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Abstract: Himawari-8, a next-generation geostationary meteorological satellite, was successfully
launched by the Japanese Meteorological Agency (JMA) on 7 October 2014 and has been in official
operation since 7 July 2015. The Advanced Himawari Imager (AHI) onboard Himawari-8 has
16 channels from 0.47 to 13.3 µm and performs full-disk observations every 10 min. This study
describes AHI aerosol optical property (AOP) retrieval based on a multi-channel algorithm using
three visible and one near-infrared channels (470, 510, 640, and 860 nm). AOPs were retrieved by
obtaining the visible surface reflectance using shortwave infrared (SWIR) data along with normalized
difference vegetation index shortwave infrared (NDVISWIR) categories and the minimum reflectance
method (MRM). Estimated surface reflectance from SWIR (ESR) tends to be overestimated in urban
and cropland areas. Thus, the visible surface reflectance was improved by considering urbanization
effects. Ocean surface reflectance is obtained using MRM, while it is from the Cox and Munk method
in ESR with the consideration of chlorophyll-a concentration. Based on validation with ground-based
sun-photometer measurements from Aerosol Robotic Network (AERONET) data, the error pattern
tends to the opposition between MRMver (using MRM reflectance) AOD and ESRver (Using ESR
reflectance) AOD over land. To estimate optimal AOD products, two methods were used to merge
the data. The final aerosol products and the two surface reflectances were merged, which resulted
in higher accuracy AOD values than those retrieved by either individual method. All four AODs
shown in this study show accurate diurnal variation compared with AERONET, but the optimum
AOD changes depending on observation time.
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1. Introduction

Aerosols have a direct effect on the Earth’s radiation balance and act as cloud condensation
nuclei, which affects the efficiency of the reflection of solar radiation by clouds by changing cloud
microphysical properties, and influences the dynamical development and precipitation efficiency
of clouds [1,2]. Aerosols are known to have a net-negative effect on climate radiative forcing, but
individual aerosols have widely varying effects that depend on their optical properties. In particular,
black carbon (BC) particles result in a positive forcing, reducing the reflectance of radiant energy [2].
Various studies have analyzed the effect of aerosols on public health and climate change [3,4].
Satellite observations have been widely used to understand the aerosol distribution and optical
characteristics at both the regional and global scales. Satellite sensors that have provided aerosol
products include the Moderate Resolution Imaging Spectrometer (MODIS) and the Multi-angle
Imaging SpectroRadiometer (MISR) operated by the National Aeronautics and Space Administration
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(NASA), the Visible Infrared Imaging Radiometer Suite (VIIRS), which is the successor to MODIS,
and the Thermal and Near-infrared Sensor for carbon Observation–Cloud and Aerosol Imager
(TANSO-CAI) operated by the Japanese Aerospace Exploration Agency (JAXA). MODIS and VIIRS
have several visible, near-infrared, and infrared channels and are used to retrieve highly accurate
aerosol optical properties (AOPs) based on the Dark Target (DT) and Deep Blue (DB) algorithms [5–11].
The difference between the two algorithms is whether to retrieve over bright surfaces using different
wavelengths. In the case of TANSO-CAI, observations in the visible and UV ranges provide aerosol
absorption information. Observations that use multiple angles, such as MISR, can observe aerosols
according to several scattering angles thus can provide more accurate AOPs especially aerosol shape,
but have poorer spatial coverage than MODIS [12,13]. Recently, studies were carried out to obtain
high spatial resolution data from MISR [14]. Polarization measurement such as the Polarization
and Directionality of the Earth’s Reflectances (POLDER) can also increase the degree of freedom for
signal, thus more accurate AOPs including size and absorptivity can be retrieved [15]. However,
the missions mentioned here are low earth orbit (LEO) satellites with coverage once a daytime or
once every few days. LEO satellites have difficulty in determining aerosol transport because of poor
temporal resolution.

Geosynchronous earth orbit (GEO) satellites with high temporal resolution can provide
information on aerosol transport, but have difficulty retrieving aerosol properties using previous
sensors because they lack multiple channels in the visible region. Most GEO meteorological satellites,
including the Meteorological Imager (MI) sensor onboard on the Communication, Oceanography and
Meteorology satellite (COMS) launched by South Korea, the past GOES series launched by the United
States, the past Meteosat series launched by EUMETSAT, and past Himawari instruments launched by
Japan, have only a single visible channel. Previous studies have attempted to retrieve aerosol properties
using the Multi-Functional Transport Satellite (MTSAT) of the Himawari series [16,17], the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) of the Meteosat series [18], the GOES series [19,20]
and the MI of COMS [21,22]. However, there were limitations in aerosol property retrievals using
geostationary meteorological satellites, as it is difficult to classify aerosol types and to produce certain
AOPs other than aerosol optical depth (AOD), such as fine mode fraction (FMF), Ångström exponent
(AE) and single scattering albedo (SSA). However, two or more infrared channels enable relatively
high-quality cloud masking, except for cirrus cloud detection. The Geostationary Ocean Color Imager
(GOCI) onboard the COMS is the first sensor in GEO to observe ocean color and has 6 visible channels
that are useful for the retrieval of aerosol properties [23,24]. However, the lack of infrared channels
limits the masking of pixels contaminated by cirrus and other cloud types. Unlike other geostationary
satellites, GOCI observes only limited regions of East Asia.

The Advanced Himawari Imager (AHI) is onboard the Himawari-8 and -9 satellites, which
were launched in 2014 and 2016, respectively. The GOES-R has been in operation over America
since 2016 [25]. The AHI and GOES-R, with 16 channels from 0.47 to 13.3 µm, are next-generation
geostationary meteorological satellites that observe the full disk of Earth every 10-min. The AHI has
3 visible, 1 near infrared (NIR), 3 shortwave infrared (SWIR) and 9 infrared (IR) channels with high
spatial resolution at sub-satellite point (0.5–2 km). The AHI is thus well configured for aerosol property
retrieval. The AHI aerosol products for 5 km × 5 km (at sub-satellite point) resolution provided by
JAXA were retrieved using optimal estimation method from top-of-atmosphere radiance for three
channels over land and two channels over ocean. JAXA’s algorithm assumes the second minimum
atmospheric corrected reflectance of past 30 days as the surface reflectance. However, in the area
where the surface reflectance appears higher at blue band than at red band, Kikuchi et al. [26] applied
empirical equations obtained in Australia to complement the surface reflectance. This study also used
AHI top-of-atmosphere radiance data to retrieve AOPs in high temporal and spatial resolution from
GEO. In Section 2, the AHI Yonsei Aerosol Retrieval (YAER) algorithm is described. Section 3 presents
the final products, and a validation and error analysis using AERONET data. Section 4 presents two
AHI merged products. Section 5 provides summary and conclusion.
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2. Development of the AHI YAER Algorithm

In our previous study, aerosol optical information was retrieved and validated against AERONET
for May and June of 2016 using AHI data [27]. Problems remain with surface reflectance (cloud and
bright pixel masking) when AOPs are retrieved using measurements at four wavelengths (0.4 to
0.8 µm) regardless of surface type. Therefore, in this study, we used three wavelengths over land,
four wavelengths over ocean, and two wavelengths over turbid water area to increase the accuracy
of aerosol retrieval. In addition, different threshold values were used for high and low latitudes to
mask clouds, and bright pixel making was added newly. Land surface reflectance was estimated
from SWIR in addition to existing Minimum Reflectance Method (MRM), and ocean reflectance was
from Fresnel equations with the consideration of chlorophyll-a concentration, as discussed in the next
section. Here, AOPs were retrieved for February, May, August, and November to represent each season
in 2016 using the YAER algorithm [22–24], and AOP results were compared with those calculated from
AERONET sun-photometer data. The YAER algorithm should be preceded by cloud masking and
surface reflectance estimation. In Section 2.1, cloud and bright pixel masking is described. Sections 2.2
and 2.3 summarize land and ocean surface reflectance estimations. Finally, Section 2.4 presents the
inversion method and the flow of the overall YAER algorithm.

2.1. Cloud and Bright-Surface Masking

The AHI YAER algorithm can retrieve aerosol properties only over dark surfaces, so it is
important to mask pixels with bright surfaces including desert, snow, and turbid water areas and
clouds. The geostationary AHI is equipped with 16 visible and infrared channels, and thus has
significantly improved cloud-masking capabilities compared with existing GEO satellites in Asia
region. The channel information of AHI is summarized in Table 1 [28]. In this study, the masking
process was applied to upper- and lower-layer clouds, including cirrus, using various brightness
temperature differences (BTD) tests. Spatial heterogeneity tests were also performed using the visible
channels. In the YAER algorithm, BTD tests using IR channels are first used to detect clouds. The
two channels used for BTD calculations differ with layer height. The wavelength dependence of
observation sensitivity changes with altitude and can be used to detect upper- and lower-layer
clouds [29]. However, AHI does not have a channel at 1.38 µm for cirrus detection. In this study, cirrus
clouds are detected using the BTD of band 14 and band 11 instead. The cloud masking process is
summarized in Table 2. In step 1, band 15 which is sensitive to water droplets and ice crystals in the
upper layer, and band 16 which is affected by CO2 absorption, were used. If clouds are present at
high altitude, bands 15 and 16 have low brightness temperature (BT), but for clouds at low altitude,
emission at band 16 is absorbed by CO2 above thus has lower BT than band 15. This property is used
for the high-level cloud masking. In step 2, difference in BT between band 11 and band 9 is used to
remove low-level clouds, where band 11 is in atmospheric window region close to band 9. In step 3,
band 14 is also in atmospheric window region, and more sensitive to ice crystals than water droplets.
Thus, the difference between band 11 and band 14 is used to remove ice clouds in the upper layer. The
threshold values for BTD tests are set empirically for respective mission, thus other satellite threshold
values must not be adopted directly, due to different calibration and response functions.

Because BT is a parameter sensitive to surface temperature, it is difficult to use a single BT test
from geostationary satellites, which have fixed viewing geometries. Therefore, in this study the BTD
test was performed by applying the method presented by Kim et al. [21] using the max BT of the pixel
for the previous 10 days (step 4). During cloud masking using IR channels (step 5), threshold of −1.0 K
is used for segments 1 and 10 of the Himawari Standard Data (HSD) that differ from the threshold
of 0.5 K at lower latitudes for segments from 2 to 9 [30]. HSD is provided by Japan Meteorological
Agency (JMA) for 10 divided segments from north (#1–#5) to south (#6–#10) [28]. Next, cloud masking
using the reflectance of the visible channels is performed. The cloud removal method using the
visible channels includes a spatial heterogeneity test, a reflectance threshold test, and a pixel-average
constraint. The spatial heterogeneity test is performed during the masking steps 6, 7, and 8. Over ocean,
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clouds can be masked by a standard deviation (STD) test of reflectance, because the surface is more
homogeneous than over land [5,23].

Table 1. Specifications for 16 bands of AHI (http://www.data.jma.go.jp/mscweb/en/himawari89/
space_segment/spsg_ahi.html).

Band Center Wavelength (µm) Spatial Resolution at Sub-Satellite Point (km)

1 0.470 1
2 0.510 1
3 0.640 0.5
4 0.856 1
5 1.61 2
6 2.26 2
7 3.89 2
8 6.24 2
9 6.94 2

10 7.35 2
11 8.56 2
12 9.63 2
13 10.4 2
14 11.2 2
15 12.4 2
16 13.3 2

Table 2. Masking tests in the AHI YAER algorithm.

Step Condition Classification

1 BTD between Band 15 and Band16 land and ocean: <11 K high-level cloud over land and ocean

2 BTD between Band 11 and Band 9 land and ocean: <−10 K low-level cloud over land and ocean

3 BTD between Band 14 and Band 11 land and ocean: <0 K cirrus cloud over land and ocean

4
BTD between Band 14 max *, Band 14, Band 9 max * and Band 9;
Band 14 max * − Band 14 > 15 K; Band 9 max * − Band 9 > 10 K cloud over land

5
BTD between Band 14 and Band 15 high latitude (segment 1 and 10)
ocean: <−1.0 K; mid-low latitude (segment from 2 to 9) ocean: <0.5 K cloud over ocean

6 STD test at Band 2 and Band 4 > 0.0025 cloud over ocean

7 mean-weighted STD test at Band 1 > 0.0025 cloud over land

8 pseudo GEMI index at Band 3 and Band 4 < 1.87 cloud over land

9 TOA reflectance test at Band 1 > 0.35 cloud over land and ocean

10 NDVI (using Band 3 and Band 4) < −0.01 inland water

11
relationship between Band 6 > 0.2 and NDVISWIR (using Band 5 and
Band 6) < 0.05 arid area

12 NDSI (using Band 2 and Band 5) > 0.35 and Band 4 > 0.11 snow and ice over land

13 ratio between Band 4 and Band 5 < 0.82 with Band 6 reflectance > 0.25 cloud over bright land surface

14
difference between Band 3 and linearly-interpolated Band 3 from
Band 1 and Band 6 > −0.03 high-turbidity pixels masked over ocean

15 glint angle < 25◦ sun glint mask over ocean

16 Constraint in the number of pixels out of 6 × 6 pixels < 3 Step 1–15 for 6 × 6 pixels

17 Band 6 reflectance after aggregation (6 km resolution) arid area masking

* Maximum BT over past 10 days.

Over land where surface features are inhomogeneous, the problem of mis-detecting clear pixels
as cloudy often occurs with a simple STD test. In step 7, we solved this problem by introducing a
mean-weighted standard deviation test that accounts for surface inhomogeneity with the threshold
value of 0.0025 adopted from previous study [31]. In step 8, a pseudo Global Environment Monitoring

http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html
http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html
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Index (GEMI) using bands 3 and 4 was adopted [32,33]. In step 11, desert areas are detected using the
NDVISWIR and band 6 top-of-atmosphere (TOA) reflectance. In step 12, the Normalized Difference
Snow Index (NDSI) is used to detect the degree of snow cover, which is used to mask snow pixels
with the reflectance value at band 4 [11]. In step 13, as suggested by Ishida and Nakajima [34], clouds
over the desert are masked using the ratio of band 4 to band 5 and threshold test of TOA reflectance at
band 6.

In step 14, bright pixels, such as turbid water, are detected based on the work of Li et al. [35],
over which the retrieval of aerosol property becomes very difficult with strong contribution of
suspending particles. Over clear ocean regions, there is no significant difference between the TOA
reflectance of band 3 and that linearly interpolated for band 3 using band 1 and band 6, but large
differences appear in turbid water regions where land sediments flow into the water. This is because
the sediments have higher reflectance, similar to that of land surfaces. In step 15, Sun-glint zones are
calculated from the geometries of solar illumination and satellite viewing and are masked when the
glint angle is less than 25◦. Each masking test from step 1 to 15 is independent, which masks a pixel
if it is classified as cloudy or bright by any of these tests. After aggregating 6 × 6 pixels and going
through all bright pixel masking tests from step 1 to 15, if the number of remaining pixels is less than 3
out of 36 pixels, the grid is treated as contaminated thus masked in step 16. Step 17 is a similar test as
in step 11 for the aggregated 6x6 pixels.

2.2. Determination of Land Surface Reflectance

Retrieved aerosol properties using visible channels show a dependence on how the surface
reflectance is estimated. In this study, two methods are used to retrieve surface reflectance: the MRM,
which is used in the MODIS DB C5 algorithm [10] and GOCI-YAER [23,24], and the Estimated Surface
Reflectance from SWIR (ESR), which estimates the surface reflectance in the visible range from TOA
reflectance at SWIR, as in the MODIS DT [5,6] and MODIS DB C6 [11] algorithms.

2.2.1. Minimum Reflectance Method (MRM)

The surface reflectance using MRM adopts the Lambertian Equivalent Reflectance (LER) calculated
using a radiative transfer model, which combines the surface, aerosol, and cloud signals after Rayleigh
correction from TOA reflectance using a look-up table (LUT). The calculated LER synthesized for
30 days has a spatial resolution of 1 km (at sub-satellite point), where the lower 6% of the data is
averaged to construct the surface reflectance. In determining surface reflectance, lower 6% corresponds
to first and second minimum reflectance values in a month to avoid cloud shadow effects in the
modified minimum reflectance method [36]. The AHI performs a full-disk observation every 10 min;
thus, a database of surface reflectance is constructed at intervals of 10 min. Calculating a representative
monthly value from samples at different times indirectly accounts for the Bidirectional Reflectance
Distribution Function (BRDF) effect. However, when the monthly surface reflectance database is
constructed, discontinuities in surface reflectance across months appear. To minimize the monthly
discontinuity, the database was interpolated to daily precision using the average monthly values.
In future work, we plan to increase the number of datasets by considering BRDF and estimate surface
reflectance with high accuracy [37,38].

2.2.2. SWIR (ESR) Estimates

The DT and DB (C6) algorithms estimate the surface reflectance in the visible region using the
2.1 µm channel of MODIS. According to Levy et al. [6], the NDVISWIR (vegetation index using the 1.2
and 2.1 µm channels) can be divided into three categories, and the final surface reflectance estimated
using empirical expressions. However, it is difficult to estimate the surface reflectance in urban and
agricultural areas. In this study, the aerosol retrieval accuracy was improved by taking the urbanization
index into consideration in urban areas [39].
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A previous study used another approach to investigate surface reflectance using the 1.6 µm
channel of a CAI sensor onboard GOSAT launched by JAXA [40]. They divided the NDVI ranges into
22 subintervals with equal interval of 0.025 and used the relationship between the TOA reflectance
at 1.6 µm and the surface reflectance in the visible region for each subinterval. As the NDVI using
wavelengths at around 640 nm and 860 nm are affected by aerosols, the NDVI using SWIR bands
which is less affected by aerosol is defined as NDVISWIR, to calculate the final surface reflectance.

In AHI-YAER algorithm, the data used to calculate the surface reflectance was within 25 km of
each measurement site for AERONET Version 2 Level 1.5 AOD 550 nm in East Asia (−5◦ N–50◦ N,
110◦ E–150◦ E) and the NDVISWIR was calculated for each AHI pixel to estimate spectral reflectance
information. The AERONET site information is summarized in Table 3. When AOD is low (AERONET
AOD less than 0.1 at 550 nm), aerosol type has no significant effect, and atmospheric (aerosol and
Rayleigh) correction was carried out to estimate the surface reflectance at band 3 [41]. The relationship
between the collected surface reflectance of band 3(S3) and TOA reflectance of band 5(T5) were
analyzed by NDVISWIR dividing into interval of 0.01, from 138,744 data of 1 year in 2016. The best
linear regression fits were obtained between T5 and S3 for each divided NDVISWIR to provide their
slope and intercept as a function of NDVISWIR:

slopeT5−S3 = a1 × NDVISWIR + b1, and (1)

interceptT5−S3 = a2 × NDVISWIR + b2, (2)

where a1 (a2) and b1 (b2) are the slope and intercept of the linear regression of the slopeT5-S3

(interceptT5-S3) with respect to NDVISWIR.
The surface reflectance can then be estimated as follows:

Rs
0.64 = slopeT5−S3 × R1.6 + interceptT5−S3, (3)

where Rs
0.64 represents the surface reflectance to be estimated, and R1.6 represents the TOA reflectance

of band 5. In the same manner as described above, the surface reflectance at bands 1 and 2 were
obtained for atmospheric correction in the dataset collected. From the relationship between the surface
reflectance obtained at these wavelengths and that obtained at band 3, a linear empirical equation was
constructed. The parameters are summarized in Tables 4 and 5.

As mentioned above, when estimating the reflectance of the visible region from SWIR, it is
possible to estimate more accurate reflectance by considering the urbanization effect. In this study,
the percentage fraction of urbanization and cropland were calculated using the MODIS land cover type
climate modeling grid product (MCD12C1) [42] and divided into low (10~30%), moderate (30~70%),
and high (>70%) respectively. Different empirical formulas to obtain surface reflectance for different
surface type are shown in Tables 4 and 5.
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Table 3. The site information of AERONET such as geolocation and land type (1 = others; 2 = urban; 3 = cropland. T indicates were used for studying surface
reflectance relationships, LX, OX indicates were used for validating results over Land and Ocean; X indicates of month information).

Site Lon.(◦ E)/Lat.(◦ N) Training(Lv1.5)/
Validation(Lv2)

Land Type/Average of the
Fraction of Land Type

within 25 km for Site (%)
Site Lon.(◦ E)/Lat.(◦ N) Training(Lv1.5)

/Validation(Lv2)

Land Type/Average of the
Fraction of Land Type

within 25 km for Site (%)

Anmyon 126.330/36.539 T/- 1 KORUS_Kyungpook 128.606/35.890 T/L2,5,8 2/13.8
Baengnyeong 124.630/37.966 T/O2,5,8 1 KORUS_Mokpo_NU 126.437/34.913 T/L2,5,8, O2,5,8 3/41.4
Beijing-CAMS 116.317/39.933 T/L2,5,8 2/57.1 KORUS_NIER 126.640/37.569 T/L2,5, O5 1

Beijing 116.381/39.977 T/L2,5 2/57.3 KORUS_Olympic_Park 127.124/37.522 T/L5 2/39.0
Beijing_RADI 116.379/40.005 T/L2 2/55.3 KORUS_Songchon 127.489/37.338 T/L5 3/35.7

Chiayi 120.496/23.496 -/L2 1 KORUS_Taehwa 127.310/37.312 T/L5 1
Chiba_University 140.104/36.625 T/- 1 KORUS_UNIST_Ulsan 129.190/35.582 T/L5,8,11 1

Fukuoka 130.475/33.524 T/L2 2/20.0 Niigata 138.942/37.846 T/- 3/29.2
Ganneung_WNU 128.867/37.771 T/- 1 Noto 137.137/37.334 T/- 1

Gosan_SNU 126.162/33.292 T/L5,8, O5,8 1 Osaka 135.591/34.651 T/L2,5,8,11, O2,5,8,11 1
Gwangju_GIST 126.843/35.228 T/L5 1 Pusan_NU 129.082/35.235 T/L2,5,8,11, O2,5,8,11 2/17.9
Hankuk_UFS 127.266/37.339 -/L2,5,8,11 1 Seoul_SNU 126.951/37.458 T/- 2/55.5

Hokkaido_university 141.341/43.075 T/L2,5,8, O2,5,8 2/13.8 Shirahama 135.357/33.693 T/L2,5, O2,5 1
Hong_Kong_Sheung 114.117/22.483 -/L2,5, O5 1 Ussuriysk 132.163/43.700 T/- 1

KORUS_Baeksa 127.567/37.412 T/L5 3/25.4 XiangHe 116.962/39.754 T/- 3/87.7
KORUS_Daegwallyeong 128.759/37.687 T/L5 1 Yonsei_University 126.935/37.564 T/L2,5,8,11 2/47.5

KORUS_Iksan 127.005/35.962 -/L5 3/60.0
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Table 4. Coefficients for surface reflectance estimates for different surface type in Equations (1) and (2).

a1 b1 a2 b2

All land types (excluding urban and cropland) −0.705 0.515 −0.073 0.028
Urbanization fraction 10–30% −1.605 0.717 −0.008 0.008
Urbanization fraction 30–70% −1.681 0.812 −0.023 0.003
Urbanization fraction > 70% −1.944 0.944 −0.021 −0.002
Cropland fraction 10–30% −1.573 0.807 −0.014 0.001
Cropland fraction 30–70% −1.096 0.629 −0.047 0.017
Cropland fraction > 70% −0.592 0.454 −0.065 0.031

Table 5. Conversion factor for band 1 (470 nm) and band 2 (510 nm) surface reflectance from band 3
(640 nm) surface reflectance.

a470 b470 a510 b510

All land types (excluding urban and cropland) 0.561 −0.009 0.661 −0.002
Urbanization fraction 10–30% 0.635 −0.010 0.722 −0.004
Urbanization fraction 30–70% 0.643 −0.013 0.724 −0.004
Urbanization fraction > 70% 0.637 −0.011 0.735 −0.003
Cropland fraction 10–30% 0.645 −0.013 0.736 −0.005
Cropland fraction 30–70% 0.652 −0.015 0.738 −0.006
Cropland fraction > 70% 0.654 −0.006 0.654 −0.006

2.3. Determination of Ocean Surface Reflectance

The Fresnel equation is typically used to estimate the ocean surface reflectance according to wind
speed [42]. In addition, when the chlorophyll-a concentration is used as an input parameter and the
water leaving radiance is considered, this equation can be used in turbid water areas. As reported by
Choi et al. [23], the possibility of aerosol retrieval over turbid water areas was confirmed using the
MRM. Therefore, in this study the MRM and the Cox and Munk method [43] were used to estimate the
ocean surface reflectance.

As in the case of land, a water surface reflectance database is constructed, and the surface
reflectance is estimated by interpolating the date to be calculated. However, over turbid water areas,
aerosol properties are retrieved using the reflectance of band 1 and band 4, which are relatively less
affected by aerosols [24].

Several studies have estimated aerosol properties by evaluating ocean surface reflectance using
the Cox and Munk method [8,23,24,41,44]. In this study, ocean surface reflectance is calculated using
A Linearized pseudo-spherical Vector Discrete Ordinate Radiative Transfer (VLIDORT) [45] ver. 2.7
considering additional water leaving radiance emitted from the ocean itself. The nodal points of the
LUT for estimating the sea-level reflectance were calculated as 1, 4, 7, 10, 13 and 16 ms−1 and the
chlorophyll-a concentrations as 0.01, 1, 10 and 50 mgM−1.

2.4. Inversion Process

The radiative transfer model used to construct the LUT for retrieved aerosol optical properties
was VLIDORT ver. 2.7. LUT configurations include surface pressure, sun–satellite geometry and
aerosol type. Aerosols are classified into four types: black carbon (BC), mixture (MIX), dust (DU)
and non-absorbing (NA), based on AERONET’s FMF and SSA [27,46,47]. Over the ocean, LUTs are
constructed considering Fresnel reflectance and ocean BRDF, similar to the land LUT calculations,
and are summarized in Table 6.

A flowchart of the aerosol retrieval algorithm is shown in Figure 1. The masking method described
above was used to screen out pixels with clouds, bright surfaces, and heavily turbid water. Then,
inversion was performed with the surface reflectance database using LUTs, pre-calculated using results
from a radiative transfer model. When the cloud and bright-surface masking processes were finished
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as in Table 2, the remaining pixels were collected on a 6 km × 6 km grid (at sub-satellite point),
where upper 40% and lower 20% of the 36 pixels were removed. The high and low-reflectance filtering
was performed to obtain more reliable data by removing brighter and darker pixels affected by sub
pixel cloud and cloud shadows [5,6,23,24].

Table 6. Look-up table details.

Variable Value

solar zenith angle (◦) 0.01, 10, 20, 30, 40, 50, 60 and 70
viewing zenith angle (◦) 0.01, 10, 20, 30, 40, 50, 60 and 70

relative azimuth angle (◦) 0.01, 10, 20, 30, 40, 50, 60, 70, . . . 180
AOD–each reference wavelength 0, 0.25, 0.50, 1.0, 1.5, 2.0 and 3.0

aerosol type black carbon, non-absorbing, mixture, and dust
surface albedo * 0.0, 0.05, 0.1 and 0.2

terrain height * (km) 0 and 5
band (4) 1 (470 nm), 2 (510 nm), 3 (640 nm) and 4 (860 nm)

wind speed ** (ms−1) 1, 4, 7, 10, 13 and 16
chlorophyll-a concentration ** (mgm−3) 0.01, 1, 10 and 50

* only land; ** only ocean.
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For the TOA reflectance of each 6 km × 6 km grid (at sub-satellite point), 36 TOA reflectance data
points at 1 km (at sub-satellite point) resolution were averaged before masking. We selected the same
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pixels used for TOA reflectance and averages to create the surface reflectance for each 6 km × 6 km grid.
Choosing the same pixels for surface and TOA reflectance reduces error. The external input values
required for the aerosol inversion process include chlorophyll-a concentration, wind speed, surface
type and terrain height. The wind speed was estimated by interpolating the 6-h reanalysis data on a
grid of 0.125◦ × 0.125◦ provided by ECMWF, and the chlorophyll-a concentration was interpolated
from the data in 1-hour intervals provided by the JAXA [48]. The topographic data of the Global Land
One-km Base Elevation Digital Elevation Model (GLOBE) was re-gridded to the AHI grid. MRM
version (MRMver) uses the composite method for land and ocean surfaces to estimate the surface
reflectance. In ESR version (ESRver), surface reflectance over land was estimated from SWIR, and that
over ocean was from the Cox and Munk method with the chlorophyll-a concentration [49]. The AHI
has four channels of visible and near infrared bands that are directly used for aerosol retrieval. Band 4
can be used over the dark ocean, but it has a high surface reflectance over land and is not suitable for
retrieving aerosol optical properties.

Using the spectral fitting method, the AOD at 550 nm is traced for the given geometry as
the input value for each aerosol type using three wavelengths over land and four wavelengths
over ocean. Theoretically, all these values should be the same, but in reality they differ because of
differences in the calibration corrections of the instrument, errors in the aerosol type construction
process, inaccurate surface reflectance estimation, or atmospheric simulation errors in the radiative
transfer model. Therefore, the two aerosol types with the smallest standard deviation of AOD at
550 nm were selected, and the final product was obtained considering the weighting function from
STD of selected aerosol types. The final product includes AOD, FMF and AE (470–640), and aerosol
type at 550 nm at 6-km (at sub-satellite point) resolution. The specific FMF weighting was calculated
according to the selected aerosol type. AE was calculated using the AODs at bands 1 and 3.

Later in this work in Section 3 errors are analyzed for the MRMver and ESRver, respectively.
In Section 4, products from MRMver and ESRver are merged to improve the accuracy of respective
inversion. Different level of merging AHI at surface reflectance and AOD products are considered.

3. Retrieval and Validation Results

3.1. Retrieval Results from AHI YAER Products

An example of the retrieved aerosol optical properties is shown in Figure 2 for the case of
19 May 2016. Figure 2a is a true color image obtained by AHI, which can visually distinguish clouds,
heavy aerosols, and other objects. On this date, an aerosol plume presumed to be smoke passed
over the Hokkaido area in Japan. The AOD obtained from (b) MRMver and (c) ESRver is close to 1.5
over this area. Results in this area are consistent despite of using two different methods to estimate
the visible surface reflectance. However, ESRver results differ from MRM results in areas where the
surface is bright, such as in the western part of China where noisy features are present. The method
of estimating surface reflectance using SWIR leads to results that are similar to previous work [50],
resulting in errors over bright areas of western China. In Figure 2f, BC aerosol is detected in areas
with high AOD, as shown in the true color image in Figure 2a. The FMF shown in Figure 2d is from
selected aerosol type, because it is calculated for two selected aerosol types. In contrast, the AE shown
in Figure 2e is calculated using the retrieved spectral AOD. Both FMF and AE are related to aerosol
size, and thus their values can be inter-compared to some extent in areas where aerosols are present.
However, in regions where the aerosol loading is low, the surface signal becomes large and leads to
noisy results. In addition, AE is not calculated in many ocean areas. The ocean algorithm generally
retrieves AOPs using four wavelengths, but over lightly turbid water areas, only bands 1 and 4 are
used, which are less affected by sediments. As there is no spectral AOD in band 3, AE cannot be
calculated. In the Pacific Ocean south of Japan, the retrieval is affected by turbid water masking due to
the influence of cloud contamination, which makes AE retrieval difficult.
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Figure 2. Retrieved results for 19 May 2016, 04:30 UTC: (a) RGB image; (b) MEMver AOD (550 nm);
(c) ESRver AOD (550 nm); (d) FMF (550 nm); (e) AE (470–640 nm); (f) aerosol type. Note that white
circular regions near Philippines represent sun glint area where data retrieval is not available.

3.2. Validation of AOD and AE

In this section, the performance of two methods of AOP retrieval is validated with the
ground-based AERONET sun-photometer network. For spatiotemporal matching, AHI AOD pixels
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are averaged and compared within 25 km and ±5 min around each AERONET site in the East Asia
region (20◦ N–50◦ N, 110◦ E–150◦ E). Figure 3 shows validation results of MRMver and ESRver AOD
over land for each season. Figure 4 shows validation results for the two aerosol product methods
over ocean. Validation statistics include linear regression, Pearson correlation coefficient, root mean
square error (RMSE), mean absolute error (MAE), median bias error (MBE), and the fraction within the
expected error (EE).
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First, despite seasonal variations, AOD on land shows reliable results in terms of RMSE, MBE,
and EE. Among the validation statistic metrics, EE in particular shows the results to be reasonable.
EE for AHI in this study was calculated to compare its retrieval accuracy, based on the EE for MODIS
DT products over land [6], i.e., EE = ± 0.05 ± 0.15 × AOD. In the case of MRMver, EE has high
values of 75%, 56.4%, 57.2%, and 75.5% for each season. In spring and summer, EE is lower because
of surface vegetation changes and cloud contamination, respectively, compared with autumn and
winter, but still indicates reliable results. However, ESRver results have EE values of 63.0%, 69.3%,
63.1% 47.3% for each season, with relatively low EE in fall and winter. In East Asia, heavy aerosol



Remote Sens. 2018, 10, 699 14 of 25

loading is estimated in spring and summer, leading to overestimates of surface reflectance by MRMver
because of the influence of background AOD (BAOD). In winter, the influence of BAOD is relatively
small, and surface reflectance is estimated more accurately by MRMver compared with spring and
summer, when estimated AOD has high EE. Surface reflectance estimated by ESRver shows trends
opposite to those of MRMver. In spring and summer, with dense vegetation, EE for ESRver has higher
values than that for MRMver. It is estimated that ESRver, which uses SWIR, minimizes the effect of
BAOD, as SWIR is less sensitive to the presence of aerosol. However, in autumn and winter, vegetation
starts to disappear, and the bare surface is exposed. Performances of the two algorithms are shown in
Table 7 at selected sites for May. The performance of the two algorithms are comparable in terms of R
at all sites. However, in terms of %EE, ESR performs better than MRM in general except for Yonsei
University, Seoul, Korea and Shirahama, Japan.

Table 7. Comparison of retrieved AODs from MRM and ESR at selected sites in May 2016.

LAND/Average of a Degree of Urban and Cropland within 25 km
for Each Site N R RMSE MBE %EE

Beijing (116.381/39.977)/Urban 57.3% MRM 351 0.979 0.081 −0.017 78.9
ESR 354 0.969 0.094 −0.016 81.1

Yonsei_university (126.935/37.564)/Urban 47.5% MRM 552 0.809 0.120 −0.072 45.5
ESR 552 0.856 0.086 0.033 72.8

KORUS_Iksan (127.005/35.962)/cropland 60.0% MRM 500 0.900 0.118 −0.042 59.8
ESR 512 0.905 0.133 0.085 55.7

KORUS_Songchon (127.489/37.338)/cropland 35.7% MRM 528 0.849 0.161 −0.111 40.2
ESR 528 0.886 0.121 −0.047 74.6

KORUS_Taehwa (127.310/37.312)/other land type MRM 514 0.867 0.120 −0.077 49.4
ESR 524 0.912 0.077 −0.013 86.8

Shirahama (135.357/33.693)/other land type MRM 183 0.859 0.068 −0.012 77.0
ESR 181 0.920 0.069 −0.057 64.1

Validation results over the ocean are shown in Figure 4. Results over ocean show not only higher
EE but also reduced RMSE. Results are better than over land because ocean surface reflectance is
darker and more homogeneous than that of land. Unlike MRMver ocean products, ESRver ocean
products use chlorophyll-a concentrations as an input. However, the chlorophyll-a concentration data
from JAXA used in this study are only available since March 2016, thus, no chlorophyll-a concentration
data for February. For February, we performed sensitivity tests of AOD, with respect to errors in
chlorophyll-a concentrations. Figure 5 shows the difference between AOD retrieved by imposing
errors in chlorophyll-a concentration (1, 10, 50) to the simulated visible reflectance by the forward
model (chlorophyll-a = 0.01, AOD = 0, 0.25, 0.5) which is known true condition. As shown in Figure 5,
the AOD error from errors in chlorophyll-a concentrations was less than 0.08. Considering that the
average chlorophyll-a concentration in East Asia is 0.02 mg/M, the effect on final AOD is expected
to be small. Because the peak chlorophyll-a concentration does not appear in February, a value of
0.02 mg/M, which is the East Asian average, was assumed [51].

Validation results for AE are shown in Figure 6. This figure shows that MRMver AE are closer to
a one-to-one line compared to ESRver AE. Also, RMSE and the correlation coefficient are similar or
higher accuracy than ESRver AE. MRMver AE results are slightly higher than ESRver AE in general.
This explains the difference between the spectral AOD calculated at each wavelength. The composite
method can reflect spectral changes well, whereas the results of ESRver using NDVISWIR and TOA
reflectance at band 5 are similar to calculating the reflectance at each wavelength with empirical
formulas. This does not reflect spectral changes better than the composite method.
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Figure 5. Sensitivity tests for errors in chlorophyll-a concentration for three cases with assumed AOD
of (a) 0; (b) 0.25 and (c) 0.5. Y-axis represents wind speed over ocean, that is 1, 4, 7, 10, 13, and 16 ms−1.
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However, in May and August, when aerosol loading is high in northeast Asia, the results are
similar because the aerosol signal is more sensitive to spectral AOD, thus in higher accuracy. However,
the retrieved AE differs between the two methods in February and November when the aerosol load is
relatively low.

3.3. Error Analysis

Aerosol optical information generated by satellite remote sensing has various error sources,
including errors in surface reflectance estimates, cloud contamination, and aerosol type assumptions.
In this section, we compare the AOD of AHI with that of AERONET to analyze the error quantitatively.

3.3.1. Analysis of Two Land Products

In Figure 7, the medians of the difference between the two products of AHI AOD retrieval and
AERONET AOD are plotted with respect to NDVI and surface reflectance over land, and AERONET
AOD and AERONET AE over ocean. The red and green colors indicate that the AHI AOD is
underestimated and overestimated, respectively, and the number of data points in each bin is also
shown. As shown in Figure 7a for the MRMver, the AOD error according to the NDVI is close to zero.
However, results in May, when AOD is large in East Asia, show an overall negative bias regardless
of NDVI. In May, MRMver is affected by BAOD, which leads to overestimates of surface reflectance.
However, with monsoon rains in East Asia from July to August, there are higher probabilities to
find clear pixels with low BAOD in the atmosphere, which permits more accurate surface reflectance
estimates. AOD in August was estimated using the linearly interpolated surface reflectance data
of July, August, and September. The assumption that vegetation changes linearly over the search
window period may result in errors. Figure 7c shows the error analysis for ESRver, which indicates
high accuracy in May and August when vegetation is relatively dense. Unlike MRMver, more accurate
ESRver AOD was retrieved, because ESRver is less affected by BAOD. However, in February and
November, when vegetation decays to directly expose the surface, estimates from SWIR are less
accurate, resulting in larger biases than for MRMver.

Figure 7b,d present an analysis of the surface reflectance of band 1 estimated using the two
retrieval methods, MRMver and ESRver. The analysis was performed using only data with AERONET
AOD less than 0.2 to analyze errors in the surface reflectance signal. MRMver and ESRver both showed
accurate results. However, in the case of MRMver, the error is large for the last surface reflectance bin
of the month. Although this may result from the small number of validation points, it could also be
attributed to a limitation of the MRMver method, which shows the same tendency for all four months.
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ESRver AOD.

3.3.2. Analysis of Two Ocean Products

Figure 8 shows results for the ocean products, analyzing the difference between the two AHI
retrieval methods and AERONET AOD as a function of AERONET AOD and AE. The difference with
respect to AERONET AOD shows a relatively large error for large AOD bins in August, which can be
attributed to the small number of validation points, as described above.

The ESRver results in Figure 8c,d show that AHI AOD has a positive bias, including for lower AE
bins in November. It is presumed that this results from the influence of turbid water near coastal regions.
As shown in Figure 8a,b, MRMver shows reasonable results over turbid water areas with signals
similar to those over land. Furthermore, it uses bands 1 and 4, which are less affected by the reflectance
of turbid water. In contrast, ESRver uses bands 1 and 4, which are not influenced by chlorophyll,
but the retrieved AOD shows a positive bias. The chlorophyll-a concentration was considered only
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when simulating the water-leaving radiance over turbid water areas. In actual turbid water areas,
there are various suspended substances such as Colored Dissolved Organic Matter (CDOM).

The two methods’ estimations of AOD over land have opposite trends in accuracy. Thus, the two
merged AOD products show higher accuracy. One merging approach is to merge AOD between the
MRMver and the ESRver, and another is to re-retrieve AOD using the merged surface reflectance from
the MRMver and ESRver methods.
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4. AHI YAER Merged Aerosol Products

The method of estimating land surface reflectance using the above-mentioned merging of MRM
and ESR estimates is similar to the method used for the MODIS DT and DB algorithms. The DT
algorithm has high accuracy over vegetated areas, and the DB algorithm has high accuracy over bright
surfaces, such as urban and cropland areas. The two products are merged using the NDVI for quality
assurance (QA) and result in a more accurate AOD product. Similarly, in this study we merged the
AOD retrieved by the MRMver and ESRver methods for a higher accuracy product.

The MODIS merged product uses the DB AOD for NDVI < 0.2, the average value if QA is the same
at 0.2 ≤ NDVI < 0.3, and the DT AOD at NDVI ≥ 0.3. Bilal et al. [52] discussed results from the MODIS
merged product. According to previous studies [8,53], although the method of merging according to
NDVI is of high quality, the average of the DT and DB AODs for all retrieved pixels shows similar or
higher accuracy than the NDVI-based merge. Therefore, in this study we estimate the optimal AOD
by taking the average of two methods’ AOD, which is labeled the L2 merged product. As mentioned
in Section 3, the results from ESR show higher accuracy in May and August, when the vegetation
is dense, and MRM shows higher accuracy in February and November when vegetation is sparse.
A more reliable surface reflectance can be obtained by averaging the surface reflectance estimated from
the two methods. This improvement likely results from a moderating of the weaknesses of the surface
reflectance estimated by each method. The AOD retrieved from the merged surface reflectance is called
the Rs merged product, and the results of a validation with AERONET data is shown in Table 8, along
with a similar validation for the L2 merged product.

Table 8. Validation results for the Rs merged product, L2 merged product and AERONET AOD.
Bold font indicates a higher validation score than that of MRMver and ESRver.

Rs Merged/L2 Merged N R RMSE MBE %EE

February 2624/2624 0.727/0.776 0.107/0.087 0.007/−0.012 78.2/83.2
May 9086/9064 0.905/0.906 0.096/0.103 0.01/−0.039 76.3/68.3

August 4468/4419 0.840/0.838 0.131/0.129 0.03/−0.017 65.2/63.7
November 2486/2466 0.809/0.78 0.086/0.089 −0.011/−0.016 75.9/71.2

Results for the L2 merged product for February, May and August are similar to or better than the
respective unmerged results in terms of R, RMSE, MBE, and %EE. In November, the ESRver product is
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of lower quality than that from MRMver in terms of EE, however this EE still has a reasonably high
value of 71.2%. Results for the Rs merged product indicate higher accuracy than unmerged results for
all seasons from February to November, suggesting that the surface reflectance at each wavelength is
estimated reliably. As shown in Figure 9, the AE for the merged results are close to a one-to-one line
compared with AERONET data overall, and the correlation coefficient reaches a maximum of 0.513.
The correlation coefficient of AE is not high compared to that of AOD, but this is a difficult retrieval,
as noted in previous studies [7].

 

2 

 
 

Figure 9. Comparison of Rs merged AOD on land and Lv2 AERONET AOD for: (a) February; (b) May; 
(c) August; and (d) November. 

(a) (b) 

(c) (d) 

Figure 9. Comparison of Rs merged AE on land and Lv2 AERONET AE for (a) February; (b) May;
(c) August; and (d) November.

The AHI makes full-disk observations every 10 min, and the results of the diurnal variation in the
four retrieved AODs are shown in Figure 10 together with the observed AERONET data. A noticeable
aerosol plume passed over the Hokkaido area on 18 May 2016 is shown Figure 11. As LEO satellite
passes over certain region at only specific local time, it cannot monitor aerosol’s daily fluctuation.
As shown in Figures 10 and 11, GEO satellite can monitor various events such as a sudden increase
and decrease in aerosol loading. Results from the four AODs are in line with the observed AERONET
AOD. However, AHI AOD accuracy decreases after 0700 UTC, possibly due to the increased solar
zenith angle and the bright pixel masking issue. In addition, in the morning MRM seems to be slightly
more accurate, but in the afternoon ESRver is closer to the AERONET values. This suggests that the
merged product may be improved by changing the weightings, which need to be investigated further
in future work. The AHI results shown here are smooth, as we used average values for the area within
a 25 km radius around each AERONET site. There are noticeable differences in AOD for 0330-0400
UTC, during which the heavy aerosol plume passed across Hokkaido, with its center passing just
north of Hokkaido University AERONET site. As the retrieved products from AHI are for area within
25 km radius of the site, they tend to overestimate the AERONET values.
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5. Conclusions

The AHI has multiple infrared channels, which are useful in masking features that affect aerosol
retrieval. In addition, multiple visible and near-infrared channels provide a great advantage in aerosol
property retrieval from GEO. Therefore, in this study we retrieved and validated AOPs using multiple
channels based on the surface reflectance calculated by two methods over land, both of which showed
reliable results. The error characteristics of each product were presented, along with those of the L2
merged product.

Moreover, by merging the estimated surface reflectance, more stable surface reflectance can be
obtained, as shown by results from the Rs merged product. Merged products using the retrieved AODs
may not show improved results in terms of lower EE than the AOD produced by each respective
method. However, stable surface reflectance is obtained from the Rs merged product, which can be
explained by the improved accuracy of the calculated AE.

Results over ocean were compared using the MRM method and the Cox and Munk method with
consideration of chlorophyll-a concentrations. Areas of heavily turbid water were removed using the
water surface reflectance increases at about 600 nm, as in previous work, but aerosol properties were
still retrieved over light turbid water areas. Band 4 is relatively unaffected by turbid water, but band
1 reflectance is somewhat affected, resulting in an underestimate of AOD. However, results from
ESRver show the opposite trend as those from MRMver. Because chlorophyll-a concentrations are only
considered when explaining the water leaving radiance in turbid water areas where aerosol properties
are retrieved, the water surface reflectance is underestimated, leading to an overestimate of AOD.

Next-generation geostationary satellites have a high temporal resolution in addition to high
spatial resolution. Thus, their contribution to accurate retrieval of AOPs is significant for studies on
aerosol transport in Asia. Retrieved AOD on a 10-min interval by AHI has a similar pattern to that of
AERONET, and results from each merged product have more accurate results than each non-merged
product. Cloud masking is also important for accurate AOP results. The AHI, a next-generation GEO
satellite, shows significantly improved AOD retrieval capabilities compared with past-generation
meteorological satellites, such as the MI, MTSAT, and GOES. Despite the reduced number of channels in
the visible and NIR of AHI compared with GOCI, AOP products from AHI have accuracies comparable
to GOCI. Synergistic products between AHI, GOCI, the next-generation GOCI-2, and the Geostationary
Environmental Monitoring Spectrometer (GEMS) on board the GEOKOMPSAT-2B mission will
improve the accuracy of AOP from GEO and expand its data coverage. The algorithms presented in
this study are directly applicable to the Himawari-9 satellites equipped with the same sensors as the
Himawari-8 and the Advanced Meteorological Imager (AMI) on board the GEOKOMPSAT-2A to be
launched in 2018, with some modifications.
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