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Abstract: Satellite-derived nighttime light images are increasingly used for various studies in relation
to demographic, socioeconomic and urbanization dynamics because of the salient relationships
between anthropogenic lighting signals at night and statistical variables at multiple scales. Owing
to a higher spatial resolution and fewer over-glow and saturation effects, the new generation of
nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night
band (DNB), which is located on board the Suomi National Polar-Orbiting Partnership (Suomi-NPP)
satellite, is expected to facilitate the performance of nocturnal luminosity-based investigations of
human activity in a spatially explicit manner. In spite of the importance of the spatial connection
between the VIIRS DNB nighttime light radiance (NTL) and the land surface type at a fine scale,
the crucial role of NTL-based investigations of human settlements is not well understood. In this study,
we investigated the pixel-level relationship between the VIIRS DNB-derived NTL, a Landsat-derived
land-use/land-cover dataset, and the map of point of interest (POI) density over China, especially
with respect to the identification of artificial surfaces in urban land. Our estimates suggest that
notable differences in the NTL between urban (man-made) surfaces and other types of land surfaces
likely allow us to spatially identify most of the urban pixels with relatively high radiance values
in VIIRS DNB images. Our results also suggest that current nighttime light data have a limited
capability for detecting rural residential areas and explaining pixel-level variations in the POI density
at a large scale. Moreover, the impact of non-man-made surfaces on the partitioned results appears
inevitable because of the spatial heterogeneity of human settlements and the nature of remotely
sensed nighttime light data. Using receiver operating characteristic (ROC) curve-based analysis,
we obtained optimal thresholds of the nighttime light radiance, by equally weighting the sensitivity
and specificity of the identification results, for extracting the nationwide distribution of lighted urban
man-made pixels from the 2015 annual composite of VIIRS DNB data. Our findings can provide
the basic knowledge needed for the further application of current nighttime light data to investigate
spatiotemporal patterns in human settlements.
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1. Introduction

Remotely sensed anthropogenic lighting signals at night provide us with a proxy measure of the
magnitude of human activity over both time and space [1–3]. It is well documented that there are
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generally statistically significant relationships between socioeconomic variables and the nighttime
brightness at the regional and national scales [4–6]. Hence, satellite-derived nighttime light data,
especially the long-term archive data previously collected by the Defense Meteorological Satellite
Program (DMSP), have been widely employed to investigate the total degrees of various socioeconomic
activities, such as the population size, gross domestic product and electric power consumption, at the
regional and national levels [7–17]. In comparison with the DMSP data, current nighttime light images
derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band (DNB) likely
enable us to obtain a detailed look at human settlements with a wider radiometric detection range and
a higher spatial resolution [18–22]. Thus, VIIRS DNB images might potentially be used to characterize
the spatiotemporal pattern of human settlements with locally varying human activities [23–29].

Excluding ephemeral lights and background noises, remotely sensed nocturnal radiance signals
and their spatial variations in the cloud-free composite VIIRS DNB data are mainly determined
by artificial lighting sources at night and their spatial arrangements in human settlements. Thus,
nighttime light data with enhanced radiometric and spatial resolutions could theoretically allow us
to spatially characterize the local patterns and dynamics of human settlement at a fine scale [30–32].
In practice, however, there are still some major challenges to the applications of current nighttime
light images. In fact: (i) The lack of distinct textural information for artificial lighting sources hampers
the morphological identification of different ground features; (ii) non-man-made surfaces lighted
from the over-glow effect caused by light diffusion are often hardly distinguishable from nighttime
lights, especially over urban land and rural–urban transition zones; (iii) in spite of the uncertainties
and variations associated with threshold-based partitions, delineation of human settlements are still
done using nighttime light data. However, the selection of an optimal brightness threshold is always
difficult, and such thresholds are often questioned because of the diversity of their size and form and
the variability in the socioeconomic status of human settlements across different regions; (iv) because
of these drawbacks, most investigations are limited to regional- or sub-regional-level surveys of human
activity; (v) nonetheless, the impact of pixel-level uncertainties and biases cannot be eliminated at the
regional level when we mainly focus on artificial surface-related investigations, because we are unable
to completely (or even mostly) exclude lighted non-man-made pixels.

Notwithstanding the abovementioned limitations, the increasing use of satellite-derived
anthropogenic nighttime light data is desirable mainly because these data provide timely, consistent,
and consecutive observations of diverse demographic and socioeconomic dynamics worldwide. A clear
understanding of the connection between lit pixels and corresponding features on the land surface,
therefore, is crucially important for further applications of nighttime light data. Unfortunately, such a
fundamental issue is less well documented and overlooked in related studies.

The primary objective of the present study is to answer four basic and interrelated questions:
(i) What kinds of land surface are covered by lighted pixels in nighttime light images? (ii) Are those
lighted pixels distinguishable from each other merely using nighttime brightness data? (iii) How many
artificial surfaces or objects cannot be sensed by current nighttime light data? (iv) How can an optimal
threshold be developed that can identify urban areas with nighttime light images?

To answer these questions, we performed large-scale comparative analyses of the
pixel-level relationship between lit pixels in VIIRS DNB nighttime light data and corresponding
land-use/land-cover types derived from Landsat imagery across China in 2015. Point of interest
(POI) data were also used to examine the capability of the VIIRS DNB images to identify artificial
ground objects.

2. Materials and Methods

2.1. VIIRS Nighttime Light Data

The annual cloud-free composite of VIIRS DNB nighttime light data in 2015 was provided by
NOAA’s (National Oceanic and Atmospheric Administration) National Centers for Environmental
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Information (NCEI) (we downloaded the data from https://ngdc.noaa.gov/eog/viirs/index.html).
VIIRS DNB-derived annual composite images of nighttime lights are produced in geographic grids of
15 arc-seconds (~500 m at the equator) in the WGS84 reference system. The VIIRS DNB images used in
this study (as illustrated in Figure 1a) contain cloud-free average values of the nighttime light radiance
(NTL, in nW cm−2 sr−1 hereafter), and background noises and ephemeral lights were filtered out from
the annual composite.
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Figure 1. Illustrations of the spatial distributions of three different datasets used in this study as
exemplified in the Pearl River Delta region in China (see the inset map). (a) Visible Infrared Imaging
Radiometer Suite day/night band (VIIRS DNB)-derived nighttime radiance; (b) Landsat-derived
artificial land; (c) Pixel-level density of points of interest (POIs).

2.2. Land-Use/Land-Cover and Point of Interest Data

The land-use/land-cover (LULC) map in 2015 was provided by the Institute of Geographical
Sciences and Natural Resource Research (IGSNRR) [33]. The IGSNRR LULC map, which has actually
been produced every five years since the 1990s with a spatial resolution of 100 m, is derived from
remotely sensed Landsat TM and ETM+ imagery through a supervised classification method with
ground verification [33]. We re-categorized the initial LULC types of the IGSNRR map into eight
groups: urban land (settlement), rural land (residential area), built-up land (including industrial area,
factory, mine, oil field, salt field, and transportation), cropland (including rain-fed and irrigated), forest
land, grassland (here, the coverage degree >20%), water bodies, and unused land (including desert,
Gobi, swamp, and bare soil). Figure 1b demonstrates the spatial distributions of three types of artificial
surfaces, including urban, rural, and built-up land. Moreover, we collected a nationwide dataset of
POIs (obtained from online mapping services such as https://maps.baidu.com/) consisting of all
kinds of artificial ground objects, including residential, financial, commercial, shopping, and public
service sites. We then generated a POI density map (number per unit pixel) with a spatial resolution of
100 m (as illustrated in Figure 1c).

https://ngdc.noaa.gov/eog/viirs/index.html
https://maps.baidu.com/
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2.3. Comparative Analysis of Nighttime Radiance and Land Surface Data

First, we located all of the land-use/land-cover pixels covered by lighted VIIRS DNB
pixels through a map overlay operation. We then separately counted the number of identified
land-use/land-cover pixels and calculated the statistical features of the nighttime brightness
corresponding to the eight different LULC types. Second, we collected the POI density and the
pixels that were not present in the lighted areas of the VIIRS DNB images for the three types of artificial
surfaces. Third, we used the cumulative distribution of pixel-level VIIRS DNB NTL to quantitatively
compare the differences in the nighttime lighting signals of various lit land surfaces among the eight
LULC types. Finally, the receiver operating characteristic (ROC) curve was employed to obtain an
optimal threshold of the nighttime light radiance to identify urban and built-up lands (collectively
called man-made hereafter) on the basis of a tradeoff between the sensitivity and specificity of the
partitioned results. It should be noted that our investigations were carried out in a nationwide survey
across the whole country at the pixel level in order to obtain a general perspective of the relationship
between the VIIRS DNB nighttime light data and the LULC type. Hence, regional variations in their
connection were not considered in subsequent analyses.

3. Results and Discussion

3.1. Lit Land Surfaces and Non-Lit Artificial Surfaces

A total of nearly 75.62 million pixels in the LULC map were found to be illuminated by VIIRS
DNB-sensed nighttime radiance (here NTL > 0) over the whole country. As shown in Figure 2, we found
that most of the lit pixels (~82%) were likely connected to non-man-made surfaces, and artificial land,
including urban, rural, and built-up areas, accounted only for ~18%. In particular, nearly half of the
lighted area (~49%) was likely connected to cropland. This result reveals a marked impact of the
over-glow effect of artificial radiance on the spatial extent of lit areas, even though the magnitude of the
effect was visually reduced in the VIIRS DNB images in comparison with the DMSP data. This finding
further suggests that lit area-based analysis results without other determinative criteria should be
processed and interpreted with great caution, because sizable non-man-made surfaces can be lighted
at night as a result of the over-glow effect of current nighttime light images.
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in 2015.

As represented in Figure 3, the large majority (~98%) of urban land and nearly three-fifths of
built-up land (~67%), both of which generally experience a relatively high density of human activity,
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showed detectable nighttime light signals in the VIIRS DNB images. Moreover, according to the
POI density map, most of the land surfaces (~71%) with artificial sites were lit by observed artificial
lights. In contrast, more than half (~54%) of the rural residential areas, which typically have a low
density of human activity, were not covered by lighting pixels in the VIIRS DNB images. These results
jointly indicate the limited capability of current nighttime light data for detecting man-made features,
especially in those regions with a low density of human activity, even though they have an enhanced
radiometric detection range and spatial resolution, particularly for remote rural settlements, because
nearly 30% of artificial surfaces and objects (i.e., in total for all four cases shown in Figure 3) were
probably excluded by the VIIRS DNB signals.
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Figure 3. The percentage of lighted and non-lighted pixels for three types of artificial land and POIs at
the pixel level across China in 2015.

3.2. Differences in the Nighttime Radiance among Various Types of Land Surfaces

Differential nocturnal radiances constitute the basis for the characterization and identification
of artificial lighting sources from nighttime light images in the absence of distinct textural features.
Figure 4 presents a comparison of the statistical characteristics of the nighttime brightness data among
different groups of lighted LULC pixels. The group of urban land showed a conspicuously high NTL
with a median of 15.20 and an arithmetic mean of 19.08. On average, the nocturnal radiance over urban
land was estimated to be 16.18 (16.17–16.20, 95% confidence interval), larger than the estimates in the
other groups. The mean nighttime brightness in the group of built-up land, in which the median and
mean NTL were estimated to 3.60 and 8.73, respectively, also appeared to be 4.75 (4.73–4.76) higher
than the estimates in the other groups of non-man-made surfaces. The average nighttime radiance in
the group of rural land with a median of 1.10 and a mean of 4.12, however, was slightly larger than
those of all types of natural surfaces. On the one hand, notable differences in the nighttime radiances
potentially allow a threshold-based partition to cover the majority of urban land and most built-up
land characterized by a relatively high density of human activity and corresponding nighttime light
signals. On the other hand, the analysis results could also imply that it is usually hardly possible to
spatially narrow peripheral lighted areas to precisely match the actual extents of rural settlements
merely using dim nocturnal radiance signals from current nighttime light images.

Although no spatial extents of artificial features were represented in the POI map, the grid
cell-level aggregate density (frequency) of POIs could be indicative of the degree of local human
activity (see Figure 1c). The relationship between the nighttime radiance and POI density at the
pixel level, however, might not be simply monotonic. As shown in Figure 5, although the nighttime
light brightness showed a statistically significant (p-value < 0.01, which mainly resulted from a high
degree of freedom in the F-test of the overall significance in regression analysis, even if the Bonferroni
correction was used to reduce the effect of multiple comparisons in significance testing) positive linear
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response to the increased artificial POI density, it could explain only 16.2% of the spatial variance in the
POI density at the pixel level across the whole county. This result implies a complex spatial distribution
of artificial ground features that generally cannot be portrayed completely by corresponding variations
in the anthropogenic nocturnal luminosity at a fine scale, especially across a vast region such as China.
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in 2015. The solid line represents the linear fitting result. Different colors indicate various numbers of
pixel samples.

3.3. Statistical Comparison of Nighttime Lights among Various Types of Land Surfaces

The differences and variations in the mean and quartile range of grouped NTL among the different
types of LULC provided us with an incomplete view regarding the connection between the nighttime
light radiance and the LULC type in terms of the identification of artificial features from the VIIRS
DNB images. Figure 6 further exhibits the differences in the cumulative distributions of pixel-level
nighttime light signals for eight types of LULC across China in 2015. Here, we mainly focused on the
difference in the cumulative NTL distribution between the group of urban land and the other groups
(except built-up land) to further investigate the distinguishability of urban pixels from non-man-made
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and rural pixels according to various thresholds of nighttime light radiances. First, we noted that
whatever small NTL threshold (>0) we chose, there was still a minor component of urban pixels
with dim nighttime lights that was not involved. Second, when the NTL threshold was set as 4.6
(see point A in Figure 6 in association with Figure 2; here, the NTL corresponded to 75% percentile of
water pixels), nearly 19.4% of the urban pixels might be omitted, and 69.1% of the identified pixels
consisted of non-urban pixels (i.e., hereafter, not including non-man-made pixels in urbanized areas),
of which 57.4% were cropland pixels. Third, if we set the NTL threshold at 12.0 to exclude 95.0%
of lighted cropland pixels (see point B in Figure 6), 41.8% of the urban pixels were also filtered out.
Non-urban pixels accounted for more than half (53.1%) of the selected pixels. Fourth, when we set the
NTL threshold at 15.2 to exclude half of the urban pixels with relatively low nighttime light radiances
(see point C in Figure 6), nearly half (48.5%) of the delineated regions covered the non-urban areas.
Fifth, after raising the NTL threshold to 27.5 for the upper one-quarter of urban pixels with relatively
high nighttime light radiances (see point D in Figure 6), the proportion of non-urban pixels was
markedly decreased to 37.1%, although there were still quite a few. Finally, even with a high NTL
threshold of 50 for the identification of urban core areas with intensified human activity (see point E
in Figure 6), non-urban pixels were likely to appear in 30.5% of the extracted areas. Moreover, it was
definitely visible that the influences of non-man-made and rural pixels on the identification of built-up
areas were more significant than the influence of urban pixels.
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The above results collectively suggested that for any given degree of socioeconomic activity,
the corresponding extent could be overestimated through the NTL threshold-based partition of current
nighttime light images; this overestimation is largely due to both the spatial heterogeneity of human
settlement and the nature of satellite-derived anthropogenic nighttime light data, especially the
over-glow effect. Non-man-made surfaces located in urbanized areas and their periphery, such as
urban parks, green belts, and water bodies, are often lighted by adjacent artificially lighted sources at
night and generally cannot be excluded directly according to the observed radiance.
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3.4. Optimal Threshold Determined by the Receiver Operating Characteristic Curve

Given that we could not completely differentiate lit non-man-made and rural settlement surfaces
from lighted urban pixels, the trade-off between the detection probability of the target urban pixels
and the exclusion probability of other types of pixels could help us obtain an optimal NTL threshold
for highly lighted artificial surfaces. Here, we used a receiver operating characteristic (ROC) curve to
perform a pixel-level investigation of various discrimination thresholds of the nighttime light radiance
(as illustrated in Figure 7a). In the ROC curve, two quantitative indices, known as the sensitivity
and specificity, are employed to evaluate the identification ability of a binary partition method with
NTL-specific nighttime light images. In this study, the sensitivity was defined as the ratio of the
number of urban man-made pixels (here, built-up pixels were excluded) recognized in the VIIRS
DNB images to their total number in the LULC map for a given NTL threshold. Correspondingly,
the specificity was defined as the proportion of correctly excluded non-man-made and rural lit pixels
in the partitioned VIIRS DNB images accounting for the total amount of lit pixels having the same
type of LULC. Furthermore, the ROC curve can yield an optimal NTL threshold by weighting both the
sensitivity and the specificity equally, as measured by the closest distance between the point on the
ROC curve and the top-left point (i.e., the perfect classification), where the sensitivity and specificity
are both equal to 1 (see Figure 7a).

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 11 

 

nighttime light images; this overestimation is largely due to both the spatial heterogeneity of human 
settlement and the nature of satellite-derived anthropogenic nighttime light data, especially the over-glow 
effect. Non-man-made surfaces located in urbanized areas and their periphery, such as urban parks, green 
belts, and water bodies, are often lighted by adjacent artificially lighted sources at night and generally 
cannot be excluded directly according to the observed radiance. 

3.4. Optimal Threshold Determined by the Receiver Operating Characteristic Curve 

Given that we could not completely differentiate lit non-man-made and rural settlement surfaces 
from lighted urban pixels, the trade-off between the detection probability of the target urban pixels 
and the exclusion probability of other types of pixels could help us obtain an optimal NTL threshold 
for highly lighted artificial surfaces. Here, we used a receiver operating characteristic (ROC) curve to 
perform a pixel-level investigation of various discrimination thresholds of the nighttime light 
radiance (as illustrated in Figure 7a). In the ROC curve, two quantitative indices, known as the 
sensitivity and specificity, are employed to evaluate the identification ability of a binary partition 
method with NTL-specific nighttime light images. In this study, the sensitivity was defined as the 
ratio of the number of urban man-made pixels (here, built-up pixels were excluded) recognized in 
the VIIRS DNB images to their total number in the LULC map for a given NTL threshold. 
Correspondingly, the specificity was defined as the proportion of correctly excluded non-man-made 
and rural lit pixels in the partitioned VIIRS DNB images accounting for the total amount of lit pixels 
having the same type of LULC. Furthermore, the ROC curve can yield an optimal NTL threshold by 
weighting both the sensitivity and the specificity equally, as measured by the closest distance 
between the point on the ROC curve and the top-left point (i.e., the perfect classification), where the 
sensitivity and specificity are both equal to 1 (see Figure 7a). 

 

Figure 7. (a) Receiver operating characteristic (ROC) curve-based analysis for identifying urban
surfaces according to VIIRS DNB nighttime light (NTL) radiance data; (b) Spatial distributions of urban
man-made surfaces in Beijing; (c) Partitioned results of VIIRS DNB nighttime light data according to
three optimal NTL thresholds for identifying all (cyan), 95% (yellow), and 50% (light brown) of lighted
urban pixels.
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As shown in Figure 7a (the blue curve), for all lighted urban pixels (NTL > 0), the ROC curve-based
estimate suggested a nationwide optimal NTL threshold of 3.64 (red dot on the blue curve in Figure 7a),
while 84.4% (sensitivity) of the urban pixels were included and 84.3% (specificity) of the non-man-made
and rural lighted pixels were excluded from the partitioned VIIRS DNB images. Although most of the
non-urban pixels (96.4%) could be excluded as we increased the NTL threshold to 15.2 (the median
of all urban pixels, see point C in Figure 6), half of the urban pixels were also omitted (blue dot in
Figure 7a). For the identification of 95% of the lighted urban pixels with NTL > 1.3 (5% percentile),
the optimal NTL threshold was estimated to be 7.65, with sensitivity = 0.747 and specificity = 0.756
(see the brown curve in Figure 7a). Moreover, an estimated optimal NTL threshold of 25.05 (sensitivity
= 0.582 and specificity = 0.607) could also be suggested for identifying half of the lighted urban pixels
with an NTL > 15.2 (median value, see the green curve in Figure 7a). Figure 7b,c demonstrate the
spatial distributions of urbanized areas and the partitioned results for the extraction of urban pixels
based on three estimated optimal nighttime light thresholds over the city of Beijing, respectively.
All of these results jointly state that non-urban pixels cannot be removed completely merely through
increasing the NTL threshold. Hence, in the application of current nighttime light data, a trade-off
between the sensitivity and specificity of the partitioned results should be considered to obtain an
optimal identification of human settlements before the analysis.

4. Conclusions

Owing to the spatially explicit observations of various demographic and socioeconomic
parameters, satellite-derived anthropogenic nocturnal lighting signals have been increasingly used for
investigations into the patterns and dynamics of human activity at the local, regional, and national
scales. However, the characteristics of remotely sensed nighttime light data, including the presence
of an over-glow effect and the lack of textural features, create a challenge for an investigation of
human activity over space at a fine scale, although we can obtain a detailed look at the anthropogenic
nighttime brightness over human settlements from VIIRS DNB images. Hence, an understanding of
how nighttime light signals respond to artificial lighting sources is crucially important for the further
application of VIIRS DNB data.

In this study, we investigated the pixel-level connection between land-use/land-cover types
and the corresponding nighttime light radiances across China using a Landsat-derived LULC map
and VIIRS DNB-derived NTL data. Our results show that most urban (>97%) and built-up (>66%)
pixels are lighted and that many non-man-made surfaces (>81% of the total lighted area) are also lit
in current nighttime light images mainly because of the over-glow effect. Urbanized areas are likely
to be distinguishable from non-man-made land surfaces owing to their high average nighttime light
radiance. Rural residential sites, however, are most likely indistinguishable from the ambient lighting
because of slightly minor differences in the VIIRS DNB-derived nighttime brightness. Although there
was a positive linear relationship between the POI density and the corresponding NTL, only a small
percentage (~16%) of the nationwide variations in the pixel-level POI density could be explained
by spatial changes in the VIIRS DNB nighttime light radiances. The comparisons of the cumulative
distributions of pixel-level nightlight radiances over urban land and other non-man-made and rural
lands further suggest a potential impact of non-man-made surfaces on the identification of urban areas
regardless of the threshold level of nighttime light radiance considered. ROC curve-based analysis
yielded a candidate NTL threshold of 3.64 for the annual composite of VIIRS DNB data in 2015 for a
nationwide optimal identification of lighted urban surfaces in China by weighting both the sensitivity
and the specificity of the partitioned results.

VIIRS DNB-derived nighttime light data likely provide us with an opportunity to investigate
demographic and socioeconomic dynamics at a fine scale. A deeper insight into the relationship
between remotely sensed anthropogenic lighting signals at night and human activity is crucially
important for future applications of high-resolution nighttime light images. Our study revealed
the connection between nighttime lighted areas and land-use/land-cover types and emphasized the



Remote Sens. 2018, 10, 723 10 of 11

identification of urbanized areas with man-made surfaces; consequently, further investigations into
how current satellite-based nocturnal radiance signals respond to various socioeconomic variables,
such as population distribution, traffic dynamics, energy consumption, and building density, are quite
desirable to obtain an optimal estimate of human activity using nighttime light data at a fine scale.
Additionally, the discovery of an association between VIIRS DNB imagery and synchronous vegetation
indices, such as the human settlement index (HSI) [34] and the vegetation adjusted NTL urban index
(VANUI) [35] for DMSP nighttime light images, could benefit our analyses of spatial patterns in
human settlements.
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