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Abstract: Smallholder farmers cultivate more than 80% of the cropland area available in Africa.
The intrinsic characteristics of such farms include complex crop-planting patterns, and small fields
that are vaguely delineated. These characteristics pose challenges to mapping crops and fields from
space. In this study, we evaluate the use of a cloud-based multi-temporal ensemble classifier to
map smallholder farming systems in a case study for southern Mali. The ensemble combines a
selection of spatial and spectral features derived from multi-spectral Worldview-2 images, field
data, and five machine learning classifiers to produce a map of the most prevalent crops in our
study area. Different ensemble sizes were evaluated using two combination rules, namely majority
voting and weighted majority voting. Both strategies outperform any of the tested single classifiers.
The ensemble based on the weighted majority voting strategy obtained the higher overall accuracy
(75.9%). This means an accuracy improvement of 4.65% in comparison with the average overall
accuracy of the best individual classifier tested in this study. The maximum ensemble accuracy is
reached with 75 classifiers in the ensemble. This indicates that the addition of more classifiers does not
help to continuously improve classification results. Our results demonstrate the potential of ensemble
classifiers to map crops grown by West African smallholders. The use of ensembles demands high
computational capability, but the increasing availability of cloud computing solutions allows their
efficient implementation and even opens the door to the data processing needs of local organizations.

Keywords: Google Earth Engine; crop classification; multi-classifier; cloud computing; time series;
high spatial resolution

1. Introduction

Smallholder farmers cultivate more than 80% of the cropland area available in Africa [1] where
the agricultural sector provides about 60% of the total employment [2]. However, the inherent
characteristics of smallholder farms such as their small size (frequently less than 1 ha and with
vaguely delineated boundaries), the ir location in areas with extreme environmental variability in
space and time, and the use of mixed cropping systems, have prevented a sustainable improvement on
smallholder agriculture in terms of volume and quality [3]. Yet, an increase of African agricultural
productivity is imperative because the continent will experience substantial population growth in
the coming decades [4]. Realizing that croplands are scarce, the productivity increase should have
the lowest reasonable environmental impact and should be as sustainable as possible [5]. A robust
agricultural monitoring system is then a prerequisite to promote informed decisions not only at
executive or policy levels but also at the level of daily field management. Such a system could,
for example, help to reduce price fluctuations by deciding on import and export needs for each crop [6],
to establish agricultural insurance mechanisms, or to estimate the demand for agricultural inputs [6,7].
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Crop maps are a basic but essential layer of any agricultural monitoring system and are critical to
achieve food security [8,9]. Most African countries, however, lack reliable crop maps. Remote sensing
image classification is a convenient approach for producing these maps due to advantages in terms
of cost, revisit time, and spatial coverage [10]. Indeed, remotely sensed image classification has been
successfully applied to produce crop maps in homogeneous areas [11-14].

Smallholder farms, which shape the predominate crop production systems in Africa, present
significant mapping challenges compared to homogeneous agricultural areas (i.e., with intensive or
commercial farms) [8]. Difficulties are not only in requiring very high spatial resolution data, but also
in the spectral identification of farm fields and crops because smallholder fields are irregularly shaped
and their seasonal variation in surface reflectance is strongly influenced by irregular and variable farm
practices in environmentally diverse areas. Because of these peculiarities, the production of reliable
crop maps from remotely sensed images is not an easy task [15].

In general, a low level of accuracy in image classification is tackled by using more informative
features, or by developing new algorithms or approaches to combine existing ones [16]. Indeed, several
studies have shown that classification accuracy improves when combining spectral (e.g., vegetation
indices), spatial (e.g., textures), and temporal (e.g., multiple images during the cropping season)
features [17]. Compared to single band, spectral indices are less affected by atmospheric conditions,
illumination differences, and soil background, and thus bring forward an enhanced vegetation signal
that is normally easier to classify [18]. Spatial features benefit crop discrimination [19], especially in
heterogeneous areas where high local variance is more relevant when very high spatial resolution
images are applied [20,21]. Regarding temporal features, multi-temporal spectral indices have been
exploited in crop identification because they provide information about the seasonal variation in
surface reflectance caused by crop phenology [13,22-24].

The second approach to increase classification accuracy (i.e., by developing new algorithms) has
been extensively used by the remote sensing community, which has rapidly adopted and adapted
novel machine learning image classification approaches [25-27]. The combination of existing classifiers
(ensemble of classifiers) has, however, received comparatively little attention, although it is known
that ensemble classifiers increase classification accuracy because no single classifier outperforms the
others [28]. A common approach to implement a classifier ensemble, also known as a multi-classifier,
consists of training several “base classifiers”, which are subsequently applied to unseen data to create
a set of classification outputs that are next combined using various rules to obtain a final classification
output [28,29]. At the expense of increased computational complexity, ensemble classifiers can handle
complex feature spaces and reduce misclassifications caused by using non-optimal, overfitted, or
undertrained classifiers and, hence, the y improve classification accuracy. Given the increasing
availability of computing resources, various studies have shown that ensemble classifiers outperform
individual classifiers [30-32]. Yet, the use of ensemble classifiers remains scarce in the context of
remote sensing [33] and is limited to image subsets, mono-temporal studies, or to the combination of
only a few classifiers [34-36].

Ensemble classifiers produce more accurate classification results because they can capture and
model complex decision boundaries [37]. The use of ensembles for agricultural purposes as reported in
various studies has shown that they outperformed individual classifiers [34,35,38]. Any classifier that
provides a higher accuracy than one obtained by chance is suitable for integration in an ensemble [39],
and may contribute to shape the final decision boundaries [29]. In other words, the strength of
ensembles comes from the fact that the base classifiers misclassify different instances. For this purpose,
several techniques can be applied. For example, by selecting classifiers that rely on different algorithms,
by applying different training sets, by training on different feature subsets, or by using different
parameters [40,41].

In this study, we evaluate the use of a cloud-based ensemble classifier to map African smallholder
farming systems. Thanks to the use of cloud computing, various base classifiers and combination rules
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were efficiently tested. Moreover, it allowed training of the ensemble with a wide array of spectral,
spatial, and temporal features extracted from the available set of very high spatial resolution images.

2. Materials and Methods

This section provides a description of the available images and the approach used to develop our
ensemble classifiers.

2.1. Study Area and Data

The study area covers a square of 10 x 10 km located near Koutiala, southern Mali, West Africa.
This site is also an ICRISAT-led site contributing to the Joint Experiment for Crop Assessment and
Monitoring (JECAM) [42]. For this area, a time series of seven multi-spectral Worldview-2 images was
acquired for the cropping season of 2014. Acquisition dates of the images range from May to November
covering both the beginning and the end of the crop growing season [42]. The exact acquisition dates
are: 22 May, 30 May, 26 June, 29 July, 18 October, 1 November, and 14 November. The images have a
pixel size of about 2 m and contain eight spectral bands in the visible, red-edge and near-infrared part
of the electromagnetic spectrum. Figure 1 illustrates the study area and a zoomed in view of the area
with agricultural fields. All the images were preprocessed using the STARS project workflow which
uses the 65 radiative transfer model for atmospheric correction [43]. The images were atmospherically
and radiometrically corrected, co-registered, and trees and clouds were masked. Crop labels for five
main crops namely maize, millet, peanut, sorghum, and cotton, were collected in the field. A total of
45 fields were labeled in situ in the study area indicated in Figure 1b. This ground truth data was used
to train base classifiers and to assess the accuracy of both base classifiers and ensembles.
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Figure 1. Study area. (a) Location of the study area in Mali; (b) The study’s field plots overlapping a
Worldview-2 image of the study area on 18 October 2014 using natural color composite.

2.2. Methods

Figure 2 presents a high-level view of the developed workflow. First, in the data preparation
step (described more fully in Section 2.2.1), we extract a suite of spatial and spectral features from the
available images and select the most relevant ones for image classification. Then, multiple classifiers
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are trained, tested, and applied to the images (Section 2.2.2). Finally, we test various approaches
to create ensembles from the available classifiers and assess their classification accuracy using an

independent test set (Section 2.2.3).
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Figure 2. Overview of the ensemble classifier system. X represents the features extracted during

pre-processing, Y and Yiest represent ground truth of training and test data, Y, is the prediction of a
classifier and Y the ensemble prediction. Ky, is the kappa obtained by a classifier.

2.2.1. Data Preparation
A comprehensive set of spectral and spatial features is generated from the (multi-spectral) time

series of Worldview-2 images. The spectral features include the vegetation indices listed in Table 1.

Table 1. Vegetation indices, formulas, and reference. WorldView-2 band names abbreviations are:
R =Red, RE = Red edge, G = Green, B = Blue and NIR = Near IR-1.

Vegetation Index (VI) Formula
Normalized Difference Vegetation Index (NDVI) [44] (NIR — R)/(NIR + R)
Green Leaf Index (GLI) [45] 2xG—-R—-B)/2xG+R+B)
Enhanced Vegetation Index (EVI) [46] EVI=25 x (NIR —R)/(NIR+6 x R =75 x B+1)
Soil Adjusted Vegetation Index (SAVI) [47] (1+L) x (NIR — R)/(NIR + R+ L), where L = 0.5

Modified Soil Adjusted Vegetation Index (MSAVI) [48] 0.5 x <2 x NIR+1— \/(2 x NIR +1)* -8 x (NIR — R))

Transformed Chlorophyll Absorption in Reflectance
Index (TCARI) [49]

Visible Atmospherically Resistance Index (VARI) [50] (G=R)/(G+R —B)

3 x ((RE — R) — 02 x (RE — G) x (RE/R))

Spatial features are based on the Gray Level Co-occurrence Matrix (GLCM). Fifteen features
proposed by [51] and three features from [52] are derived. This selection fits with their function
availability in the Google Earth Engine (GEE) [53]. Formulas of these features are shown in Tables A1l
and A2.

Textural features are calculated as the average of their values in four directions (0, 45, 90, 135),
applying a window of 3 x 3 pixels to the original spectral bands of each image. This configuration
corresponds to the default setup in GEE and is deemed appropriate for our study since our goal is to
create an efficient ensemble and not to optimize the configuration to extract spatial features.

The extraction of spectral and spatial features, computed for each pixel, results in 140 features for
a single image and in 980 features for the complete time series (Table 2). Although GEE is a scalable
and cloud-based platform, a timely execution of the classifiers is not possible without reducing the
number of features used. Moreover, we know and empirically see (results not shown) that many
features contain similar information and are highly correlated. Thus, a guided regularized random
forest (GRRF) [54] is applied to identify the most relevant features. This feature selection step helps to
make our classification problem both more tractable in GEE and more interpretable. GRRF requires
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the optimization of two regularization parameters. The most relevant features are obtained using
the criteria of gain regularized higher than zero. This optimization is done for ten subsets of training
data generated by randomly splitting 2129 training samples. Each subset is fed to the GRREF to select
the most relevant spectral and spatial features after optimizing the two regularization parameters.
The selected features are then used to train an RF classifier using all the training samples. The best set
of spatial and spectral features is determined by ranking the resulting RF classifiers according to their
OA for 1258 test samples.

Table 2. Type and number of features extracted from a single multi-spectral WorldView-2 image,
and from the time series of seven images. Gray Level Co-occurrence Matrix (GLCM).

Feature Features Per Image Total Per Image Series
Spectral bands 7 49
Vegetation indices 7 49
GLCM-based features applied to image bands 126 882
Total 140 980

2.2.2. Base Classifiers

Several classifiers are used to create our ensembles, after performing an exploratory analysis with
the available classifiers in GEE. Five classifiers are selected to create our ensembles based on their
algorithmic approach and overall accuracy (OA): Random Forest (RF; [55]), Maximum Entropy Model
(MaxEnt; [56]), Support Vector Machine (SVM; [57]) with linear, polynomial and Gaussian kernels.
A combination with other types of classifier, e.g., a deep learning algorithm could easily be allowed
when such becomes available in GEE (with inclusion of TensorFlow). This is expected to happen given
the active research being performed in this field. The following paragraphs briefly describe our chosen
classifiers and explain how they are used in this study.

RF is a well-known machine learning algorithm [58-61] created by combining a set of decision
trees. A typical characteristic of RF is that each tree is created with a random selection of training
instances and features. Once the trees are created, classification results are obtained by majority
voting. RF has reached around 85% OA in crop type classification using a multi-spectral time series
of RapidEye images [62], and higher than 80% for a time series of Landsat7 images in homogeneous
regions [13]. RF has two user-defined parameters: the number of trees and the number of features
available to build each decision tree. In our study, an RF with 300 trees is created and we set the
number of features per split to the square root of the total number of features. These are standard
settings [63].

MaxEnt computes an approximated probability distribution consistent with the constraints (facts)
observed in the data (predictor values) and as uniform as possible [64]. This provides maximum
entropy while avoiding assumptions on the unknown, hence the name of the classifier. MaxEnt was
proposed to estimate geographic species distribution and potential habitat [56], to classify vegetation
from remote sensing images [65], and groundwater potential mapping [66]. In our study, MaxEnt
was applied with default parameter values in GEE as follows: weight for L1 regularization set to 0,
weight for L2 regularization set to 0.00001, epsilon set to 0.00001, minimum number of iterations set to
0, and maximum number of iterations set to 100.

SVM is another well-known machine learning algorithm that has been widely applied for crop
classification [11,67]. SVM has demonstrated its robustness to outliers and is an excellent classifier
when the number of input features is high [12]. The original binary version of SVM aims to find the
optimal plane that separates the available data into two classes by maximizing the distance (margins)
between the so-called support vectors (i.e., the closest training samples to the optimal hyperplane).
Multiple binary SVMs can be combined to tackle a multi-class problem. When the training data
cannot be separated by a plane, it is mapped to a multidimensional feature space in which the samples



Remote Sens. 2018, 10, 729 6 of 18

are separated by a hyperplane. This leads to a non-linear classification algorithm that, thanks to the
so-called kernel trick, only needs the definition of the dot products among the training data [68]. Linear,
radial, and polynomial kernels are commonly used to define these dot products. The linear SVM only
requires fixing the so-called C parameter, which represents the cost of misclassifying samples, whereas
the radial and polynomial kernels require the optimization of an additional parameter, respectively
called gamma and the polynomial degree. In this work, all SVM parameters were obtained by 5-fold
cross validation [69], Linear kernel (SVML) was tuned in a range of initial values C =[1, 10, 50, 100, 200,
300, 400, 500, 600, 700, 800, 1000]. Gaussian kernel (SVMR) used an initial values range of C = [1, 10,
100, 200, 300] and gamma = [0.001, 0.1, 0.5, 1, 5, 10]. Also, parameters for SVM polynomial (SVMP)
were tuned using C = [10, 100, 300], gamma = [0.1, 1, 10], degree = [2, 3, 4] and coef0 = [1, 10, 100].

All classifiers are trained and applied separately using a modified leave-one-out method in which
the training set is stratified and randomly partitioned into k (10) equally sized subsamples. Each base
classifier is trained with k — 1 subsamples, leaving one subsample out [40]. Using ten different seeds to
generate the subsamples, the se methods allow us to generate 100 subsets of training data that, in turn,
allow 20 versions of each base classifier to be generated and a total of 100 classification models when
combining the five classifiers as presented in Figure 3. This training method prevents overfitting of
the base classifiers because 10% of the data is discarded each time. Overfitting prevention is desirable
because the ensemble is not trainable. Metrics reported are OA and kappa coefficient. Producer
accuracy (PA) per class is also computed and is used to contrast performance of individual classifiers
versus ensemble classifiers.

Training data

A

f |
—»| BC1
Seed 1
—»| BC10
—®» BC91
Seed 10
—» BC 100
Block used Block discarded

Figure 3. Leave-one-out strategy using ten seeds for generating 100 training datasets to train base
classifiers (BC).

2.2.3. Ensemble Classifiers

Two combination rules, namely majority and weighted majority voting, are tested in this study
to create ensemble classifiers. In the case of majority voting, the output of the ensemb]e is the most
assigned class by classifiers, whereas in the weighted majority voting rule, a weight is assigned to each
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classifier to favor those classifiers with better performance in the voting decision. Both rules are easily
implemented and produce results comparable to more complicated combination schemes [30,36,70].
Moreover, the se rules do not require additional training data because they are not trainable [40] which
means that the required parameters for the ensemble are available as the classifiers are generated and
their accuracy assessed.

Majority voting works as follows. Let x denote one of the decision problem instances, let L be the
number of base classifiers used, and let C be the number of possible classes. The decision (output) of
classifier i on x is represented as a binary vector d, ; of the form (0,...,0,1,0,...,0), where dx,i,j =1
if and only if the classifier labels that instance x with class C - Further, we denote vector summation
by Y and define the function idx@max as the index at which a maximum value is found in a vector.
This function resolves ties as follow: if multiple maximal values are found, the index of the first
occurrence is picked and returned. The majority voting rule of an ensemble classifier on decision
problem x defines the class number Dy as:

D, = idx@max E?: 1 Axis @

following [29].
Weighted majority voting is an extension of the above and uses weights w; per base classifier i.

D, =idx@max ZIL: 1 Widxi, &)

In this, we choose w; = log (1—Ek>, where k is the kappa coefficient of base classifier i over an
independent sample set [29].

As mentioned in Section 2.2.2, our training procedure yields 20 instances of each base classifier.
This allows creating two 100-classifier ensembles as well as a larger number of ensembles formed by 5,
10,15, ..., 95 classifiers. The latter ensembles serve to evaluate the impact of the size of the ensemble.
To avoid biased results, we combine the base classifiers while keeping the proportion of each type
of classifier. For example, the 10-classifier ensemble is created by combining two randomly chosen
base classifiers of each type. This experiment means that we evaluate the classification accuracy of
191 ensembles. Classification accuracy is assessed by means of their OA, the ir kappa coefficient and
the producer’s accuracy of each class. Besides, results of the most effective configuration of ensembles
and the individual classifier with higher accuracy are compared to get insights into their performance.
Examples of their output are analyzed by visual inspection.

3. Experiment Results and Discussion

3.1. Data Preparation

A feature selection method is applied before the classification to reduce the dimensionality of
data without losing classification efficiency. In our study, we selected the GRRF method because it
selects the features in a transparent and understandable way. The application of the GRRF to the
expanded time series (i.e., the original bands plus spectral and spatial features), leads to the selection
of 45 features as shown in Table 3; bands, spectral, and spatial features were selected. In general,
spatial features were predominantly selected in almost all the images, whereas vegetation indices were
selected in only five images. Vegetation indices have more influence when taken from images acquired
when the crop has grown than when the field is bare.

A more detailed analysis of Table 3 shows that the selected multi-spectral bands and vegetation
indices respectively represent 24.44% and 26.66% of the most relevant features. Textural features
represent 48.88% of the most relevant features, which emphasizes the relevance of considering spatial
context when analyzing very high spatial resolution images. As an example, Figures 4 and 5 show the
temporal evolution of a vegetation index and of one of the GLCM-based spatial features. In Figure 4,
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changes in TCARI are presented. Figure 4a shows a low vegetation signal since the crop is at an
initial stage. In Figure 4b,c, a higher vegetation signal is shown, which relates to a more advanced
growth stage. TCARI was selected for three different dates underlining the importance of changes in
vegetation index for crop discrimination. Similarly, Figure 5 displays a textural feature (sum average
of band 8) for a specific parcel, which points at variation in spatial patterns as the growing season

goes by.

Table 3. Guided regularized random forest (GRRF) selected features sorted by image date [b2: band 2,
b3: band 3, b4: band 4, b5: band 5, b6: band 6, b7: band 7, b8: band 8, idm: inverse different moment,
savg: sum average, dvar: difference variance, corr: correlation, diss: dissimilarity].

Image Date
22May 30May 26June 29July 18 October 1 November 14 November
2014 2014 2014 2014 2014 2014 2014
b3 b3_savg b4_diss b3 SAVI b3_diss b2
b7 b5_savg b5_dvar Db5_savg VARI b4_dvar b2_savg
b8 b6_corr  b8_ent b6 b4_idm b3_dvar
b8_idm b7 _idm GLI b6_corr b4_savg b8
b7_savg MSAVI  b6_savg b6 EVI
b8_savg TCARI  b8_diss b6_savg TCARI
VARI b7_corr
b7_savg
b8_diss
b8_savg
EVI
GLI
TCARI
VARI
‘ 2
‘ 15
1
0.5
u
(b)

Figure 4. Vegetation Index (TCARI) for a sample parcel. Dates are: (a) 26 June 2014; (b) 1 November 2014;

and (c) 14 November 2014.

@)

Figure 5. Sum average of band 8 (b8_avg) for a sample parcel. Dates are: (a) 30 May 2014; (b) 1 November 2014.
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3.2. Base Classifiers and Ensembles

90f18

The accuracy of the 20 base classifiers created for each classification method is assessed using ground
truth data. Table 4 lists the number of pixels per crop class used for the training and testing phase.

Table 4. Number of pixels per crop class for training base classifiers

and assessing accuracy (testing).

# Pixels
Class Crop Name
Training Testing
1 Maize 395 234
2 Millet 531 309
3 Peanut 276 168
4 Sorghum 472 291
5 Cotton 455 256
Total 2129 1258

Figure 6 illustrates the mean performance of all base classifiers as a boxplot. The mean OA of
each classifier method ranges between 59% and 72%. SVMR obtained higher accuracy than SVMP and
SVML [26,71]. Lower accuracy of SVML means that linear decision boundaries are not suitable for
classifying patterns in this data [72]. RF had slightly better performance than SVMR. This result is
consistent with [58]. MaxEnt presented the lowest performance confirming the need for more research
before it can be operationally used in multi-class classification contexts [73].

o -
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0.66

OA

0.64

0.62

é L

RF MaxEnt SVML SVYMR
Base classifiers

L

=

SVMP

Figure 6. Boxplot of overall accuracy (OA) of base classifiers.

A comparison between the performance of base classifiers and ensembles was carried out. Thus,

Table 5 summarizes minimum, mean, and maximum overall accuracy and kappa coefficient for both
base classifiers and ensembles. We observe that ensemble classifiers in all cases outperform base
classifiers with a rate of improvement ranging from 5.15% to 29.50%. On average, majority voting
provides an accuracy that is 2.45% higher than that of the best base classifier (RF). Improvements
are higher, at 4.65%, when a weighted voting rule is applied. This is because more effective base
classifiers have more influence (weight) in the rule created to combine their outputs. Table 5 also

reports associated statistics for kappa, but these values should be considered carefully [74].
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Table 5. Summary statistics for the overall accuracy and kappa coefficient of base classifiers and

ensembles. Maximum Entropy Model (MaxEnt). Random Forest (RF). Support Vector Machine (SVM)
with linear kernel (SVML). SVM with polynomial kernel (SVMP). SVM with Gaussian kernel (SVMR).
Majority voting (Voting). Weighted majority voting (WVoting). In bold, the maximum OA (mean) and

the maximum kappa (mean) for base classifiers and ensembles.

Kappa
Classifier Mean Std Min Max Mean Std Min Max
MaxEnt 05975  0.0078 05874  0.6105  0.4913  0.0098  0.4785  0.5070
B RF 07172  0.0041 07107 07234  0.6412  0.0050  0.6333  0.6480
a as?f. SVML 0.6176  0.0095 06010  0.6335 05165  0.0119 04958  0.5361
asstier — gqynpp 0.6951  0.0092 06852 07154 06151  0.0114  0.6029  0.6401
SVMR 0.7069  0.0048  0.6963 07154  0.6294  0.0058  0.6172  0.6398
. e Voting 0.7348  0.0060 07059 07464  0.6642  0.0075  0.6279  0.6788
NSEMBIE Wioting  0.7506  0.0060 07234 07607  0.6841  0.0076  0.6497  0.6969

The number of classifiers to build an ensemble was analyzed. In Figure 7, the mean and standard
deviation of the OA is presented for each ensemble size. The weighted voting scheme outperforms the
simple majority voting. The accuracy of the ensembles increases as the number of classifiers grows.
However, maximum accuracy is reached when the number of classifiers is 75 for weighted voting and
45 for majority voting. This means that the majority voting approach tends to saturate with fewer
classifiers than the weighted majority voting approach. The standard deviation shows a decreasing
trend because as the size of the ensemble increases, results become more stable. These results are
congruent with the theoretical basis of ensemble learning [29,39].

0.76

0.75

0.74

OA

0.73

0.72

0.71

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Classifiers

Voting
WWating

90 95 100

Figure 7. Mean and standard deviation of the overall accuracy using majority voting and weighted

majority voting.
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We contrast results of an ensemble sized 75 (hereafter called ensemble-75) with results obtained
by an instance of RF because it had the best performance among base classifiers. Also, we compared
the performance of ensemble-75 with the ensemble composed of 100 classifiers (hereafter called
ensemble-100). OA for ensemble-75 is 0.7591, our chosen RF has an OA of 0.7170 and ensemble-100
has 0.7543. In Table 6, we present the confusion matrix obtained for the selected RF.

Table 6. Confusion matrix applying a base RF classifier, PA: Producer accuracy per class.

Maize Millet Peanut Sorghum Cotton PA
Maize 140 30 5 44 15 0.5983
Millet 14 239 16 33 7 0.7735
Peanut 10 17 109 24 8 0.6488
Sorghum 18 23 8 224 18 0.7698
Cotton 13 26 6 21 190 0.7422

Table 7 shows the confusion matrix of the selected ensemble and in Table 8 results of applying
100 classifiers are presented.

Table 7. Confusion matrix applying an ensemble of 75 classifiers. PA: Producer accuracy per class.

Maize Millet Peanut Sorghum Cotton PA
Maize 167 23 3 32 9 0.7137
Millet 19 243 13 28 6 0.7864
Peanut 5 19 120 21 3 0.7143
Sorghum 21 16 6 230 18 0.7904
Cotton 17 25 4 15 195 0.7617

Table 8. Confusion matrix applying an ensemble of 100 classifiers. PA: Producer accuracy per class.

Maize Millet Peanut Sorghum Cotton PA
Maize 163 25 3 34 9 0.6966
Millet 18 245 13 27 6 0.7929
Peanut 5 21 117 22 3 0.6964
Sorghum 22 13 7 229 20 0.7869
Cotton 18 24 4 15 195 0.7617

Regarding the comparison between the performance of ensemble-75 and ensemble-100, we notice
that ensemble-100 has a slightly lower OA and ensemble-75 produces better results in four of five crops.
The improvement of ensemble-100 in Millet is only 0.82%, whereas there is no difference in Cotton.
Sorghum, Maize, and Peanut display a lower performance with 0.43%, 2.39%, and 2.5% respectively.
This means that the maximum accuracy is obtained when 75 classifiers are combined, and that addition
of more classifiers does not improve the performance of ensembles.

Figure 8 presents example fields to illustrate the classification results produced by ensemble-75,
ensemble-100, and the selected RF. We extracted only the fields where ground truth data was available.
We observe that in both ensembles, millet is less confused with peanut and cotton than in the RF
classification. Cotton is less confused with sorghum as well. Besides, confusion between maize and
sorghum is lower in the ensembles than in RF. This is also true for millet. Misclassifications could
obey to differences in management activities in those fields (i.e., weeding) because multiple visits by
various team confirmed that a single crop was grown. Moreover, by visual analysis, it can be observed
that a map produced by an ensemble seems less heterogeneous than the map produced by a base
classifier (RF). Differences between maps produced by ensemble-75 and ensemble-100 are visually
hardly noticeable.
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Figure 8. Comparison between field classifications produced by a 75-classifiers ensemble (E75),
the 100-classifiers ensemble (E100), and a random forest classifier (RF). PA: Accuracy per class is
listed below each crop. Mask corresponds to trees inside fields or clouds. VHR: overlapping area in a
World-View?2 image on 7 July 2014 using natural color composite.

4. Conclusions and Future Work

Reliable crop maps are fundamental to address current and future resource requirements.
They support better agricultural management and consequently lead to enhanced food security.
In a smallholder farming context, the production of reliable crop maps remains highly relevant
because reported methods and techniques applied successfully to medium and lower spatial resolution
images do not necessarily achieve the same success in heterogeneous environments. In this study,
we introduced and tested a novel, and cloud-based ensemble method to map crops using a wide
array of spectral and spatial features extracted from time series of very high spatial resolution images.
The experiments carried out demonstrated the potential of ensemble classifiers to map crops grown
by West African smallholders. The proposed ensemble obtained a higher overall accuracy (75.9%)
than any individual classifier. This represents an improvement of 4.65% in comparison with the
average overall accuracy values (71.7%) of the best base classifier tested in this study (random forest).
The improvements over other tested classifiers like linear support vector machines and maximum
entropy are larger, at 21.5% and 25.6% respectively. As theoretically expected, the weighted majority
voting approach outperformed majority voting. A maximum performance was reached when the
number of classifiers was 75. This indicates that at a certain point the addition of more classifiers does
not lead to improvement of the classification results.
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From a technical point of view, it is important to note that the generation of spectral and
spatial features as well as the optimal use of ensemble learning, demand high computational
capabilities. Today’s approaches to image processing (big data and cloud-based) allow this concern
to be overcome and hold promise for practitioners (whether academic or industrial) in developing
nations, as the historic setting has often confronted them with technical barriers that were hard to
overcome. Data availability, computer hardware, software, or internet bandwidth have often been
in the way of a more prominent uptake of remote sensing based solutions. These barriers are slowly
eroding, and opportunities are arising as a consequence. In our case, GEE was helpful in providing
computational capability for data preparation and allowed the systematic creation and training of up
to 100 classifiers and their combinations. Further work to extend this study includes the classification
of other smallholder areas in sub-Saharan African, and the addition of new images such as Sentinel-1
and -2 as time series.
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Appendix A. Textural Features Formulas

Table A1 lists textural features from [51] with their corresponding formulas; in these, we have
used the following notational conventions:

p(i, j) is the (i,j)th entry in a normalized gray tone matrix,

px(i) = Z]Ni 1 P(i,]) is the ith entry in the marginal-probability matrix computed by summing
the rows of p(i, ) , for fixed i,

px(j) = Z]Ni 1 P(i,]), is the jth entry in the marginal-probability matrix computed by summing
the columns of p(i, j) , for fixed j,

N, is the number of distinct gray levels in the quantized image,

Peiy(K) = T8y 5% p(i )iy = o and peoy (k) = E5 5%y p(i ) —

Table A2 specifies names of the textural features proposed by [52], and their formulas, in which
the following notation is used:

s(i,j, 0, T) is the (i,j)th entry in a normalized gray level matrix, equivalent to p(i,j),

T represents the region and shape used to estimate the second order probabilities, and

0 = (Ax,Ay) is the displacement vector.
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Table Al. Textural feature formulas from Gray Level Co-occurrence Matrix, as described in [51].

Name/Formula Name/Formula
Angular Second Moment Contrast
Ny N N N1 2 Ng N .

fi= Y ¥ {plij} fo= Xm0 L ¥ pli)isj—n

i=1j=1 n=20 i=1j=1
Correlatzon Variance

N Hally - 2

fz = Z ZT fa= Y ¥ (i—wpij)

i=1j= i=1j=1

Inverse Difference Moment

Sum Average

Ng Ng ZNg' '
fi= B R i) fo = L, penl)
Sum Variance Sum Entropy
2N, ) 5 ) 2N,
fr= L (i~ Pey(i fo = = L preylilog{pesy ()
Entropy . .
2N, Difference Variance
fs = = L prxy(i)log{ps+y(i)} fio = variance of px—y
i=2
Information Measures of Correlation 1
Y—HXY.
fio = If:i {Hg HYI} where,
Difference Entro,
Werence Entrory HXY = — Y T pli)log(p(if))
fin = 'Zopx—y(i)log{Px—y(i)} it ]_
1=

HXY1 = —l_gu_glp(i,j)log{px(i)r’y(f)}

HX and HY are entropies of px and py

Information Measures of Correlation 2

1/2
fi3 = (1 _6[72.0(HXY27HXY)]) _where

Ny N
HXY2 = — '21 ‘lex(i)py(
i=1j=

i) log{px(i)py

()}

Maximal Correlation Coefficient

fia = (second largest eigen value of Q)% where
Q= N plikpn

Dissimilarity

Ne N a2 .
fis = L Y li—jlp(ij)
i=1j=1

Table A2. Textural features included in the classification as described in [52].

Description Formula
1Ll
Inertia I(6,T) = ¥ X (i—j)s(i,jé,T)
iZ0j=0
L-1 L-1 ) 3
Cluster shade A(s,T) Y X <1 +] =i~ Vj) s(i,j,0,T)
i=0j=
L-1 L— 1 o 4
Cluster prominence ~ B(5,T) = ¥ ¥ (1 t]—Hi— Vj) s(i,j,6,T)
i=0j=0
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