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Abstract: How to effectively combine remote sensing data with the eddy covariance (EC) technique
to accurately quantify gross primary production (GPP) in coastal wetlands has been a challenge
and is also important and necessary for carbon (C) budgets assessment and climate change studies
at larger scales. In this study, a satellite-based Vegetation Photosynthesis Model (VPM) combined
with EC measurement and Moderate Resolution Imaging Spectroradiometer (MODIS) data was
used to evaluate the phenological characteristics and the biophysical performance of MODIS-based
vegetation indices (VIs) and the feasibility of the model for simulating GPP of coastal wetland
ecosystems. The results showed that greenness-related and water-related VIs can better identify the
green-up and the senescence phases of coastal wetland vegetation, corresponds well with the C
uptake period and the phenological patterns that were delineated by GPP from EC tower (GPPEC).
Temperature can explain most of the seasonal variation in VIs and GPPEC fluxes. Both enhanced
vegetation index (EVI) and water-sensitive land surface water index (LSWI) have a higher predictive
power for simulating GPP in this coastal wetland. The comparisons between modeled GPP (GPPVPM)
and GPPEC indicated that VPM model can commendably simulate the trajectories of the seasonal
dynamics of GPPEC fluxes in terms of patterns and magnitudes, explaining about 85% of GPPEC

changes over the study years (p < 0.0001). The results also demonstrate the potential of satellite-driven
VPM model for modeling C uptake at large spatial and temporal scales in coastal wetlands, which can
provide valuable production data for the assessment of global wetland C sink/source.

Keywords: coastal wetland; eddy covariance; gross primary production; MODIS; vegetation
indices; VPM

1. Introduction

As a staggered transition zone of terrestrial ecosystem and marine ecosystem, coastal wetland
constitutes chains of marshes and swamps, and provides valuable ecosystem services and benefits
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to human [1–4]. It plays an important role in the principal interchanges of material and energy and
the global sequestration of carbon (C) [1,5,6]. As the key component of the C cycle, gross primary
production (GPP) represents the capacity of vegetation to uptake C from the atmosphere [7–10].
However, global-scale and measurement-based estimation of the historical growth in GPP is still
lacking. The dynamics of GPP in coastal wetlands and its response to global climate change is poorly
quantified and understood [5,11,12]. Therefore, accurate quantification of GPP for coastal wetlands
at various spatial and temporal scales is crucial and necessary for global C budgets assessment and
climate change studies [13].

The eddy covariance (EC) method and remote sensing (RS) technology have greatly increased
the opportunities for the quantification of GPP at regional or global scales. The EC method can
continuously and reliably measure net exchanges of C, water and energy between atmosphere,
and terrestrial ecosystems at the diurnal, seasonal, and annual scales [14–17]. It can be used for
calibrating and validating ecological models by providing important information that is associated
with photosynthetic period and GPP at the ecosystem scale [18–20]. However, C flux data provided
by the EC method is limited by footprints (typically ranging from hundreds of meters to 1 km)
and short time periods [21–24]. Satellite RS technology can alternatively provide rapid, continuous,
systematic, and repetitive measurement of vegetation structure and function characterization over
large areas [23,25]. It is an effective and powerful tool for monitoring properties of land surface and
obtaining spatiotemporal information, and then estimating regional GPP and net primary production
(NPP), which can be consistent with the EC tower footprint [26,27]. However, there is still lacking
interrelated links and bridges between EC and RS.

The satellite-based model is the interrelated links and bridges between EC measurement and
RS data at regional scale. Among many RS models, the production efficiency models (PEM) are
widely used in the GPP estimation study because of its lesser number of driving parameters, accurate
estimation, and the easier coupling of EC and RS [23,28–31]. These models generally predict GPP
by light use efficiency (εg), photosynthetically active radiation (PAR), the fraction of the absorbed
PAR by the vegetation canopy (FAPAR), and a greenness-related Normalized Difference Vegetation
Index (NDVI) [32]. Recently, Xiao et al., has developed a RS-based vegetation photosynthesis model
(VPM) to simulate GPP [33–35]. VPM is a well-established GPP model by the conceptual partitioning
of chlorophyll and non-photosynthetically active vegetation within the canopy to simulate GPP [36].
The model used additional spectral bands, such as blue and shortwave infrared bands to calculate the
Enhanced Vegetation Index (EVI) [37] and Land Surface Water Index (LSWI) [33,36,38]. For example,
Li et al., used the improved EVI and LSWI as input data for the VPM model to better characterize
the dynamics of vegetation. They also simulated GPP more accurately than other PEM models,
which only used NDVI in Qinghai–Tibetan Plateau, China [23]. Recently, this model has been further
developed and applied to several ecosystems, including forest, grassland, agriculture, and alpine
wetland ecosystems [10,13,15,23,33,36,39,40], which demonstrated the potential to scale up in situ
observations of GPP from the CO2 flux tower sites.

As the largest wetland ecosystem in the warm temperate zone of China, the Yellow River Delta
Wetland is the most active area of atmosphere-land-ocean interaction in the world [41–44]. Therefore,
the accurate estimation of the C source/sink function and its influence mechanism for the targeted
coastal wetland will help to quantify the interactions and feedbacks between global climate change
and coastal wetland ecosystems. In this study, we have combined the analysis of EC flux data
with remote sensing images in the Yellow River Delta during 2009–2010. We aim to: (i) characterize
seasonal dynamics of reed by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS)
vegetation indices (VIs) and CO2 fluxes data; (ii) examine the biophysical expression of VIs related to
seasonal dynamics of observed GPP data; and, (iii) evaluate the dependability and the applicability of
the VPM model for simulating GPP of coastal wetland ecosystems. We also conducted a variety of
uncertainty analysis for the model simulations. This study could help to deepen our understanding of
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C budgets of coastal wetland and further improve the potential of RS technology for monitoring and
simulating the dynamics of regional vegetation and C fluxes.

2. Materials and Methods

2.1. Description of the Study Region

Our study was carried out in the Yellow River Delta Nature Reserve (37◦45′59” N, 119◦09′05” E,
−4 m above sea level; Figure 1). The nature reserve covers an area of 15.3 × 104 ha. Our EC tower was
established at the coastal zone of the Yellow River Delta Nature Reserve. In this region, the dominant
wind direction is the north and northwest wind. The average annual wind speed is about 4 m/s.
The annual mean air temperature is 12.1 ◦C [41,45]. The annual mean precipitation is 520 mm,
which mainly concentrates in summer. The annual evaporation is 1962 mm and frost-free period is
196 days. The dominated soil type is coastal saline soil. The pH of the soil is 7.6–8.5. The dominant
vegetation includes both the herbaceous plants (Phragmites australis and Suaeda salsa) and the shrub
(Tamarix chinensis). The height of plants ranges from 120 to 200 cm.
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Figure 1. Study site location at the Yellow River Delta. The remote sensing data is derived from Google
Earth. The eddy covariance system, including a flux tower and a weather station, was deployed at the
coastal zone of Yellow River Delta Nature Reserve in 2008, with observation of CO2 and water fluxes,
air temperature, precipitation, photosynthetically active radiation (PAR), etc.

2.2. CO2 Flux and Climate Data from the Eddy Flux Tower Site

The EC instrument was established at the study site since 2008 (Figure 1), with the observation of
CO2 and water fluxes, wind speed, and wind direction. The EC tower equipped with an open path
infrared CO2/H2O gas analyzer (Li 7500, LI-COR Inc., Lincoln, NE, USA) and ultrasonic anemometer
(CSAT3, Campbell Scientific Inc., Jackson, MS, USA), which were installed 4.5 m above ground level.
The sonic anemometer and the infrared CO2/H2O gas analyzer output were recorded at half-hour
intervals by datalogger (CR5000, Campbell Scientific, Inc., Jackson, MS, USA), with high frequency of
10 Hz. Carbon and energy fluxes were calculated by using the half-hour covariance of vertical wind
velocity and virtual temperature, water vapor density, and CO2 density [15].
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We also measured some environmental factors that were used for gap filling calculations
nearby the eddy tower. Photosynthetically active radiation (PAR) was observed by LI-190SB
sensors (LI-COR Inc., Lincoln, NE, USA). Relative humidity and air temperature were observed by
humidity/temperature probes (HMP45C, VAISALA Woburn, MA, USA). Precipitation was measured
at the height of 1.5 m above the ground level by a tipping bucket rain-gauge (TE525MM, Campbell
Scientific, Inc., Jackson, MS, USA). The copper-constantan thermocouples were installed at five depths
(0.05, 0.10, 0.20, 0.50, and 1.0 m) below the ground to measure soil temperature. All data were saved in
the digital datalogger (CR23X; Campbell Scientific, Inc., Jackson, MS, USA) [19].

For reducing the measurement-induced uncertainties, quality control was conducted for the
observed data during 2009–2010. The CO2 flux data observed during rainfall or snowfall or instrument
failure (e.g., system maintenance, power outages, etc.) were eliminated as invalid data that has led to
data gaps. To fill the CO2 flux data gap, the gap filling methods, including mean diurnal variation
(MDV), of previous periods and nonlinear regression were used in this study. For the MDV method,
the means for different time interval (window size, usually 4–15 days) that were based on adjacent
days were used to replace the missing flux data. Nonlinear regression method was interpolated by
establishing the regression relationships between net ecosystem CO2 exchanges (NEE) components
and the associated environmental factors during the studied period [46].

Generally, the EC measured C fluxes represent NEE, which is the balance between ecosystem
respiration (Re) and GPP [47]. Therefore, GPP can be obtained by the difference between Re and NEE.
Re is summed by the daytime (Re,day) and nighttime (Re,night) ecosystem respiration. Re,night is derived
from the nighttime NEE. Because Re,night is relevant to the soil temperature (Ts) [15,48], a temperature
dependent model was derived from the observed Re,night with Ts [19]. Then, we estimated the Re,day
rates and GPP by extrapolating the exponential relationship to the daytime periods.

GPP = Re − NEE (1)

Re = Re,day + Re,night (2)

Re,night = ae(bTs) (3)

where Ts is soil temperature (◦C) at the depth of 0.05 m, and a and b are coefficients. During the data
processing, the unit of CO2 fluxes (NEE, GPP, Re, Re,day, Re,night) is mg CO2 m−2 s−1. After that, we
accumulated and converted all data to the whole day, and obtained the daily CO2 flux data, when the
unit of CO2 fluxes (NEE, GPP, Re) is g CO2 m−2 day−1 or g C m−2 day−1.

The daily GPP and climate data were aggregated to eight-day intervals in order to be consistent
with MODIS eight-day composites. The aggregated eight-day GPP and climate data over 2009–2010
were utilized as parameter, input, and validated data in this study to support model simulation
and validation.

2.3. Moderate Resolution Imaging Spectroradiometer Data and Vegetation Indices

The time series site-specific VIs for the targeted wetland EC tower were extracted from the
MODIS datasets. We mainly used seven spectral bands to study vegetation and land surface: blue
(459–479 nm), green (545–565 nm), red (620–670 nm), near infrared (NIR, 841–875 nm, 1230–1250 nm),
and shortwave infrared (SWIR, 1628–1652 nm, 2105–2155 nm). In this study, based on the location
(latitude and longitude) of the targeted EC tower, we downloaded the eight-day MOD09A1 data
over 2009–2010 from Earth Observation and Modeling Facility (EOMF), the University of Oklahoma
website (http://www.eomf.ou.edu). Then, we calculated EVI [37], LSWI [33], and NDVI [32] based
on the reflectance values of the eight-day MODIS dataset from the blue, red, NIR, and SWIR spectral
bands [33]. Owing to some defects of the NDVI, the EVI was proposed by using a feedback-based
approach that incorporates both background adjustment and atmospheric resistance concepts into the
NDVI, resulting in a feedback-based, soil and atmosphere resistant vegetation index [37]. Furthermore,

http://www.eomf.ou.edu
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VPM model used EVI and LSWI as important input data to simulate the dynamics of GPP at the
targeted coastal wetland.

EVI = 2.5× ρnir − ρred
ρnir + (6× ρred − 7.5× ρblue) + 1

(4)

LSWI =
ρnir − ρswir

ρnir + ρswir
(5)

NDVI =
ρnir − ρred
ρnir + ρred

(6)

where ρblue, ρred, ρnir, and ρswir represent the surface reflectance values of blue, red, NIR, and SWIR
bands, respectively [33,39,49].

For time series of VIs calculated from surface reflectance, a simple approach was employed to fill
those cloudy pixels [36,50]. The gap-filling procedure that was employed for cloudy pixels of VIs was
reported in the earlier studies [22,36,39]. A three-point time series filter X(t − 1), X(t), and X(t + 1)) was
employed to correct a cloudy pixel using values of non-cloudy pixels in the window. If X(t + 1) and
X(t − 1) pixels were cloud-free, the average of X(t +1) and X(t − 1) was calculated and was used as X(t).
If only one pixel (either X(t + 1) or X(t − 1)) was cloud-free, then we used that pixel to substitute X(t).
If the three-point time series filter was not available, then we expanded it to a five-point time series
filter (X(t − 2), X(t − 1), X(t), X(t + 1), and X(t + 2)) [36]. The gap filling procedure was same as the
above three-point time series filter.

2.4. The Moderate Resolution Imaging Spectroradiometer-Based Vegetation Photosynthesis Model

2.4.1. Model Structure

As a RS-based vegetation photosynthesis model for simulating GPP [33], the VPM model is based
on the conceptual partitioning of chlorophyll and non-photosynthetically active vegetation at the
canopy. Air temperature (Ta), the EVI, LSWI, and PAR are the input data of the VPM model (Figure 2).

VPM estimates GPP over the photosynthetically active period of vegetation [33,36]:

GPP = εg × FPARchl × PAR (7)

where parameter εg is the light use efficiency (LUE) (µmol CO2/µmol photosynthetic photon flux
density, PPFD), which is affected by leaf phenology, temperature, and water; parameter PAR is
the photosynthetically active radiation (µmol PPFD), and parameter FPARchl is the fraction of PAR
absorbed by leaf chlorophyll in the canopy.

In the VPM model, FPARchl is calculated as [10,23,33,36,39,40]:

FPARchl = α× EVI (8)

where EVI is the Enhanced Vegetation Index, which is calculated from the reflectance values of the
eight-day MODIS dataset; α is the coefficient in the EVI-FPARchl linear function, which is set to be
1.0 [33,36].

εg is calculated by the maximum light use efficiency (LUE) ε0 (µmol CO2/µmol PPFD) and the
scalars for the effects of temperature, water and leaf phenology on light use efficiency of vegetation.

εg = ε0 × Tscalar ×Wscalar × Pscalar (9)

Tscalar is the scalar of temperature on photosynthesis, which is estimated by the Terrestrial Ecosystem
Model (TEM) [51]; Wscalar is the impact of water on vegetation photosynthesis with LSWImax [40]; and,
Pscalar is the scalar for the impact of leaf phenology on photosynthesis within the canopy [39].



Remote Sens. 2018, 10, 708 6 of 20

Tscalar =
(T − Tmin)(T − Tmax)

[(T − Tmin)(T − Tmax)]− (T − Topt)
2 (10)

Wscalar =
1 + LSWI

1 + LSWImax
(11)

Pscalar =
1 + LSWI

2
(12)

where LSWImax is the maximum LSWI during 2009–2010 [15,26,27]; Tmax, Tmin, and Topt are the
maximum, minimum, and optimal air temperature during photosynthesis, respectively.
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were extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) datasets. ε0, 

Figure 2. Structure of the vegetation photosynthesis model (VPM) model. CO2 flux and climate
data (air temperature, PAR, precipitation, etc.) come from the eddy flux tower. Vegetation indices
(VIs) were extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) datasets.
ε0, maximum light use efficiency; Tscalar, Wscalar, Pscalar, the scalars for the effects of temperature,
water and leaf phenology on light use efficiency of vegetation, respectively; FPARchl, the fraction of
PAR absorbed by leaf chlorophyll; PAR, the photosynthetically active radiation; LSWImax, the maximum
Land Surface Water Index (LSWI); Tmax, Tmin, and Topt, the maximum, minimum, and optimal air
temperature, respectively.

2.4.2. Model Parameterization

In order to normally run the VPM model for simulating GPP of coastal wetland using input data,
such as climate observation and MODIS imagery, we conducted a series of model parameterization.

Different vegetation types have a different ε0 value. It can be obtained from analysis of NEE
and photosynthetic photon flux density of the EC tower site [52,53]. In this study, we used the
Michaelis–Menten function (Equation (13)) in order to estimate the ε0 of local vegetation type by the
nonlinear model between the observed NEE and incident PAR, according to the flux data at 30 min
intervals. Here, we took 2016.67 mg CO2 mol−1 PAR as ε0 during the study period:

NEE =
ε0 × PAR× GPPmax

ε0 × PAR + GPPmax
− Reco (13)
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where GPPmax (mg CO2 m−2 s−1) is maximum gross primary production, Reco (mg CO2 m−2 s−1)
is ecosystem respiration, NEE (mg CO2 m−2 s−1) is the net ecosystem CO2 exchange, PAR is the
photosynthetically active radiation (µmol PPFD). Based on the diurnal GPP flux data, we chose the
maximum value of GPP (0.63 mg CO2 m−2 s−1) during the study period as GPPmax.

Different vegetation types have different estimation values of Tscalar, Tmin, Topt, and Tmax [33].
The daily daytime mean temperature was calculated by using the daily maximum and minimum air
temperature, rather than daily mean air temperature [33,54]. In our study, if the air temperature of
the study site falls below Tmin, Tscalar is set to zero. Because Tscalar is the scalar of temperature on
plant photosynthesis activities, we consider the local meteorological conditions and plant growth
(observed GPP) comprehensively. When considering the effect of low temperature on plant growth,
we finally defined Tmin as 0 ◦C (cold damage to plants). Based on the observed maximum temperature
during the two study years, we finally defined Tmax as 35 ◦C. We also defined site-specific Topt as
26 ◦C by exploring the correlation between the observed vegetation indices, GPP and air temperature
over 2009–2010.

Wscalar can be derived from the water-sensitive vegetation index LSWI and LSWImax. Site-specific
LSWImax is estimated according to the time series MODIS data [26,33,36]. As a water-sensitive
vegetation index, LSWImax varies across years under different water condition. Using the observed
eight-day MODIS reflectance data, we calculated the site-specific LSWI values over 2009–2010 and
chose the maximum value during the growing season as LSWImax (0.27 and 0.26 for 2009 and 2010,
respectively).

2.4.3. Model Evaluation

In order to test VPM’s applicability for coastal wetland and to check the consistency between
the modeled and the observed results, four statistical criteria were used for the model evaluation:
(i) the coefficient of determination (R2). Due to temporal autocorrelation within simulated GPP
and EC-based GPP, generalized least square regression was conducted by using gls() function in
R package nlme to adjust the residuals. Accordingly, the R2

Cox and Snell was instead used as pseudo-R2

by performing nagelkerke() function in package rcompanion; Equation (2), the root of mean square error
(RMSE, Equation (14)); Equation (3), the relative mean deviation (RMD, Equation (15)); Equation (4),
the relative error (RE) [55]. The RMSE provides the prediction error of model by heavily weighting
high errors. The RMD can smooth out the differences between the simulated and measured results
by weighting all of the errors in the same way, which when close to 0 indicate the absence of bias for
the model [15,56]. We use SPSS version 20.0 (SPSS Inc., Chicago, IL, USA) and R package 3.2.1 [57] to
conduct all of the statistical calculations.

RMSE =
100
O

√
∑n

i=1 (Pi −Oi)
2

n
(14)

RMD =
100
O

n

∑
i=1

Pi −Oi
n

(15)

where Oi represent the EC estimated values and Pi represent the model-simulated values. O is the
mean of the EC estimated value and P is the mean of the model-predicted value. n is the number of
observations.

3. Results

3.1. Seasonal Dynamics of Hydrothermal Conditions, Vegetation Indices, and Gross Primary Production

The dynamics of the main meteorological variables are given in Figure 3. There was significant
seasonal variation of daily air temperature (Ta) during 2009–2010, varying between −11.0 and
33.4 ◦C. The maximum and minimum values of Ta were found during July and January, respectively.
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But, no strong inter-annual difference among the different temperature regimes was found. The mean
annual Ta were 13.9 and 13.3 ◦C in 2009 and 2010, respectively, both warmer than the long-term
average (12.1 ◦C). The annual precipitation (rainfall and snowfall), measured at the tower in the
experiment were 571.4 and 523.5 mm for 2009 and 2010, respectively, both higher than the long-term
average (520.0 mm). In 2009, there were 68 days with precipitation. In 2010, there were 66 days with
precipitation (Figure 3). The results also show that the rainy season started in early June, and it ended
in late August.
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Figure 3. Seasonal variation in daily air temperature, precipitation, and aggregated eight-day PAR
from eddy covariance (EC) tower during 2009–2010.

The EVI, NDVI, and LSWI curves can better demonstrate the development and the senescence of
coastal wetland vegetation (Figure 4a–c). Both time series EVI and NDVI from 2009 to 2010 showed
a strong seasonality for this coastal wetland ecosystem. They increased in spring and peaked in
mid-August (21 August), and then declined and kept low in winter, corresponding well with the
seasonal dynamics of GPPEC (Figure 4). However, seasonal variation in EVI within the growing
seasons differed slightly with the NDVI in terms of phase and magnitude (Figure 4a,b). The values
of NDVI were obviously higher than that of EVI from late March to early November in both years.
The maximum values of EVI (0.21 and 0.32) were much lower than the peaks of NDVI (0.40 and 0.61) in
2009 and 2010, respectively. The LSWI also exhibited seasonal variation, but it did not vary with time
as significantly, as did NDVI or EVI, especially during plant growing season (Figure 4c). As shown in
Figure 4c, the peak LSWI values were 0.27 (28 July) and 0.26 (12 August) for 2009 and 2010, respectively,
advancing about 8–24 days as compared with the peak values of NDVI and EVI. High EVI and LSWI
in August indicated that the canopy was rapidly developed photosynthetically active, while the quick
drop of both EVI and LSWI in late September indicated an early plant senescence (Figure 4).

The time series GPPEC also shows an obviously seasonal and inter-annual variability (Figure 4d).
With the raise of Ta and PAR, the photosynthetic capacity of coastal wetland ecosystem gradually
increased. GPPEC began to increase in mid-April (1 g C m−2 day−1 or higher), achieved the maximum
values in early August (2009) or mid-July (2010), and it then decreased to below 1 g C m−2 day−1 in
late October (2009) or early November (2010). The peak and annual values of GPPEC in 2009 were
9.05 g C m−2 and 1068.51 g C m−2, respectively; whereas, the respective values of GPPEC in 2010 were
9.88 g C m−2 and 1102.84 g C m−2, respectively (Figure 4d). The C uptake period (CUP) of wetland
plant, as defined by GPPEC > 1 g C m−2 day−1, ranges from mid-April to early November, which can
be partly explained by the variation of Ta and PAR (Figures 3 and 4d). Further, the growing season



Remote Sens. 2018, 10, 708 9 of 20

period for coastal wetland vegetation, as defined by Vis, agreed with the CUP defined by GPPEC over
the two study years (Figure 4d).Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 19 
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Figure 4. Seasonal dynamics of (a) Normalized Difference Vegetation Index (NDVI); (b) Enhanced
Vegetation Index (EVI); (c) Land Surface Water Index (LSWI); and (d) estimated gross primary
production from EC tower measurements (GPPEC). Three vegetation indices come from MODIS
imagery during 2009–2010 in the targeted wetland.

3.2. Correlation between GPPEC, Vegetation Indices, and Air Temperature

The comparisons between GPPEC and VIs (EVI and NDVI) show that EVI has a better relationship
with GPP in terms of the phase and amplitude (Figure 4). In order to further evaluate the biological
significance of VIs in GPP predictions, the simple linear relationships between GPPEC and VIs were
investigated (Figure 5). Correlation analyses show that the dynamics of GPPEC correlated well with
that of the VIs (EVI, NDVI, and LSWI), both in 2009 and 2010 (Figure 5). However, EVI (R2 = 0.65,
p < 0.0001) has a better correlation with GPPEC than NDVI does (R2 = 0.48, p < 0.0001). EVI can
account for 65% of the variance in GPPEC, while NDVI only 48%. Above results indirectly prove
that the improved vegetation index EVI has a higher predictive power to simulate the GPP of the
coastal wetland ecosystem. The LSWI also has a strong relationship with GPPEC (R2 = 0.41, p < 0.0001,
Figure 5), showing that the land surface water content is important for the estimation of GPP during
growing season.

We also analyzed the relationships between VIs (EVI, NDVI, and LSWI), GPPEC, and air
temperature (Ta). The regression analysis shows that Ta was positively correlated with NDVI (R2 = 0.55,
p < 0.0001), EVI (R2 = 0.62, p < 0.0001), and GPPEC (R2 = 0.78, p < 0.0001), respectively (Figure 6a,b,d).
NDVI, EVI, and GPPEC gradually increased as the temperature rose, and the temporal variation in
NDVI, EVI, and GPPEC fluxes could be largely explained by air temperature. LSWI had a significant
U-shaped relationship (R2 = 0.28, p < 0.01) with air temperature. As temperature rose, LSWI decreased
first, reached its bottom, and then increased. The demarcation point is about 10 ◦C (Figure 6c).
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Figure 5. Linear relationships between (a,d) Normalized Difference Vegetation Index (NDVI);
(b,e) Enhanced Vegetation Index (EVI); (c,f) Land Surface Water Index (LSWI) and estimated gross
primary production (GPP) from EC tower data (GPPEC) during 2009–2010. Dashed lines are the linear
trends of NDVI, EVI, LSWI, and GPPEC, respectively.
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Figure 6. Linear relationships between (a) Normalized Difference Vegetation Index (NDVI);
(b) Enhanced Vegetation Index (EVI); (c) Land Surface Water Index (LSWI); and (d) estimated GPP from
EC tower data (GPPEC) and air temperature (Ta) during 2009–2010. NDVI = 0.00019·Ta2 + 0.004·Ta +
0.01 (R2 = 0.55, p < 0.0001, N = 92); EVI = 0.0002·Ta2 − 0.0002·Ta + 0.01 (R2 = 0.62, p < 0.0001, N = 92);
LSWI = 0.00048·Ta2 − 0.0092·Ta + 0.034 (R2 = 0.28, p < 0.0001, N = 92); GPPEC = 0.009·Ta2 + 0.053·Ta −
0.76 (R2 = 0.78, p < 0.0001, N = 53).

3.3. Simulation and Evaluation of Vegetation Photosynthesis Model

We run the VPM model based on the observation of Ta, PAR, and MODIS VIs (EVI and LSWI),
and examined the seasonal variation of the modeled GPP (GPPVPM) for the tested coastal wetland
during 2009–2010 (Figure 7). GPPVPM was close to zero from November to early March, then began to
increase rapidly in mid-March, and achieved a peak in early-August and mid-July in 2009 and 2010,
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respectively. GPPVPM declined gradually after reaching peak it and dropped below 1 g C m−2 day−1 by
early-November. Comparisons between GPPVPM and GPPEC fluxes at eight-day time intervals show
that the simulated eight-day GPPVPM fluxes were in good agreement with GPPEC fluxes regarding to
the patterns and magnitudes. VPM fairly reappeared the U-shaped growth pattern, which driveled by
the variation in Ta and PAR, and accurately simulated the seasonal dynamics of GPPEC fluxes for the
simulated two years. However, eight-day GPPVPM peak values were slightly higher than GPPEC in
both 2009 and 2010 (Figure 7).
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Figure 7. Comparisons of the seasonal dynamics between the estimated gross primary production
from EC tower (GPPEC) and simulated gross primary production by VPM (GPPVPM) during 2009–2010.
Spring: March to May; Summer: June to August; Autumn: September to November; and, Winter:
December to February.

To further evaluate the accuracy of model simulation, a linear regression analysis between GPPVPM

and GPPEC was conducted (Figure 8). For both years, the linear regression of GPPVPM against GPPEC

shows a good correlation (R2 ≥ 0.72, p < 0.0001; Figure 8; Table 1). The RMD and RMSE values were
−1.01% and 25.29% during 2009–2010, respectively. The simulated annual GPPVPM were 1057.64 and
1091.76 g C m−2 yr−1 for 2009 and 2010, respectively, which is slightly lower than the estimated annual
GPPEC (1068.51 and 1102.84 g C m−2 yr−1 for 2009 and 2010, respectively), both with relative error
(RE) values of −1% (Table 1). Moreover, cumulative GPP fluxes simulated over the two years were in
good agreement with the estimated values, with −1% RE (Table 1).

Table 1. The evaluation of model simulation results in the typical coastal wetland. Four statistical
criteria for the validation tests: pseudo-R2, the coefficient of determination; RMSE, the root of mean
square error; RMD, the relative mean deviation; and, RE, the relative error.

Items Year pseudo-R2 RMSE
(%)

RMD
(%)

GPPEC
a

(g C m−2)
GPPVPM

a

(g C m−2) RE a N

GPPVPM
vs.

GPPEC

2009 0.72 *** 25.09 −1.02 1068.51 1057.64 −1% 26
2010 0.80 *** 25.47 −1.00 1102.84 1091.76 −1% 27

2009–2010 0.73 *** 25.29 −1.01 2171.35 2149.39 −1% 53

*** Significant at probability levels of 0.0001. a Abbreviations: GPP, gross primary production; GPPEC, estimated
GPP from FLUX tower data; GPPVPM, simulated GPP by VPM; RE (relative error) = [(GPPVPM − GPPEC)/GPPEC]
× 100%.
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Figure 8. Linear regression analysis between the estimated gross primary production from EC tower
(GPPEC) and simulated gross primary production by VPM (GPPVPM) in (a) 2009; (b) 2010; and
(c) 2009–2010.

4. Discussion

4.1. Biophysical Performance of Vegetation Indices in Typical Coastal Wetland

Monitoring vegetation change over time at larger scales using vegetation indices has greatly
enhanced our understanding of the changing environment [58,59]. Different vegetation indices vary
in their biophysical expression and they can offer distinct information for the leaf phenological
cycle, which in turn, affect plant photosynthesis and regulate ecosystem carbon balance [10,22,36].
Some researchers have reported that time series of NDVI, EVI (greenness-related vegetation indices),
and LSWI (water-related vegetation index) can be used to delineate the green-up and the senescence
phase at the canopy level [36,60]. However, which is the best vegetation index for the model to more
accurately predict the plant production in coastal wetlands remains unknown. Therefore, it is important
to evaluate the biophysical and phenological expression of different vegetation indices in coastal
wetland ecosystems to accurately assess vegetation phenology and predict plant production [61,62].

In this study, we examined the relationship between NDVI, EVI, LSWI, and estimated GPPEC, Ta,
and evaluated the biophysical expression of vegetation indices in a typical coastal wetland. Both EVI
and NDVI have significant correlations with GPPEC, but EVI has a stronger correlation with GPPEC,
and hence has more biological and phenological significance in GPP predictions than the NDVI in this
coastal wetland (Figures 5 and 6). EVI can minimize the influences of soil condition and atmosphere in
reflectance data by incorporating soil adjustment and atmospheric resistance factors [58]. Time series
of LSWI also provide valuable information (e.g., water status) for simulating plant growth and wetland
carbon exchange, even though it has a lower relationship between Ta and GPPEC. It has a great
potential in obtaining the water content information of leaf and canopy, and can more accurately
identify the vegetation phenology by combining both NIR and SWIR bands [22,63,64]. The results in
this study are consistent with earlier studies [10,15,22,23,33,40,65,66], in which all indirectly prove the
hypothesis of chlorophyll-FPARchl-EVI and leaf 1 water-LSWI, as applied in the VPM model. However,
it is necessary to further develop the LSWI-based phenology algorithm in the near future [40].

4.2. Model Comparison and Error Source Analysis

Recently, using the LUE models to simulate GPP plays an important role in the global carbon
budget research, but our understanding of relative advantages and disadvantages of different models
is still limited [67]. The VPM model simulated the trends of the coastal wetland phenology well
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and precisely predicted GPP (R2 = 0.73) in this study. The MODIS-Photosynthesis (PSN) model
also can simulate the global GPP and generate the Terra/MODIS GPP project (MOD17A2) [40,68].
Here, eight-day MODIS GPP product (GPPMOD17A2) data during 2009–2010 were downloaded
from the Oak Ridge National Laboratory’s Distributed Active Archive Center (DAAC) website
(http://daac.ornl.gov/MODIS) [69,70]. Then, we compared the differences between GPPEC, GPPVPM,
and GPPMOD17A2 in our studied coastal wetland. A Taylor diagram was also used to display the
quality of model predictions against the observations [71]. We found that both GPPEC and GPPVPM

were substantially higher than GPPMOD17A2 in terms of the magnitudes. The underestimated range
of GPPMOD17A2 is probably 40–80% (see Figure 9). Some previous studies also reported that the
MODIS-PSN model underestimated GPP in different ecosystems [15,40,72–74]. However, Jin et al.,
found that GPPMOD17A2 was significantly lower than GPPEC during the prophase of the growing
season, but higher than GPPEC during the late growing season at broadleaf deciduous woodland [39].
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Figure 9. Comparisons between the estimated gross primary production from the flux tower
(GPPEC) and simulated gross primary production by VPM (GPPVPM) and MODIS global GPP data
product (GPPMOD17A2) in the typical coastal wetland during 2009–2010. Taylor diagram provides
a visual comparison between two model results, or, most commonly, between model results and
observations [71].

The discrepancies between GPPMOD17A2 and GPPEC may result from two underestimated sources.
First, GPPMOD17A2 uses global meteorological reanalysis dataset, including average and minimum Ta,
incident PAR, and specific humidity. The input weather data of MODIS-PSN model may not match
the local air temperature data. The second source is the parameter ofε0 in MODIS-PSN [66,75]. ε0 is
a very important parameter in the PEM models to estimate GPP and differs significantly among
vegetation types [76]. However, the ε0 and some other biome-specific physiological parameters
are not differentiated from the different performance of a specific biome [77]. The EC technique
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provides an appropriate method to accurately estimate the parameter ε0 by using a large number of
measured data [23,30]. In this study, we estimated the ε0 value by fitting the nonlinear model between
observed NEE and PAR in 2009 and 2010. Then, we used the site-specific climate data, the individual
ε0 estimated from CO2 flux data, and vegetation indices (EVI, LSWI) as input data and the parameters
of VPM to simulate the GPP dynamics of coastal wetland. Therefore, future works should pay more
attention to the local climate data and biome-specific physiological parameters in using GPPMOD17A2

for regional analysis.

4.3. Sensitivity and Uncertainty for Vegetation Photosynthesis Model Simulations

In general, there are always some errors in model simulations. The analysis of sources and
uncertainties for the errors are very important for future improvement and the development of these
models [78,79]. In this study, the VPM simulation results show that the VPM model can correctly
simulate the seasonal variations of GPP. The modeled results can explain about 85% of GPPEC changes
over the two study years. However, there still exist some differences between seasonal GPPVPM

and GPPEC in this study, such as higher GPPVPM from late July to early August in 2009 and 2010,
and lower GPPVPM in late May in 2010 (Figure 7). The discrepancies between GPPEC and GPPVPM

can be attributed, in part, to the estimation error of tower-based GPPEC [36,80]. GPPEC is calculated
as the difference between ecosystem respiration and NEE [15,36]. The estimation error of daytime
ecosystem respiration, which is the difference between ecosystem respiration and observed nighttime
ecosystem respiration, may lead to the error of estimation (either overestimation or underestimation)
of GPPEC [15,36,39,40].

Another error source may be attributed to the modeling of GPPVPM from VPM [33]. To further
clarify the sources and uncertainty of the GPPVPM errors, we conducted a sensitivity analysis for
some parameters and variables of the model (Figure 10). The alternative sensitivity scenarios of input
parameter were set by increasing Ta, ε0, PAR, EVI, and LSWI by 10%, respectively. When compared
with the base scenario, the sensitivity of ε0 and PAR are relatively larger than that of Ta in this coastal
wetland (Figure 10a,d). The potential conversion efficiency of absorbed photosynthetically active
radiation is largely determined by ε0, which varies with vegetation types and study regions [23,39],
and it may even affect the accuracy of GPP simulation [40,81]. PAR is an important variable in the
GPP simulation, lower/higher PAR values may result in the under/over-estimation of GPP for the
assumed relationship between GPP and PAR in VPM model [15,82]. Therefore, the accurate estimation
of ε0 and development of PAR observation would substantially improve the simulated accuracy of
the VPM model and other models [36]. The source of uncertainty also come from the MODIS time
series vegetation indices, such as the effects of cloud, cloud shadow, aerosols, and other atmospheric
condition [40]. The EVI is more sensitive than LSWI to GPP simulation during 2009–2010 in this typical
coastal wetland (Figure 10b,d). Future work should focus on how to avoid and mitigate the effects of
angular geometry on surface albedo and to reconstruct the time series data of vegetation indices in
order to improve the accuracy of vegetation indices, especially EVI.

The simulation uncertainties of VPM also come from two intermediate variables that are related
to water (Wscalar) and temperature (Tscalar) [39]. We use the two intermediate variables to set three
sensitivity scenarios, including without Tscalar (εg = Wscalar × Pscalar × ε0), without Wscalar (εg = Tscalar
× Pscalar × ε0), and without Tscalar & Wscalar (εg = Pscalar × ε0). When there is no Tscalar in the
VPM, the model overestimated GPP by about 10%, 39%, and 25% in 2009, 2010, and 2009–2010,
respectively. In the absence of Wscalar in VPM, the model overestimated GPP by about 18%, 36%,
and 27% in 2009, 2010, and 2009–2010, respectively. When there is no both Tscalar and Wscalar in VPM,
the model overestimated GPP by about 31%, 57%, and 44% in 2009, 2010, and 2009–2010, respectively
(Figure 10c,d). Above results indicated that both Tscalar and Wscalar have profound effects on the
predicted accuracy of GPP. It will be essential to integrate both temperature and water to downscale
maximum light use efficiency to better represent the impacts of temperature and water on plant
photosynthesis and GPP [36,39,40,66].
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Figure 10. Parameter sensitivity analysis for VPM model in the targeted coastal wetland. GPP, gross
primary production; GPPEC, estimated GPP from EC tower; GPPVPM, simulated GPP by VPM
model; Ta, air temperature; ε0, maximum light use efficiency; PAR, photosynthetically active
radiation; EVI, enhanced vegetation index; LSWI, land surface water index; Wscalar and Tscalar are the
downregulation scalars for the impacts of water and temperature on light use efficiency, respectively.
Base, all of the variables do not change, εg = Tscalar ×Wscalar × Pscalar × ε0; Ta·(1 + 10%), increase in
Ta by 10%; ε0·(1 + 10%), increase in ε0 by 10%; PAR·(1 + 10%), increase in PAR by 10%; EVI·(1+10%),
increase in EVI by 10%; LSWI·(1 + 10%), increase in LSWI by 10%; Without Tscalar, εg = Wscalar × Pscalar

× ε0; Without Wscalar, εg = Tscalar × Pscalar × ε0; and, Without Tscalar & Wscalar, εg = Pscalar × ε0.

5. Conclusions

In this study, we incorporated climate and remote sensing data into a satellite-based VPM model to
investigate the biophysical performance of different vegetation indices and to evaluate the applicability
and accuracy of the VPM model for simulating GPP of coastal wetland in China. The results indicated
that air temperature can explain most of the seasonal variation in vegetation indices and GPPEC fluxes.
Time series of greenness-related EVI and water-related LSWI can better delineate the green-up and
senescence phases of coastal wetland vegetation, which are in accordance with the CUP, as defined
by GPPEC. Further, both EVI and water-sensitive LSWI have higher predictive power for simulating
the GPP in this coastal wetland. The EVI-based VPM model is able to simulate the U-shaped growth
pattern of the coastal plant and accurately simulate the trajectories of the seasonal dynamics of GPPEC

fluxes, explaining about 85% of GPPEC changes. Further development and improvement of VPM
for nearby coastal wetlands and the spatial-temporal scale expansion are necessary for regional and
continental simulations of GPP in the future.
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