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Abstract: Peatlands play a fundamental role in climate regulation through their long-term
accumulation of atmospheric carbon. Despite their resilience, peatlands are vulnerable to climate
change. Remote sensing offers the opportunity to better understand these ecosystems at large spatial
scales through time. In this study, we estimated water table depth from a 6-year time sequence of
airborne shortwave infrared (SWIR) hyperspectral imagery. We found that the narrowband index
NDWI1240 is a strong predictor of water table position. However, we illustrate the importance of
considering peatland anisotropy on SWIR imagery from the summer months when the vascular
plants are in full foliage, as not all illumination conditions are suitable for retrieving water table
position. We also model net ecosystem exchange (NEE) from 10 years of Landsat TM5 imagery
and from 4 years of Landsat OLI 8 imagery. Our results show the transferability of the model
between imagery from sensors with similar spectral and radiometric properties such as Landsat 8
and Sentinel-2. NEE modeled from airborne hyperspectral imagery more closely correlated to eddy
covariance tower measurements than did models based on satellite images. With fine spectral, spatial
and radiometric resolutions, new generation satellite imagery and airborne hyperspectral imagery
allow for monitoring the response of peatlands to both allogenic and autogenic factors.

Keywords: hyperspectral; Sentinel-2; Landsat TM5; Landsat 8 OLI; bog; CASI; SASI; northern
peatland; hydrology; Mer Bleue

1. Introduction

Northern peatlands have played a significant role in carbon (C) accumulation for millennia [1].
Because of their large extent in northern regions (e.g., 12% of Canada, or 1 million km2) [2–4], it is
important to evaluate their potential response to climate change [5,6]. Remote sensing studies of
peatlands from both hyperspectral airborne and multispectral satellite sensors have shown potential in
providing fundamental information about vegetation (e.g., leaf area index) and hydrology, especially
with respect to the spatial patterns and temporal trends of these characteristics at large spatial scales
(>100 ha) (e.g., [7–11]). The advantage of airborne hyperspectral imagery in peatland research is that it
can be collected at a fine spatial resolution (≤1 m) to carry out detailed mapping and modeling studies
(e.g., [8,9,12]). However, due to the inaccessible nature of many peatlands [3] and the elevated cost of
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such data acquisition, especially for isolated northern peatlands, satellite imagery might be the most
feasible long-term monitoring solution for these ecosystems. A novel aspect of peatland research using
remotely sensed data is the integration of airborne hyperspectral imagery with multispectral satellite
data for ecosystem modeling (e.g., hydrology, biogeochemistry).

Optical imagery in the VNIR (visible-near infrared) and SWIR (shortwave infrared) ranges
(400–2500 nm) has been used to determine spectral differences between mosses and vascular
plants in peatlands [13]. Spectral indices incorporating both narrow and broadband sensors
(e.g., [14]) successfully assessed the relationship between surface moisture and water table position
experimentally and at small spatial scales [8,15]. However, remote sensing studies at the ecosystem
level are still needed to evaluate the full potential of such imagery, especially for peatlands where in
situ data are available. Furthermore, a more thorough understanding of the effects of illumination and
viewing geometries are needed for studies considering seasonal changes.

The difference between the carbon dioxide uptake through gross primary production (GPP) and
ecosystem respiration represents the net ecosystem exchange (NEE) [16]. In situ measurement of NEE
via approaches such as flux chambers can be utilized to assess responses to diverse variables, including
nutrient inputs (e.g., [17]) and manipulations of water content [18]. Eddy covariance towers are also
commonly used in the assessment of NEE in peatland ecosystems, with the advantage that these
provide a larger footprint than chambers and can provide near-continuous long-term data [19,20].
For large-scale studies, MODIS-derived products have been used to assess NEE [21,22], however,
the large spatial resolution (e.g., 0.5–1 km) is inadequate to capture the small-scale heterogeneity of
peatlands, along with other known limitations for peatlands such as the errors in the vapor pressure
deficit determined from land cover (for GPP estimation) [23,24]. More recently, the potential of Landsat
7 ETM+ data (30 m resolution) was shown for determining peatland classes with high accuracy [23],
from which to estimate the C balance. Given the long history of the Landsat program, a less explored
aspect is the development of C models (e.g., NEE) taking advantage of these multitemporal data.
In addition, new satellites such as Sentinel-2 provide additional opportunities to evaluate Landsat
products at finer spatial scales (e.g., 10–20 m spatial resolution), which may better capture the spatial
heterogeneity of these ecosystems.

Biogeochemical processes such as gas exchange (e.g., CO2, CH4) and C accumulation in northern
peatlands are closely related to the water table position [25–27]. Given a lowering of the water table,
an increase in CO2 loss is expected [25]. For example, the interannual variability of C exchange at the
Mer Bleue peatland indicated that this ecosystem reduced its CO2 sink capacity during summertime
drought events [20]. However, there is high variability in CO2 exchange across peatland sites and
seasonally within sites [16]. Spatial variability of the vegetation composition [28] and other variables,
such as temperature [29,30], also impact the overall C budget of these ecosystems. Therefore, ongoing
characterization of the spatial and temporal variability of the water table position and CO2 uptake in
peatlands is necessary.

In this study, we addressed two distinct but complementary objectives for estimating water table
depth and NEE at the Mer Bleue Conservation Area using remotely sensed data. The first objective was
to assess the relationship between a surface moisture index derived from SWIR hyperspectral imagery
and water table depth. We hypothesized that changes in vegetation surface moisture throughout the
growing season at Mer Bleue are closely related to water table depth [8]; therefore, such an index could
be used as a proxy. The second objective was to develop and test a NEE model based on a modified
water index (MWI) calculated from multitemporal Landsat TM5 and Landsat 8 OLI data. As vegetation
moisture content and phenology are closely related to CO2 uptake in peatlands [8], we predicted that
the model could serve as a good estimator of NEE at large spatial scales. We applied the resultant NEE
models to multitemporal Sentinel-2A and airborne hyperspectral VNIR imagery to determine spatial
and temporal trends during the 2016 growing season and compare the results with observed NEE
from an eddy covariance tower. This study builds upon results by [31], mapping near surface water
content in hollows and light-saturated gross photosynthesis for hummocks in the same peatland.
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2. Materials and Methods

2.1. Study Area

The ~8500 year-old Mer Bleue ombrotrophic bog [20] is located centrally within the 35 km2

Mer Bleue Conservation Area east of Ottawa, ON, Canada (Figure 1a). Mer Bleue is recognized as
a ‘Wetland of International Importance’ under the Ramsar Convention on Wetlands, a ‘Provincially
Significant Wetland, and a Provincially Significant Life and Earth Science Area of Natural and Scientific
Interest’. Oxygen isotope records from the peat indicate the site followed a paleotemperature trend
similar to that of other sites in the Northern Hemisphere with well-known cool events such as the
Little Ice Age and the 1815 eruption of the Tambora volcano visible in the records [32].

The bog is acidic and nutrient-poor, receiving incoming water and nutrients from precipitation
and deposition. Along its long axis it is dissected by two longitudinal sections of fluvial sand and gravel
separating three distinct “fingers” at the western end of the peatland [20] (Figure 1a). The climate is
cool continental temperate with a 30-year (1971–2000) mean annual air temperature of 6.0 ◦C. The mean
annual precipitation is 943 mm, of which 235 mm falls as snow, generally between December and
March [33]. The bog is slightly domed, with a peat depth increasing from 0.3 m along the edge to
greater than 5 m across most of the area. Beaver ponds around the margins are inundated year-round
and have extensive cattail (Typha angustifolia) and floating Sphagnum moss coverage [20,33]. Mer Bleue
has a hummock-hollow-lawn microtopography over the majority of its area with a mean relief between
hummocks and hollows of less than 30 cm [34,35]. The variable water table is generally below the
surface of the hollows throughout the growing season [20]. In addition, there are treed bog and
poor fen sections, and relatively dense mixed forest [11]. While the vegetation composition has been
extensively described (see [11,36]), the main vascular plant species found in the bog are evergreen and
deciduous shrubs (Chamaedaphne calyculata, Rhododendron groenlandicum, Kalmia angustifolia, Vaccinium
myrtilloides), sedges (Eriophorum vaginatum), and a few trees Picea mariana, Betula populifolia, and Larix
laricina. The main Sphagnum mosses in the bog are S. capillifolium and S. magellanicum. While the
mosses form the ground layer of the bog and are exposed in hollows, vascular plants comprise the
upper plant canopy of the hummocks [37]. Conservatively, hummocks account for 51.2%, hollows
for 12.7%, and trees for 33.6% of the entire bog’s surface area (excluding the surrounding mineral soils),
with other classes such as open water comprising the remaining 2.4% [31]. As in [31], we focused
our analysis on a 19 km2 section of Mer Bleue which is solely composed of the peatland without the
surrounding treed areas on mineral soil (Figure 1).

2.2. Airborne Hyperspectral Imagery (HSI)

The airborne HSI was acquired over a period of 5 years from 2011–2016. Two HSI sensors that
record complementary regions of the electromagnetic spectrum were used: a Compact Airborne
Spectrographic Imager 1500 (CASI-1500, hereafter referred to as CASI) and a Shortwave Airborne
Spectrographic Imager (SASI-644, hereafter referred to as SASI) (ITRES Ltd., Calgary, AB, Canada).
The programable CASI samples a maximum of 288 spectral channels between 375 nm and 1054 nm,
with 1493–1498 across track pixels, and a field of view of 39.9◦. The SASI samples 160 spectral channels
from 883 nm to 2523 nm, with 640 across track pixels, and a field of view of 39.7◦ [31,38]. In this
study, we used 18 flight-lines from the SASI (2011–2016) for the estimation of the water table position
(Table 1). NEE estimation was derived from 4 individual flight lines and 4 full bog mosaics from the
CASI (for 2016) (Table 2). The mosaics are comprised of 12 flight lines with a 20% overlap. The higher
temporal frequency of HSI acquisition in 2015 and 2016 is due to Mer Bleue being designated a
validation site for Sentinel-2 and Landsat 8 OLI satellite data products [39].
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Figure 1. (A) Shortwave airborne spectrographic imager (SASI) shortwave infrared (SWIR)
hyperspectral imagery (HSI) mosaic of 12 flight lines acquired 24 May 2016 (R: 1052 nm G: 1624 nm
B: 2122 nm) illustrating the entire bog study area. Location of the eddy covariance tower is indicated.
Inset shows the location of Mer Bleue (star) in the Province of Ontario (green); (B) nadir UAV
photograph from 35 m AGL over the eddy covariance tower; (C) UAV photograph looking west
towards the eddy covariance tower illustrating the small-scale hummock-hollow microtopography and
sparse trees; (D) UAV photograph looking south from the eddy covariance tower illustrating one of the
beaver ponds with open water, Typha angustifolia, and floating Sphagnum moss. Mixed forest on one of
the fluvial sand/gravel sections can be seen beyond the beaver pond; (E) UAV photograph looking
east towards the center of the bog from above the eddy covariance tower. Photographs in b and d were
taken 23 June 2016, while c and e were taken 2 July 2017. A 360◦ aerial panorama of the site is available
at: https://bit.ly/mbpano2017.

https://bit.ly/mbpano2017
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Table 1. Date of SASI HSI image acquisitions with corresponding solar zenith angle (SZA), solar
azimuth angle (SAA), and solar azimuth angle relative to aircraft (sensor) heading (RAA). All flights
were conducted at an altitude of approximately 1000 m AGL. Angles are reported in degrees.

Date SZA SAA RAA

Spring

29 April 2015 33.4 211.8 38.8
6 May 2015 29.7 163.5 180.1

15 April 2016 35.3 182.1 197.6
20 April 2016 35.5 157.0 172.1
27 April 2016 44.4 122.7 145.9
11 May 2016 30.1 150.5 169.0
24 May 2016 26.4 154.1 174.9

Summer

20 July 2011 25.0 189.3 201.3
10 July 2014 32.9 125.3 128.7
4 June 2015 21.1 188.4 25.2

17 June 2015 33.6 120.3 144.5
28 August 2015 36.8 196.8 27.2

10 June 2016 24.7 149.5 171.8
23 June 2016 29.0 131.3 151.8
24 June 2016 35.5 116.7 137.8

Fall

18 September 2013 44.3 168.9 173.8
16 September 2015 43.7 194.3 22.5
4 November 2015 61.1 172.6 3.6

Table 2. Date of compact airborne spectrographic imager (CASI) HSI image acquisitions with
corresponding solar zenith angle (SZA), solar azimuth angle (SAA), and solar azimuth angle relative to
aircraft (sensor) heading (RAA). Flights were conducted at an altitude of approximately 1000 m AGL.
* Denotes full mosaics of 12 flight lines. For the mosaics, the values reported are for the flight line
centered over the eddy covariance tower. All angles are reported in degrees.

Date SZA SAA RAA

Spring

15 April 2016 54.7 182.1 16.9
20 April 2016 * 35.5 157.0 172.1
11 May 2016 * 30.1 150.5 169.0
24 May 2016 * 26.4 154.1 174.9

Summer

10 June 2016 24.7 149.5 171.8
23 June 2016 * 29.0 131.3 151.8

19 August 2016 48.6 133.3 147.8

Fall

23 September 2016 35.2 216.9 NA

As described in [31], the individual HSI flight lines were spectroradiometrically calibrated to units
of spectral radiance (µW cm−2 sr−1 nm−1). The preprocessing steps to calibrate the imagery from
raw digital number to radiance were performed using software modules developed by the sensors’
manufacturer [40]. The subsequent geocorrection process was performed using results from a bundling
calibration designed to relate the inertial measurement unit (C-MIGITS II) (IMU—a combined GPS and
inertial navigation system) to the sensor geometry. The preprocessing modules include an image-based
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assessment and correction of the spectral alignment and a removal of signal offsets inherent in the
recorded digital pixel values (i.e., electronic offset, dark current, frame shift smear, scattered light,
and, for the CASI, only a second-order diffracted light correction) [38–41]. Further preprocessing
steps included spectroradiometric calibration, spectral resampling to remove the laboratory-identified
spectral smile, and geocorrection. A single CASI flight line (23 September 2016) was not geocorrectable
due to an error in the IMU data. For the four CASI mosaics, we used a “minimize view zenith angle”
option to select which of the duplicate pixels located in the overlap between adjacent flight lines are
applied in the resulting mosaic imagery. During geocorrection, all HSI flight lines were resampled to
1 m pixel size.

Mission planning attempted to acquire the HSI lines coincident with the Sentinel-2A satellite
overpasses in 2015 and 2016, and utilized a planned ground-track designed to optimize the alignment
with respect to the solar azimuth angle (SAA) to minimize cross-track illumination effects. Weather
was taken into consideration to avoid acquisition during cloudy conditions. All lines were acquired
within 2.5 h of solar noon. For the individual SASI and CASI flight lines, the atmospheric correction
was performed with the FLAASH module in the ENVI 5.4.1. For the CASI mosaics, atmospheric
correction was applied to the individual flight lines using ATCOR4 4.7.0 for flat terrain prior to the
application of a cross-track illumination correction and image mosaicking [31].

2.3. Satellite Imagery

2.3.1. Landsat TM5 Imagery

Atmospherically corrected surface reflectance Landsat TM5 (1999–2011) and Landsat 8 OLI
(2013–2016) (both Collection 1, Tier 1) data were used to derive models of yearly cumulative NEE
(Table A1). A query of the USGS archives through Google Earth Engine [42] yielded a catalog of
488 and 172 scenes of Mer Bleue, respectively, for the eddy covariance tower footprint area considered
here (55,800 m2). Only snow- and cloud-free scenes for the study area were retained for the months
spanning from April to November. The temporal frequency of the scenes in the collection was uneven
between years, ranging from 5 to over 20. Therefore, in order for a year to be included in the models
(Section 2.5.2), multiple scenes were required from all three seasons (i.e., spring (leaf off): prior to
vascular vegetation green-up; summer: full foliage; and fall: senescent vascular vegetation). With these
criteria, 175 scenes for TM5 and 63 scenes for OLI8 were retained (Table 3).

Table 3. Number of Landsat TM5 and OLI8 (Path/Row: 15/28, 16/28 and 15/29) scenes used in the
generation of the yearly cumulative net ecosystem exchange (NEE) models.

Year Sensor No. of Scenes Used

1999 TM 5 18
2000 TM 5 12
2001 TM 5 16
2002 TM 5 -
2003 TM 5 25
2004 TM 5 -
2005 TM 5 16
2006 TM 5 15
2007 TM 5 17
2008 TM 5 -
2009 TM 5 20
2010 TM 5 17
2011 TM 5 19
2012 TM 5 -
2013 OLI 8 15
2014 OLI 8 24
2015 OLI 8 10
2016 OLI 8 14
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2.3.2. Sentinel-2 Imagery

The NEE models (Section 2.5.2) were applied to nine Sentinel-2A scenes (cloud- and snow-free
over the study area) acquired in 2016 (Table 4). The scenes were retrieved from the USGS Earth Explorer
as Level 1C, orthorectified top of the atmosphere (TOA) reflectance [43,44]. In order to produce Level
2A surface reflectance (i.e., bottom of atmosphere (BOA) product), the scenes were processed using
Sen2cor 2.2.1 [45]. The reflectance images were created at 20 m spatial resolution with nine spectral
bands in Sen2cor. These correspond to three native 10 m bands resampled to 20 m (B2, B3, B4), and the
six native 20 m bands (B5, B6, B7, B8A, B11, and B12) (Table A2).

Table 4. Date of acquisition of the Sentinel-2A scenes used in the study (Tile ID: 18TVR). All scenes
were acquired in descending orbits 54 or 97 with an inclination of 98.62◦. The units for solar zenith
angle (SZA) and solar azimuth angle (SAA) are degrees. * Denotes scenes where high-altitude cirrus
contamination following conversion to surface reflectance was found.

Date SZA SAA

Spring

20 April 2016 35.8 154.0
11 May 2016 30.0 151.6

24 May 2016 * 26.6 154.0

Summer

23 June 2016 24.7 149.2
20 July 2016 28.7 145.2

19 August 2016 * 35.9 152.2

Fall

21 September 2016 46.3 164.5
17 October 2016 53.6 168.2

7 November 2016 62.9 167.8

2.4. Water Table and Net Ecosystem Exchange Data

NEE was measured via eddy covariance technique according to [20,33,46]. The yearly cumulative
NEE data were assessed for quality assurance and gap filled according to [34]. The daily and 30 min
observations of NEE used for validation of the models with the HSI and the Sentinel-2 imagery were
not gap filled. Water table depth data were recorded continuously in a hummock next to the eddy
covariance tower using a submerged and vented pressure probe, and output as the daily average
position (i.e., cm from the surface).

2.5. Model Generation

2.5.1. Water Table Position (WT)

The study area for the water table position model consisted of 20 ha surrounding the eddy
covariance tower (Figure 1b–d). The trees, boardwalks, and equipment sheds were masked out of all
the SASI HSI flight lines following [31]. The narrowband index (NDWI1240) [14] index was calculated
from the reflectance images as (Equation (1)):

NDWI1240 =
ρ884.5 − ρ1238.6
ρ884.5 + ρ1238.6

(1)

where ρ884.5 and ρ1238.6 are the SASI reflectance for the band centers closest to the original formulation
of the index (i.e., 860 nm and 1240 nm). The average NDWI1240 values from the 20 ha study area in the
18 flight lines were related to WT through ordinary least squares (OLS) regression.
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2.5.2. Net Ecosystem Exchange (NEE)

Considering the footprint of the eddy covariance tower, yearly cumulative NEE [20,37,47] was
related to the yearly average of a modified water index (MWI) calculated for the Landsat TM5 scenes
in Table 3 over a period of 10 years (1999–2011) through OLS regression. The MWI from [48] was
calculated as (Equation (2)):

MWITM5 =
ρ830 − ρ660

ρ560
(2)

For the 2013–2016 period for which Landsat TM5 imagery was no longer available due to the
sensor having been decommissioned in January 2013 [49], Landsat 8 OLI imagery (Table 3) was used
to determine the relationship through OLS regression between the MWI and yearly cumulative NEE
following Equation (3) [50]:

MWIOLI8 =
ρ864.7 − ρ654.6

ρ561.4
(3)

Due to the differences in the spectral responses of the NIR, red, and green bands (Figure 2) used
for the MWI as well as radiometric resolution differences between Landsat TM5 (8 bit) and Landsat 8
OLI (12 bit), data from the two sensors were considered separately. Eleven Landsat 8 OLI scenes from
2016 (April–September) were used to determine a third NEE OLS regression model between individual
MWIOLI8 surfaces and 30 min NEE measurements (3 h average around the time of image acquisition).
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Figure 2. Spectral responses of Landsat TM5 (solid), Landsat 8 OLI (dashed), and Sentinel-2A (dotted)
bands used for the calculation of the modified water index (MWI). Bands 2 (green), 3 (red), and 4 (NIR)
are shown for Landsat TM5. Bands 3 (green), 4 (red), and 5 (NIR) are shown for Landsat 8 OLI. Bands 3
(green), 4 (red), 6 (red edge), and 8A (NIR) are shown for Sentinel-2A (Tables A1 and A2).

To examine the transferability of the MWI:NEE models to other sensors, MWI was calculated
from individual Sentinel-2A scenes with Equation (4) (similar bands to Landsat) and Equation (5)
substituting the red edge band (ρ740) for the red band (ρ665) (Figure 2).

MWIS2 =
ρ865 − ρ665

ρ560
(4)

MWIS2Re =
ρ865 − ρ740

ρ560
(5)

The CASI HSI (Table 2) were resampled spectrally and spatially to Sentinel-2A specifications,
resulting in images at 20 m spatial resolution with the same band set as Sentinel-2A. The MWI was
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also calculated from the resampled CASI HSI (Equations (4) and (5)). Eddy covariance tower daily
average (daytime) and 30 min NEE averaged over a 3 h window around the time of satellite and CASI
HSI image acquisition were used to validate the MWI:NEE models.

3. Results

3.1. Water Table (WT) Position

We found a strong and significant (P < 0.0001) linear relationship between NDWI1240 (5 years
of SASI imagery) (Table 1) and the WT position (Figure 3). The negative slope of the relationship
is indicative of both liquid water content in the plant tissues and phenology. As described by [14],
NDWI1240 is sensitive to both vegetation foliar water content and the shape of the reflectance spectra,
with more negative values seen for pixels that are not representative of live green vegetation, such as
early spring in the bog prior to vascular plant green up (Figure 3B). As shown by [51], the surface of
the bog experiences considerable changes to the spectral response of hummocks and hollows as the
vascular plants green up. It is also during the spring following snow melt that the water table is closest
to the surface, whereas the end of the summer experiences the lowest water table.
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(C) field photograph of the bog taken 23 June 2016, illustrating the vascular plants in full foliage 
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vascular plants (fall). The black triangle in A is the image acquired 27 April 2016 (Table 1) under 
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The regression model shown in Figure 3A does not include four summer (leaf on) outliers (red 

triangles) from imagery acquired 10 July 2014, 17 June 2015, 23 June 2016, and 24 June 2016 (Table 1, 

Figure A1). With the acquisition time greatest from solar noon, the resultant illumination and 

viewing geometries revealed that these flights lines were collected with a solar azimuth angle 

Figure 3. (A) Ordinary least squares (OLS) regression between narrowband index (NDWI1240) from
the SASI and water table position (WT). Confidence intervals (95%) are shown as the dashed lines;
(B) field photograph of the bog taken 27 April 2016, prior to the green up of the vascular plants (spring);
(C) field photograph of the bog taken 23 June 2016, illustrating the vascular plants in full foliage
(summer); (D) field photograph of the bog taken 27 September 2017, illustrating senescence of the
vascular plants (fall). The black triangle in A is the image acquired 27 April 2016 (Table 1) under similar
RAA as the summer outliers.

The regression model shown in Figure 3A does not include four summer (leaf on) outliers
(red triangles) from imagery acquired 10 July 2014, 17 June 2015, 23 June 2016, and 24 June 2016
(Table 1, Figure A1). With the acquisition time greatest from solar noon, the resultant illumination and
viewing geometries revealed that these flights lines were collected with a solar azimuth angle relative
to aircraft heading (RAA) that places the illumination diagonal to the SASI’s field of view (Figure 4).
Examination of the 14 remaining HSI, collected before and after solar noon separately, revealed no
difference in slope (F = 0.002, P = 0.97) nor intercept (F = 1.231, P = 0.29).
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Figure 4. Illumination and viewing geometry of the SASI HSI lines from 2011–2016 used for the water
table position model. The lengths of the arrows represent the solar zenith angle (in degrees) and the
direction is the solar azimuth relative to the heading of the flight line (RAA from Table 1). The RAA
values reported in degrees in Table 1 are shown in Cartesian coordinates. Black = spring (leaf off),
green = summer (leaf on), and orange = fall (senescence). Red represents the summer (leaf on) outliers
not included in the WT model (Figure 3A). The RAA places the illumination direction diagonal to the
SASI’s field of view for the four summer outliers (red) and one spring (black) image (leaf off).

Figure 5 illustrates the NDWI1240:WT function from Figure 3A applied to a SASI flight line subset
from 20 July 2011. The values—expressed as the difference with respect to the water table position
recorded at the tower potentiometer—are a general representation of the surface microtopography.
Figure 6 illustrates an example of a 400 m2 plot from [12]. Following degradation of the spatial
resolution of the original digital surface model (DSM) to 1 m, there was a correlation of r = 0.54
between the water table depth surface and the DSM.
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Figure 6. (A) Digital surface model (DSM) of a 400 m2 plot at the original 2 cm ground sampling
distance from [12]; (B) spatially degraded DSM to 1 m pixels. Units represent orthographic height
in meters; (C) water table depth (cm from the surface) from the SASI HSI; (D) water table depth
(cm from the surface) draped over the 1 m DSM; (E) 0.6 cm ground sampling distance 3D point
cloud of the surface of the bog from 3 June 2017. The yellow box outlines the 400 m2 plot. The DSM
was created following [12] with a Zenmuse X5S onboard a DJI Inspire 2 (Micro 4/3 sensor, DJI MFT
15 mm/1.7 aspherical lens, 20.8 MP effective pixels, 3 axis ±0.01◦ gimbal).

3.2. Net Ecosystem Exchange

Figure 7 illustrates an example of the MWITM5 from 2009 over the course of the growing season.
The increase in MWITM5 from April to June (DOY 100–150) corresponds with the greening of the
vascular plants. The subsequent senescence in the fall (September–October) can be seen in the decrease
of the index values after the 243 DOY. Prior to green-up, and during senescence, reflectance in the
red band is higher (decreased absorbance) than during the period with green foliage, leading to a
smaller value in the numerator of the MWITM5. During the peak of the vascular foliage biomass over
the summer, the strong absorbance in the red band relative to the NIR leads to a larger value in the
numerator, and an increase in MWITM5. The decrease in MWITM5 on DOY 235 corresponds to the
end of August, the point of the growing season with high air temperature and low water table depth.
The yearly average (snow- and cloud-free) MWITM5 ranged from 3.08 (σ = 1.2) in 2000 to 3.77 (σ = 0.99)
in 2003. The seasonal variability ranged from a σ = 0.57 (2001) to σ = 1.2 in 2000. MWITM5 from all
years follow a temporal trend similar to Figure 7.

We found a significant (P = 0.003) relationship between the average yearly MWITM5 and yearly
cumulative NEE (Figure 8a). The data from 2001 only includes a single scene from the fall; therefore,
the average MWITM5 is biased towards a higher average value, illustrating the importance of including
multiple scenes throughout the growing season. While a relationship was found between MWIOLI8 and
yearly cumulative NEE (Figure 8b), it was not significant (P = 0.12). Despite a range of NEE from strong
CO2 uptake to CO2 source over the 2013–2016 period, additional years of data are necessary to establish
a significant relationship. Compared to the MWITM5, there is a greater range of values for MWIOLI8.
Based on Equations (2) and (3), the numerator of the MWITM5 is only 3.2–3.6 times the magnitude of
the reflectance in the denominator (green band). In contrast, the MWIOLI8 values span nearly double
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the range indicating, as expected, a greater sensitivity of Landsat 8 OLI to the phenospectral changes
of the peatland (i.e., spectral changes as a function of phenology) [51]. The yearly average (snow-
and cloud-free) MWIOLI8 ranged from 4.26 (σ = 0.66) in 2016 to 4.84 (σ = 0.83) in 2014. The seasonal
variability ranged from σ = 0.66 (2016) to σ = 1.18 in 2015.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 26 
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(σ = 1.13).

We found a marginally significant relationship (P = 0.0049) between NEE measured at the time
of image acquisition and MWIOLI8 from individual Landsat 8 OLI scenes (Figure 8c). Similar to the
MWITM5 trend in Figure 7, higher values of the index can be seen later in the growing season when
the vascular plants are in full foliage. As seen with the yearly average data (Figure 8a,b), the larger
values of MWITM5/OLI8 correspond to higher CO2 uptake. Also similar to Figure 7, the decrease in
MWIOLI8 at the end of the summer (Figure 8c), while the vascular plants are still green, indicates
the index is also sensitive to the potential water stress in vegetation due to high evapotranspiration,
high air temperature, and low water table. While both models in Figure 8a,c are significant, the yearly
cumulative NEE model from the 10 years of Landsat TM 5 data (Figure 8a) provides a stronger intuitive
measure of predictive utility [52].

To examine the transferability of the temporal NEE models to other sensors with finer spatial and
spectral resolutions, we applied the functions from Figure 8a–c to MWI calculated via Equations
4 (MWIS2) and 5 (MWIS2Re) to Sentinel-2A and resampled CASI HSI imagery (Tables 2 and 4).
The resulting modeled relative NEE for the tower footprint was then compared to daily average
(daytime only) and 30 min tower observations averaged over a 3 h window surrounding the image
acquisition time. Due to high altitude cirrus contamination (i.e., thin, transparent, or semi-transparent
clouds ~6–7 km above the Earth’s surface) in two of the Sentinel-2A scenes (24 May and 19 August)
that was not adequately removed by Sen2cor and no tower NEE data for the November image, only six
images from Table 4 were examined in the correlation. A larger number of images is necessary to
determine if the effect size (r = −0.72) between MWIS2Re and actual tower measured NEE is reliable.
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Figure 8. (A) Relationship between yearly cumulative NEE (g C m2 year−1) and the yearly average
MWITM5 calculated from Landsat TM5 over a period of 10 years. Confidence intervals (95%) are shown
as the dashed lines (P = 0.003). Green point represents the year 2001. Only one scene was available
for the senescent portion of the growing season in 2001 and is therefore not included in the model;
(B) relationship between yearly cumulative NEE and the yearly average MWIOLI8 calculated from
Landsat 8 OLI imagery over the 2013–2016 period (P = 0.12); (C) relationship of MWIOLI8 calculated
from individual Landsat 8 OLI scenes and 3 h average NEE centered around the Landsat 8 OLI image
acquisition time for 2016 (P = 0.0049).

The results in Table 5 indicate that, while the models derived from multitemporal Landsat imagery
are transferable to other sensors, there is an overwhelmingly improved performance of calculating
MWI through Equation (5) (MWIS2Re), which substitutes the narrow red-edge band for the red band.
Due to the MWI being sensitive to both the phenospectral properties and the water stress of the
vegetation, it is a reasonable proxy for NEE of the bog. However, in order for the index to track
changes in the spectral properties of the bog, the bands must be sensitive to subtle and sometimes
rapid changes in the spectral properties of the surface [51].

Figure 9 illustrates the 10 years Landsat TM5 model with Equation (5) (MWIS2Re) applied to
individual Sentinel-2A scenes. The NEE represented in Figure 9 range from approximately −0.9 to
−6 g C m−2 (high uptake). Due to the high-altitude cirrus contamination, the scenes from 24 May
and 19 August should be interpreted with caution. The multitemporal spatial surfaces of relative NEE
illustrate the same temporal trend as seen in Figure 7, with increased CO2 uptake as the vascular plants
green up followed by a decrease in late July/August when the vegetation is water stressed due to a
low water table. The CO2 uptake recovers for a short period in September followed by a decrease in C
uptake as the vascular plants senesce.
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Table 5. Pearson’s correlation coefficient (r) between eddy covariance tower measured NEE (daytime
daily average and 3 h average surround image acquisition time) and relative NEE determined from the
functions in Figure 8 and MWI calculated via Equations (4) (MWIS2) and (5) (MWIS2Re). The “10 years
TM5” model corresponds to Figure 8a, the “4 years L8” model to Figure 8b, and the “Daily L8” model
to Figure 8c. * Indicates the correlation was significant at α = 0.05 (two-tailed).

Sensor MWI Model Daily NEE 3 h NEE

CASI MWIS2 10 years TM5 −0.11 0.21
CASI MWIS2Re 10 years TM5 −0.91 * −0.85 *
CASI MWIS2 4 years L8 −0.11 0.21
CASI MWIS2Re 4 years L8 −0.91 * −0.85 *
CASI MWIS2 Daily L8 −0.11 0.21
CASI MWIS2Re Daily L8 −0.91 * −0.85 *

Sentinel 2A MWIS2 10 years TM5 −0.14 0.16
Sentinel 2A MWIS2Re 10 years TM5 −0.68 −0.72
Sentinel 2A MWIS2 4 years L8 −0.68 −0.72
Sentinel 2A MWIS2Re 4 years L8 −0.68 −0.72
Sentinel 2A MWIS2 Daily L8 −0.14 0.16
Sentinel 2A MWIS2Re Daily L8 −0.68 −0.72
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Figure 9. Spatial estimates of relative NEE from Sentinel-2A imagery for nine dates spanning the
growing season in 2016. Gray represents treed areas that have been masked out [31]. * Due to the
high-altitude cirrus contamination, the scenes from 24 May and 19 August should be interpreted
with caution.

Similarly, Figure 10 illustrates the spatial pattern of NEE from the resampled CASI HSI mosaics
(Table 2) with the 10 years Landsat TM5 model (Equation (5) MWIS2Re) applied (Table 5). The NEE
represented in Figure 10 ranges from approximately −0.5 to −4.9 g C m−2 (high uptake). The general
pattern of areas of the bog with higher and lower CO2 uptake is similar to what is seen in Figure 9.
The central section of the bog with the lowest CO2 uptake throughout the growing season corresponds
to both the highest gravimetric water content in hollows (greater than the 1300% maximum for optimal
CO2 uptake [53]) [31], and lower NEE under light saturated conditions (i.e., photosynthetically active
photon flux density >1000 µmol photon m−2 s−1) for the vascular plants during the middle of the
growing season [31].
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treed areas that have been masked out [31].

4. Discussion

In this study, we illustrate the potential of multitemporal airborne and satellite imagery for
modeling water table depth and NEE for an ombrotrophic peatland. These remotely sensed data
provide opportunities for ongoing monitoring of peatlands at a range of spatial and temporal
scales. Physical models of peatland C balance require inputs from in situ measurements—such
as precipitation, temperature, incoming radiation, and wind speed, among others—for successful
parameterization [54,55]. While these variables are straightforward to collect for small spatial scales
such as at individual eddy covariance towers, in situ measurements over large spatial extents are
logistically unfeasible [56]. Estimations of the parameters are also possible from regional or global
climate models, but this may introduce additional uncertainties for predictions of hydrological behavior
and gas exchange at the ecosystem level by not taking into account the spatial heterogeneity of the
system. Remote sensing observations can help bridge the gap between small spatial scale, in situ
measurements of peatland processes, and ecosystem scale models. Long-term satellite archives further
provide the opportunity for historical assessment or estimations of processes at locations without in
situ measurements. New generation satellite imagery (e.g., Sentinel-2, Landsat 8 OLI) and airborne
hyperspectral imagery allow for highly detailed image acquisitions from which to monitor the response
of these ecosystems to both allogenic (e.g., climate) and autogenic factors (e.g., change in hydrology).

The multitemporal model relating NDWI1240 to water table depth illustrates the sensitivity of the
narrowband index to both liquid water content in the vegetation and phenology. Mer Bleue has both
deciduous and evergreen vascular plants and there are substantial seasonal variations in nitrogen and
chlorophyll concentration in the vascular plants, but not in the mosses [9]. These changes can be seen
in multitemporal imagery of the bog [9,51]. With the depth of the water table position having been
greater than 20 cm from the surface on the days the SASI HSI were collected over the period of study
(2011–2016), the NDWI1240 does not directly observe the position of the water table. The reflectance at
these wavelengths is determined solely by the top 3–5 cm of the Sphagnum canopy [57]. While other
studies have used exposed surface water to infer the position of the water table across a peatland [58],
the relationship here shows NDWI1240 as a proxy for water table position. This is important for Mer
Bleue because, other than during exceptionally wet periods, the water table remains below the surface
of the hollows [20]. Water table depth is a subdued reflection of the surface microtopography [35],
with a strong association to the vegetation community [1]. The magnitude of reflectance at 884.5 nm
and 1238.6 nm are indicative of the moisture content in the superficial bog vegetation. As shown by [56],
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the magnitude of Sphagnum reflectance can vary by as much as 50% in the SWIR region from saturated
to dry samples. In particular, the characteristic peaks in reflectance centered between 799–900 nm and
1250–1330 nm in wet Sphagnum are lost as the amplitude of the reflectance in NIR–SWIR increases with
drying. Extrapolating the model beyond the range of the WT table depth investigated here should be
done with caution because it is unknown if the NDWI1240:WT relationship would remain with very
high (i.e., water at surface of hollows) or low (<−43 cm) WT positions. However, at Mer Bleue, a very
high WT is rare; it mostly remains below the surface of hollows.

We found a lower correlation between microtopography and water table depth (Figure 6) than [1].
This is due to the spatial resolution (1 m) of the SWIR imagery and the degraded microtopography
DSM (2 cm to 1 m). Due to the small spatial scale of the hummocks and hollows, 1 m does not retain
their integrity [31], resulting in a mixing of both the elevation and water table at the transition between
hummocks and hollows. If these analyses were to be conducted at a finer spatial resolution (e.g., 5 cm),
achievable from low-altitude UAV platforms, the correlation between microtopography and water
table depth would likely be stronger. Further work investigating this relationship at fine spatial scales
is important because UAV-based microtopography modeling is less expensive and more accessible
than UAV based SWIR HSI.

Peatland hydrology is one of the most important factors influencing ecology and functioning,
with WT depth an important predictor of vegetation structure and composition [28]. In areas with a
deeper WT, vascular vegetation in hummocks is taller, with the establishment of trees in areas with the
lowest WT [59]. Therefore, long-term changes in the WT depth could alter the spatial distribution and
structure of the vascular plants. The position of the WT in the peat profile indicates the depth of the
soil air in the pore space, while the vertical range between the surface and the maximum water table
depth encompasses the thickness of the acrotelm in which most of the biogeochemical processes take
place [28]. Because the roots of many vascular plants require a minimum proportion of soil pore air,
temporal monitoring of the WT depth (in a spatial context) could facilitate forecasting succession
(i.e., changes in species composition or community structure). The vertical profile of Sphagnum is a
dense canopy with spaces and dead hyaline cells of the leaves and branches providing the mechanism
for the retention of capillary water above the water table [28]. Lowering of the WT decreases the
soil water pressure [60], increasing the possibility of desiccation of the mosses thus resulting in a
loss of productivity and carbon sequestration [61]. Substantial lowering of the WT through draining
accelerates the decomposition process in the peat and releases of CO2 to the atmosphere [62].

In order to estimate WT with NDWI1240 from airborne HSI, the illumination and acquisition
geometries should be carefully considered. As shown in Figure 4, during the summer, with the
vascular plants in full foliage, the illumination geometry affects the utility of the image for WT position
estimation. The residuals (Figure A1) indicate that the flight lines in the summer (leaf on) with the
RAA diagonal to the field of view (128.7–151.8◦) were greater than ±10 cm. A non-parametric quantile
density plot (Figure A2) further illustrates the dissimilarity between the NDWI1240:WT relationship
in these HSI and the rest of the sampling dates. As a result, these four images were not used in the
estimation of the WT depth. In contrast, the spring (leaf off) his, with an RAA of 145.9◦ (black triangle
in Figure 3A), was not an outlier in the NDWI1240:WT relationship due to lack of leaves on the vascular
plants (Figures 3D and 4). While additional data collection (e.g., HSI collected over a broader range
of solar zenith angle (SZA) and SAA throughout the growing season) and analysis are planned to
fully understand the reason for this, we believe it is potentially related to the anisotropy of the bog.
When reflectance properties of a surface are not perfectly diffuse, they have some degree of anisotropy.
This directional characteristic of the surface reflectance when accounted for from all angles is referred
to as the bidirectional reflectance distribution function (BRDF) [63]. Vegetation, in general, has long
been accepted as having anisotropic reflectance properties [64], however, the majority of studies have
focused on modeling and quantifying other ecosystems with minimal studies examining peatlands [65].

Understanding the effects of the anisotropic properties of peatlands on remotely sensed data
is important for biogeochemical modeling because transformations applied to reflectance (such as
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vegetation indices) are strongly affected by BRDF [66]. Goniometer measurements of moss BRDF
have indicated that the infrared region showed a greater degree of variability with change in azimuth
angle than the visible wavelengths [67]. For moss samples, there was no pronounced hot spot [67].
Instead, the BRDF effects constitute a higher reflectivity perpendicular to the illumination angle at
low view angles (similar to illumination conditions found at high latitudes). The BRDF properties of
vascular plant canopies are primarily characterized by a hotspot, a peak in reflectance when the sun
is directly behind the sensor [61]. At the ecosystem scale, BRDF is a complex process, influenced not
only by crown size, density, and spacing between crowns, but also the background soil BRDF, which
for peatlands is the moss canopy. Vascular vegetation phenology has also been observed to strongly
influence BRDF properties [63,68]. As such, their influence on the overall surface reflectance of the
peatland must also be considered.

The broader implication of these observations relates to the mission planning of airborne imagery
coincidental with satellite overpasses. At the latitude of Mer Bleue, coincidental image acquisition
with Sentinel-2 and Landsat 8 OLI with mission planning aiming to minimize cross-track illumination
effects results in suboptimal illumination conditions in the summer (i.e., vascular plants in full foliage)
for retrieving biogeochemical properties of the peatland such as near surface water content [31] or WT
position relying on SWIR wavelengths. While wavelengths in the VNIR range should be less impacted,
allowing for the retrieval of other characteristics such as pigments contents [9], analyses requiring the
SWIR region need additional considerations. Application of similar analyses to satellite based SWIR
bands (e.g., Sentinel-2 bands 11 and 12) could face comparable challenges without a comprehensive
BRDF correction [69].

Despite our utilization of the new Collection 1, Tier 1 surface reflectance imagery for the Landsat
TM5 and OLI 8 multitemporal models predicting NEE, it was not possible to combine data from the
two sensors under our current framework. The fundamental differences in spectral response (Figure 2),
spatial response (i.e., line spread functions), radiometry (e.g., SNR, and radiometric resolution),
and geometry (location on Earth contributing to the signal) [70] are likely the primary factors in the
differences between the models derived from TM5 and OLI8 imagery. Several important changes
have been made to the Landsat sensors over the years, resulting in improvements in data quality
from Landsat 8 OLI in comparison to its predecessors as described in detail by [70]. However, aside
from the obvious spectral resolution differences (Figure 2), we believe two other aspects influencing
the specificity of the data acquired are important to consider in this context: instrument design
(whiskbroom TM5 vs. pushbroom OLI 8) and radiometric resolution (8 bit TM5 vs. 12 bit OLI 8).
The increased dynamic range (from the noise floor to the maximum radiance levels for each band) also
leads to an improved noise and quantization performance [71]. The increased radiometric resolution
and higher SNR are likely largely responsible for the greater range of MWI from Landsat 8 OLI over a
similar range in observed NEE (Figure 8). Experimental degradation of the radiometric resolution of
Landsat 8 OLI from 12 to 8 bits illustrated a loss of information at 9 bits, where the distribution of the
original 12-bit data was no longer preserved (analysis not shown).

The multiple focal plane array module (FPA) pushbroom design of OLI 8 (and Sentinel-2) replaces
the mirror scanning mechanism from Landsat TM5 resulting in, among other characteristics, improved
geometric accuracy. However, the stability of the band-to-band registration from the whiskbroom
design is more challenging to achieve with the modern sensor approach making use of the multiple
FPA pushbroom design [70]. Because the detectors for the different bands are separated in the
along-track direction, there is a time delay between the different bands as they image the same location
on Earth. For OLI 8, this is estimated to be 1.1 s [70], which results in terrain parallax creating
challenges in the removal of high altitude cirrus (i.e., band-to-band registration between the cirrus and
optical channels) and changes in satellite position and attitude that must be accounted for to establish
the line of sight [44,70–75]. Despite efforts to standardize the continuity of land surface products
between subsequent generations of satellite sensors [76], our results suggest caution in combining data
from sensors with greatly different spectral and radiometric properties for peatland biogeochemical
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modeling. There is a further consideration of the sensor design related to the offset between the two
rows of FPAs in both OLI 8 and Sentinel-2; one set has a slightly forward view of the Earth while the
other set has a slightly rearward view [71,72,75]. This is an important consideration for peatlands in
the summer, where the vascular plant component has stronger BRDF properties. The difference in
the radiance collected by the two sets of FPAs for targets with substantial BRDF properties may be
uncorrectable [73], but this effect is mitigated by updated band-specific gain values.

The challenge of removing high-altitude cirrus is seen in our results with the Sentinel-2 imagery
from 24 May to 19 August. Full removal of high-altitude cirrus from satellite imagery is not a trivial
problem [77–81]. On Landsat 8 OLI, the cirrus band is affected by spectral cross-talk with contamination
from the neighboring SWIR band [71] and both Sentinel-2 and Landsat 8 OLI have various magnitudes
of band spatial misregistration. This leads to a potential problem for the cirrus removal if the channels
have different parallax angles [80,81].

A further consideration requiring more in-depth analyses is that data from all sensors underwent
atmospheric correction through different models. Landsat TM5 Collection 1, Tier 1 imagery was
atmospherically corrected using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) [82]. The Landsat 8 OLI Collection 1, Tier 1 imagery was atmospherically corrected
using the Landsat Surface Reflectance Code (LaSRC) optimized for Landsat 8 [83]. Sentinel-2A
was atmospherically corrected with Sen2cor [45] and the SASI and CASI HSI were atmospherically
corrected with ENVI FLAASH 5.4.1 or ATCOR 4.7.0. While there is no comprehensive comparison
between these five approaches to atmospheric correction, differences are expected [84]; ATCOR and
FLAASH are based on MODTRAN, while LEDAPS and LaRSC implement the MODIS/6S and Vectorial
6S (6SV) models, respectively. Sen2Cor implements a custom algorithm (Sentinel-2 Atmospheric
Correction—S2AC) based on the libRadtran4 code [85]. Differences have been shown between the
approaches for the two Landsat sensors, where LaSRC processing provides improvements in the
surface reflectance over LEDAPS [83]. Similarly, differences have been observed between ATCOR and
FLAASH for airborne HSI [86]. However, more extensive comparisons are needed between the HSI
and satellite approaches to determine the uncertainty introduced by the different implementations of
atmospheric correction and their effect on peatland biogeochemical models.

Finally, our results contribute to the growing body of literature illustrating hyperspectral imagery
improves the retrieval of fundamental peatland characteristics over multispectral data at all spatial
scales. The HSI used here both have a 14-bit dynamic range. From approximately 1000 m AGL flight
altitude, neither the CASI nor SASI were close to saturation; over the peatland only approximately
one-third of the dynamic range was utilized. While this may appear to be a cause for concern for low
overall SNR, it is not a problem because summation (on- or off-chip) can be used to improve SNR,
if needed [38]. The multiple finer spatial pixels (Figure A3) from airborne HSI in comparison to satellite
imagery provide a more uniform contribution of the ground elements to the imagery. This is an
important consideration for peatlands with fine (≤1 m) spatial structures (e.g., hummocks and hollows).
The underutilized dynamic range of the CASI and SASI also suggests that miniaturized versions of
the HSI with similar spectral and radiometric properties could be successfully deployed on UAV
platforms, where the sensor would be considerably closer to the peatland surface (e.g., <150 m AGL).
The higher spatial resolution from UAV-based imagery would benefit WT position models. Planned
hyperspectral satellite missions (e.g., EnMap, WaterSat, HyspIRI) could further improve the ongoing
remote monitoring of peatlands globally in light of increased pressures from various drivers of change.

5. Conclusions

We successfully modeled WT depth and NEE from airborne hyperspectral and satellite multispectral
imagery, respectively. To the best of our knowledge, this is the first time these parameters were retrieved
from optical imagery for a peatland at such a fine spatial resolution (1 m for WT depth and 20–30 m
for NEE). The narrow band index NDWI1240 was shown to be sensitive to both liquid water content in the
vegetation as well as phenology and, therefore, can be used as a proxy for estimating WT depth.
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For the retrieval of NEE, we propose separate models, one for historical estimations from Landsat
TM5 and a separate model going forward with Landsat 8 OLI or Sentinel-2. We found it was not possible
to combine data from sensors with very different spectral and radiometric properties into one model.
Despite the successful retrieval of NEE from satellite imagery, the use of airborne HSI improved the
relationship with eddy covariance tower-measured NEE. We believe the higher radiometric resolution of
the airborne HSI and much finer spatial and spectral resolutions are the reasons for this difference.

The anisotropic properties of the peatland should be considered for the collection of SWIR airborne
HSI in the summer when the vascular plants are in full foliage, however, this is less of a concern in
the spring prior to green-up. Multitemporal HSI should be collected with consistent illumination
and viewing geometries in these types of studies, with the RAA in line with the heading as much as
possible. For satellite-based estimations of peatland biogeochemical properties, care must be taken
with regards to the detection and removal of high-altitude cirrus. Despite the transparent nature
of these clouds, they impact the surface reflectance products, and scenes with cirrus contamination
cannot be used to reliably retrieve NEE.

Despite their importance, uncertainties about the total global peatland spatial extent persist,
due in part to difficulties in mapping peatlands from coarse resolution remotely sensed data [4,10].
Recent estimates of global peatland extent surpass 4.5 million km2 [4], with over 1 million km2 in
both Europe [87] and Canada [3], respectively, based on compilations of national datasets. With the
increasing global archives of Landsat and Sentinel-2 imagery, and planetary scale computing platforms,
such as Google Earth Engine [42], the methodologies developed here for NEE could be applied to
other northern peatlands without tree cover. Ground measurements of NEE from the eddy covariance
method should be incorporated to validate the models if applied elsewhere. Global networks such as
FLUXNET [88] collect multitemporal data of CO2 exchange that could be used as model training and
validation. Protocols being established for satellite-based Land Data Product Validation [89] will allow
for greater intercomparability between sites. In the absence of airborne or UAV-based hyperspectral
imagery, data from planned spaceborne hyperspectral missions could be investigated to determine
their utility for predicting WT depth, provided sufficient in situ data are available to validate the results,
especially for WT depth outside the range examined here.

Climate change affects peatlands directly [90,91]. One of the most important drivers of change in
the functioning of northern peatlands is the WT depth. Even modest decreases in water table depth
coupled with increased air temperature have been shown to lead to profound changes in the proportional
contributions of mosses and vascular plants to biomass production [91]. In addition, drought conditions
with a lowering of the WT have recently been shown to result in an increase in higher ecosystem
respiration, due in part to changes in vegetation composition where vascular plants replaced Sphagnum
mosses [90]. Remotely sensed data offer a reliable means to monitor such changes on an ongoing basis.
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Appendix A

Table A1. Landsat 8 OLI spectral bands from [50].

Band Maximum Bandpass (nm) Spatial Resolution (m)

1 Coastal/Aerosol 433–453 30
2 Blue 450–515 30

3 Green 525–600 30
4 Red 630–680 30
5 NIR 845–885 30

6 SWIR1 1560–1660 30
7 SWIR2 2100–2300 30

PAN 500–680 15
Cirrus 1360–1390 30

Table A2. Sentinel 2A spectral bands from [43,44].

Band Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

1 Clouds/aerosols/atm.
correction 443 27 60

2 Blue 490 98 10
3 Green 560 45 10
4 Red 665 38 10

5 Red Edge 705 19 20
6 Red Edge 740 18 20

7 NIR 783 28 20
8 NIR 842 145 10

8A NIR 865 33 20
9 NIR 940 26 60

10 Cirrus 1375 75 60
11 SWIR 1610 143 20
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Lara, E.; Barabach, J.; Słowiński, M.; et al. Tipping point in plant–fungal interactions under severe drought
causes abrupt rise in peatland ecosystem respiration. Glob. Chang. Biol. 2018, 24, 972–986. [CrossRef]
[PubMed]

91. Mäkiranta, P.; Laiho, R.; Mehtätalo, L.; Straková, P.; Sormunen, J.; Minkkinen, K.; Penttilä, T.; Fritze, H.;
Tuittila, E.-S. Responses of phenology and biomass production of boreal fens to climate warming under
different water-table level regimes. Glob. Chang. Biol. 2018, 24, 944–956. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs70810689
http://dx.doi.org/10.1016/0034-4257(94)90084-1
http://dx.doi.org/10.1029/93GL00106
http://dx.doi.org/10.3390/rs9080834
http://dx.doi.org/10.1080/01431161.2010.520346
http://dx.doi.org/10.1109/LGRS.2005.857030
http://dx.doi.org/10.1016/j.rse.2016.04.008
http://dx.doi.org/10.3390/rs10020352
https://earth.esa.int/c/document_library/get_file?folderId=349490&name=DLFE-4518.pdf
https://earth.esa.int/c/document_library/get_file?folderId=349490&name=DLFE-4518.pdf
http://dx.doi.org/10.1016/j.agrformet.2017.05.015
https://lpvs.gsfc.nasa.gov/documents.html
https://lpvs.gsfc.nasa.gov/documents.html
http://dx.doi.org/10.1111/gcb.13928
http://www.ncbi.nlm.nih.gov/pubmed/28991408
http://dx.doi.org/10.1111/gcb.13934
http://www.ncbi.nlm.nih.gov/pubmed/28994163
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Airborne Hyperspectral Imagery (HSI) 
	Satellite Imagery 
	Landsat TM5 Imagery 
	Sentinel-2 Imagery 

	Water Table and Net Ecosystem Exchange Data 
	Model Generation 
	Water Table Position (WT) 
	Net Ecosystem Exchange (NEE) 


	Results 
	Water Table (WT) Position 
	Net Ecosystem Exchange 

	Discussion 
	Conclusions 
	
	References

