, may result in significant gaps in the
constructed scene, especially when such behaviour is repeated in several pairs of images.
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Dense matching is another example in which the distribution of feature points is critical. The process of
dense matching typically starts with the selection of a set of matches, followed by the estimation of both the
fundamental matrix and the rectification parameters. Then, if two images are correctly rectified, the search
for point correspondence on epipolar lines is straightforward. The errors in dense matching are due to either
illumination and other radiometric properties of the stereo pair, or to a flawed rectification. Thus, to limit the
errors of dense matching to only the radiometric errors, we must obtain a well-rectified image pair, which is
dependent on the estimation of the fundamental matrix. We have seen earlier that the estimation of the
fundamental matrix is a function of the distribution of matches over the overlapping area of the image pair.

Figure 20. Disparity maps resulting from close range and aerial (long range) images using Semi-Global
Matching;(a) disparity map of the fourth image pair with matches obtained by the proposed method;
(b) disparity map of the same pair with matches obtained by SURF.

The effect of the distribution of matches on the sparse point cloud generation is evident from
Figures 13 and 15. In Figure 13b,c, very few points are in the background, and most of the points
are concentrated on the front building façade. Hence, it is evident that triangulation would lead to
a two-dimensional (2D) surface in Figure 13b,c, which is opposite to the case in Figure 13a, in which
points are distributed over different scene structures.

Figure 20 highlights the impact of matching methods on the disparity map. Figure 20a,b are
the results of dense matching using the fourth image pair after the images are rectified based on the
proposed matching method and on SURF, respectively. The disparity map in both cases is computed
using the Semi-Global Matching [38]. It is evident that in both images, there exist errors due to
illumination difference. Nevertheless, the disparity map in Figure 20a is far better than the one in
Figure 20b. The rectification in Figure 20b is affected by more feature points being located on the
building façade, which in turn results in an inaccurate fundamental matrix and flawed rectification.
As a result, only part of the building seems to be correctly matched, and the rest of the image is noisy.

4. Conclusions

In this paper, a robust uniformly distributed feature matching method is introduced. The method
is based on the prediction of corresponding features using the epipolar constraints and the refinement
of the correspondences’ locations using template matching. Firstly, a small set of matches is found.
For the method to be self-contained, template matching is employed to find this initial set. Either the
regular template matching or Ciratefi method, when there are significant rotation and scale differences,
is used. From the initial set of matches, the fundamental matrix and homography are calculated. Then,
for all of the detected features in the left image, approximated locations of their correspondences in the
right image are found using both the local homographies, which are encapsulated in the discrepancy
vectors and the epipolar projection. Secondly, template matching is employed with NCC to find
more accurate correspondence locations from the approximated ones. The proposed method does not
employ descriptors, which is memory and time inefficient, and moreover more probabilistic rather
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than deterministic. To account for the variation in scale and orientation, SVD is used to find a global
scale and orientation for the right image. Scale and rotation are then applied to the template window.

The experimental tests of different images with different characteristics proved that the proposed
method is more robust and generates more uniform matches than the current state-of-the-art methods.
Furthermore, it solves the problem of model degeneracy at the detect-and-match level, instead of the
RANSAC level.

The only apparent drawback of the proposed method is the processing time compared with SURF
and ORB. However, processing time can be optimised via parallel computing.
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