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Abstract: Ice surface temperature (IST) controls the rate of sea ice growth and the heat exchange
between the atmosphere and ocean. In this study, high-resolution IST using the Advanced Spaceborne
Thermal Emission and Reflection radiometer (ASTER) thermal infrared region (TIR) images was
retrieved to observe the thermal change of coastal sea ice. The regression coefficients of the
multi-channel equation using ASTER brightness temperatures (BT) and MODIS ISTs were derived.
MODIS IST products (MOD29) were used as an in situ temperature substitute. The ASTER IST using
five channels from band 10 (BT10) to band 14 (BT14) showed an RMSE of 0.746 K for the validation
images on the Alaskan coast. The uncertainty of the two-channel (BT13 and BT14) ASTER IST was
0.497 K, which was better than that of the five-channel. We thus concluded that the two-channel
equation using ASTER BT13 and BT14 was an optimal model for the surface temperature retrieval
of coastal sea ice. The two-channel ASTER IST showed similar accuracy at higher latitudes than in
Alaska. Therefore, ASTER-derived IST with 90 m spatial resolution can be used to observe small-scale
thermal variations on the sea ice surface along the Arctic coast.
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1. Introduction

Arctic sea ice, which controls the absorption of solar radiation and the heat exchange between the
atmosphere and ocean, has experienced dramatic changes accompanied by its interaction with the
polar climate system [1–3]. Evolution study of sea ice-extent for Arctic sea ice for 35 years from 1978 to
2013 confirmed the ongoing loss of Arctic sea ice and found significant negative trends in all months,
seasons, and in the annual mean [4]. The reduction of sea ice modifies the fluxes of sensible and latent
heat from the surface to the atmosphere and affects cyclone development [5]. At the same time, the
cyclone can exert a very large stress on the ice surface and, thus, change the distribution of sea ice
dramatically. Storms in the Arctic Basin play a very important role in the thermal variations in the
upper Arctic Ocean, since Arctic sea ice becomes less extensive and thinner it will be more vulnerable
to intense storms [6,7]. The monitoring of coastal regions in the Arctic is of paramount importance in
being able to understand these complex interactions. The morphology, stability, and duration of sea ice
in the Arctic coastal region is changing, and these changes present challenges to humans and animals
living on the coast. In addition, sea ice in the Arctic coast is very important from geological, biological,
and industrial aspects [8,9]. In Barrow, Alaska, an integrated coastal sea ice observation system that
includes satellite data, coastal radar, webcam, field data (e.g., snow depth and ice thickness) has been
developed to provide useful information on sea ice conditions to the coastal community [10]. Despite
the importance of coastal sea ice, there are fewer cases of integrated or continuous monitoring.

Satellite data can periodically monitor changes in coastal sea ice and polynya of polar regions.
Passive microwave and optical satellite data provide information on the type, concentration, extent,
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and surface temperature of sea ice [11], which can compensate for insufficient field data. Among
these, the ice surface temperature (IST) affects the sea ice volume growth rate by controlling the
atmospheric-ocean heat exchange. Satellite-derived IST data has been used to analyze the activity
and variability of coastal polynyas [12,13], which have a significant impact on greatly increasing the
latent and sensible heat flux from the ocean [14]. The open water extent of the coastal polynya
can be estimated by calculating the area of the satellite-derived IST pixels close to the water
freezing temperature. The IST is obtained from the thermal bands of optical satellites such as the
Moderate-Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution
Radiometer (AVHRR), and the Visible Infrared Imaging Radiometer Suite (VIIRS). In the clear sky
of the Arctic, the AVHRR-derived IST accuracy (root mean square error, RMSE) was estimated at
0.3–2.1 K [15] and the MODIS-derived IST accuracy was reported at 1.3 K [16]. Key et al. showed that
VIIRS IST could be estimated with an accuracy of 0.6 K when compared to aircraft data [17]. The spatial
resolution of the major sensors (MODIS: 1 km, AVHRR: 1.09 km, and VIIRS: 750 m) providing the IST
information is efficient for observing the entire Arctic Ocean, however, it is insufficient to monitor the
thermal dynamics of coastal sea ice in detail.

The advanced spaceborne thermal emission and reflection radiometer (ASTER) with high spatial
and spectral resolution in the thermal infrared region (TIR) (Table 1) has the ability to detect small
thermal changes of coastal sea ice. The ASTER, however, has been mainly used for land observation,
like other high-resolution multispectral sensors (e.g., Landsat); less cases have been applied for coastal
sea ice. Furthermore, there is no ASTER algorithm for coastal sea ice temperature estimation. ASTER
TIR data have been extensively used to estimate land surface temperature (LST) [18–20], and have also
been used to retrieve sea surface temperature (SST) [21,22].

Table 1. Comparison of thermal infrared region (TIR) band characteristics of sensors that can retrieve
ice surface temperature (IST).

Sensor TIR Band No. Spectral Range (µm) Spatial Resolution

AVHRR
4 10.30–11.30

1.09 km5 11.50–12.50

MODIS
31 10.78–11.28

1 km32 11.77–12.27

VIIRS
M14 8.40–8.70

750 mM15 10.263–11.263
M16 11.538–12.488

Landsat-8
10 10.30–11.30

100 m11 11.50–12.50

ASTER

10 8.125–8.475

90 m
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95
14 10.95–11.65

In this study, we present an algorithm based on the split window algorithm developed for SST
retrieval [22,23] to retrieve high-resolution IST for the Alaskan coastal area from ASTER TIR data
(Figure 1). The performance of this algorithm was evaluated at higher latitudes than in Alaska.
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ASTER example image near Red Dog Dock (see Figure 2).Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 13 

 

 
Figure 2. ASTER RGB mosaic image acquired on 11 March 2003 near Red Dog Dock (left) including 
the subset image (A). The subset image shows various sea ice types near the shore line. The RGB 
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subset image. Black pixels indicate the sea water mask. The darker the gray, the lower the 
temperature. 
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Figure 2. ASTER RGB mosaic image acquired on 11 March 2003 near Red Dog Dock (left) including
the subset image (A). The subset image shows various sea ice types near the shore line. The RGB
image location is identical to the red box in Figure 1. (B) Brightness temperature image converted from
ASTER TIR band 13. The temperature varies depending on the sea ice conditions. The closer to black,
the lower the temperature. (C) MODIS IST image that is identical to the location of the ASTER subset
image. Black pixels indicate the sea water mask. The darker the gray, the lower the temperature.
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2. Data and Methodology

In order to develop the ASTER IST algorithm, a large amount of in situ temperature data with a
wide temperature range collected at the ice surface were required. However, it is realistically difficult
to obtain temperature data on the sea ice surface in the polar coast regularly (especially at various
locations). The 16-day revisit time for ASTER is a limitation to discern high temporal resolution
changes in IST, as opposed to VIIRS, MODIS, or AVHRR. In addition, cloud near shore can hamper
the match-up between ASTER and field measurements. There may be a difference between in situ ice
surface temperatures and Terra MODIS IST products (MOD 29, version 6), but we have used MOD 29
as a substitute for field data in view of realistic constraints. The MOD29 data with 1 km resolution are
produced by the split window technique using the brightness temperature of band 31 and band 32
(Table 1). More information can be found in Hall et al. [16]. Under a clear sky condition during the cold
period, the RMSE of MODIS IST was reported as 1.3 K [16]. As this was the error of the total northern
hemisphere, we assessed the accuracy of the MODIS IST products on the Alaskan coast through a
comparison with the near-surface air temperature from the tide stations (Prudhoe Bay, Nome, and Red
Dog Dock) (Figure 1). More details are given in Section 3.1.

ASTER and MODIS on board the same Terra platform acquire data almost simultaneously.
This feature provides the opportunity to complement each other in terms of temporal and spatial
limitations [24]. ASTER consists of three visible and near infrared (VNIR) bands, six shortwave
infrared (SWIR) bands (no longer available due to a sensor trouble after April 2008), and five TIR
bands, each with a spatial resolution of 15 m, 30 m, and 90 m, respectively. In this study, we used
17 ASTER scenes for the development of the IST algorithm and seven ASTER scenes to evaluate the
algorithm (Table 2). Figure 2 shows an example of an ASTER image near the Red Dog Dock for the
development of the algorithm.

Table 2. Information of ASTER scenes and MODIS IST for match-up.

Type 1 Region ASTER Scene
Date 2

MODIS Pixel
(Match-Up) 3

MODIS IST
Range (K) Mean (SD) 4 (K)

D

Nome

9 March 2001 78 (54) 263.75–269.13 0.334 (0.13)
26 April 2001 526 (526) 267.8–270.52 0.168 (0.037)
2 April 2004 475 (339) 259.04–264.36 0.337 (0.131)

14 April 2005 *** 1144 (1069) 260.02–270.06 0.239 (0.09)

Red Dog

11 April 2002 667 (588) 259.99–268.91 0.281 (0.11)
11 March 2003 *** 1637 (1019) 256.34–266.08 0.372 (0.147)

20 April 2006 864 (541) 252.98–259.99 0.366 (0.139)
17 March 2007 864 (565) 252.98–261.76 0.363 (0.134)

Prudhoe
2 April 2001 ** 1803 (1530) 247.76–252.28 0.298 (0.112)
2 May 2002 ** 1365 (870) 260.22–264.24 0.341 (0.167)
16 March 2008 1020 (837) 244.05–246.96 0.329 (0.103)

Total 17 11,404 (7938) 244.05–270.52 0.319 (0.138)

V

Nome
17 March 2004 ** 144 (77) 257.08–261.04 0.402 (0.132)
17 March 2007 ** 877 (563) 258.03–266.66 0.364 (0.162)

Red Dog 26 April 2001 667 (603) 266.69–268.91 0.27 (0.094)
24 March 2007 862 (596) 247.56–261.76 0.358 (0.129)

Prudhoe 3 May 2002 908 (614) 264.23–265.46 0.338 (0.143)

Total 7 3458 (2453) 247.56–268.91 0.339 (0.141)
1 The types were divided into images for algorithm development (D) and for validation (V). 2, ** means a mosaic
using two scenes, and *** means a mosaic using three scenes. 3 MODIS pixels had a SD of ASTER BT13 of less than
0.7 K and match-up pixels had a SD of ASTER BT13 of less than 0.4 K. 4 Mean of SD of ASTER BT13 in MODIS pixels
with a SD of ASTER BT13 of less than 0.7 K.
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To develop an accurate ASTER IST algorithm, it was necessary to remove the cloud and sea water
pixels in the image. To do so, first, ASTER VNIR and SWIR bands were converted to top of atmosphere
(TOA) reflectance by the following equation [25]:

ri =
πLid2

Ei cos(θ)
(1)

where Li is the at-sensor registered radiance for band i; E is the mean solar exoatmospheric irradiance
of each band i; d is the earth-sun distance in astronomical units; and θ is the solar zenith angle. Due
to the similar reflectance characteristics of clouds and sea ice at the visible wavelengths, it causes
difficulties when masking the clouds from the image. Clouds generally have a higher reflectance than
sea ice or snow at around 1.6 µm. This feature is useful for masking clouds in polar regions [26]. Since
ASTER has an SWIR band 4 (1.6–1.7 µm), we used a TOA band ratio of r4/r3 < 0.17 to eliminate the
cloud pixels. The band ratio using SWIR band 4 and VNIR band 3 did not identify the small size cloud
and fog seen in the ASTER image. We, therefore, removed it through additional visual inspection. Sea
water reflectance was significantly lower than snow or ice at the VNIR wavelength. The pixel values
with a reflectance of less than 20% in band 3 were eliminated as seawater (r3 < 0.2).

The ASTER TIR bands were converted to the brightness temperature (BT) by the following
equation [19]:

BTi =
K2

ln (K1
Li

+ 1)
(2)

where BTi is the at-sensor brightness temperature for band i; Li is the at-sensor registered radiance
for band i; K2 = c2/λ and K1 = c1/λ5 with c2 and c1 as the radiation constants; and λ is the effective
wavelength. K2 and K1 can be read in Jimenez-Munoz and Sobrino [19].

A MODIS IST pixel (1 km) defined as sea ice through flag masking (land, ocean, and cloud)
corresponded to about 121 pixels of ASTER BT (90 m). The 121 ASTER BT pixels were not uniform
in a MODIS pixel as the condition of sea ice is not homogeneous. In particular, near-shore sea ice is
decomposed or thin (Figure 2A). This means that the temperature of the sea ice can be influenced
by the sea water below the sea ice (Figure 2B). Melt ponds on the sea ice also affect temperature.
For the ASTER-MODIS match-up, the standard deviations (SD) of ASTER BTs corresponding to
MODIS IST pixels were calculated to find MODIS pixels representing homogeneous sea ice. This
was based on the assumption that a small variation of ASTER BT in a MODIS pixel may be due to
homogeneous condition [22]. The homogeneous MODIS pixels were used as true temperature data for
the development of the ASTER IST algorithm.

The surface temperature retrieval algorithm is generally developed by linking the brightness
temperatures of the satellite sensor with in situ surface measurements. A linear split window technique
first proposed by McMillin [27] corrected the atmospheric attenuation of upwelling radiation due to
water vapor absorption using the difference in brightness temperature between the two infrared bands
at 11–12 µm [28]. This method was commonly used for SST and IST retrievals [15,16,29,30]. A general
linear multi-channel algorithm can be written as [23]:

Ts = a(θ) +
n

∑
i=1

bi(θ)BTi (3)

where Ts is the temperature of sea or ice surface; a(θ). and bi(θ) are scan angle-dependent coefficients;
and BTi are the brightness temperatures of each band i of n. The coefficients were determined through
a least squares regression procedure, where surface temperatures were regressed against brightness
temperatures. Brightness temperature differences between two bands may also be used.
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3. Results

3.1. Comparison MOD29 IST to Near-Surface Air Temperature

In order to validate the accuracy of the MODIS IST product as a substitute for field measurement,
MOD29 products and near-surface air temperatures were compared. The near-surface air temperatures
from the Prudhoe Bay (sensor height, 4 m), Nome (sensor height, 4 m), and Red Dog Dock (sensor
height, 9 m) tide stations operated by NOAA were used (Figure 1). There were 175 cases where
the surface temperature data and the MODIS IST were matched within 30 min from 2005 to 2016
(March and April). The MODIS IST pixel nearest to the station was used for validation. The validation
indicated that the MOD29 had a bias of −1.98 K and RMSE of 3.1 K (Figure 3). This difference is
generally known to be due to long-wave radiative cooling under a cloud free-sky during the winter
season [16,31,32]. According to the measurements of the Surface Heat Budget of the Arctic Ocean
Experiment (SHEBA), the daily surface temperatures could be as much as 5 K lower than at the
10-m height [32]. In the Antarctic Remote Ice Sensing Experiment (ARISE), the difference between
the ice surface skin temperature and air temperature at 21-m height ranged from 2 to 15 K [33].
Considering the atmospheric thermal inversions, when we subtracted the bias from each near-surface
air temperature and recalculated, the adjusted RMSE of MOD 29 was 2.39 K in the Alaskan coast.
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Figure 3. Validation of MODIS IST using near-surface air temperature at the Alaskan tide stations
(Prudhoe Bay, Nome, and Red Dog). There were matched within 30 min. The solid line is the 1:1 line.
The dashed line is the best-fit line. The RMSE is the value with the bias removed.

The MODIS IST accuracy for the Alaskan coast was not significantly different from those (RMSE
of 1–3 K) estimated in previous studies for the polar region. Hall et al. [9] showed that during the cold
period in the Arctic Ocean, the MODIS IST bias, which utilizes the MODIS cloud mask, was −2.1 K
and with the bias removed, the RMSE was 3.0 K. Scambos et al. [33] observed an uncertainty of 1 K
through comparing MODIS IST with ship-borne sea-ice skin temperature from the sea ice zone off
East Antarctic. The difference of error between these studies was due to the variability of ice surface
temperature depending on cloud, humidity, and wind conditions. For example, the difference between
air temperature and surface temperature can be reduced as atmospheric mixing occurs near the surface
as wind speed increases [9]. In our experiment, when the wind speed was more than 10 m/s (N = 30),
the RMSE decreased to 1.38 K. With speed less than 10 m/s (N = 126), the RMSE increased to 2.52 K.
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3.2. ASTER IST Algorithm

In order to develop an accurate ASTER IST algorithm, MODIS IST pixels representing
homogeneous sea ice should be used as the true temperature data. MODIS IST pixels representing
homogeneous sea ice were determined by following several steps. First, as a MODIS pixel (1 km)
corresponds to about 121 ASTER BT (90 m) pixels, if the number of ASTER BT13 pixels was less
than 121, the MODIS pixels were determined to be pixels influenced by sea water or cloud and were
excluded from the analysis. In the next step, the SD of the ASTER BT13 pixels in a MODIS pixel were
calculated. We judged the MODIS pixels with a SD of ASTER BT13 of greater than 0.7 K to have an
inhomogeneous sea ice condition. A histogram of MODIS pixels (N = 11,404) with a SD of less than
0.7 K for 17 ASTER scenes used for algorithm development (Table 2) is shown in Figure 4 and roughly
followed a Gaussian distribution. The average of the fitted Gaussian distribution was 0.319 K, the SD
of that was 0.138 K, and the average plus the SD was 0.527 K. We assumed that MODIS IST pixels with
a SD of ASTER BT13 of less than 0.4 K represented a relatively homogeneous sea ice condition. The
7938 MODIS pixels were used as the true temperature for ASTER IST algorithm development (Table 2).
The MODIS IST pixels with a SD of greater than 0.4 K were generally sea ice with cracks or melt ponds.
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Figure 4. Histogram of the SD of ASTER BT13 in a MODIS pixel for 17 ASTER scenes. The red line is
the fitted Gaussian distribution, the solid black line is an average of the fitted Gaussian distribution,
and the dashed black line is the average plus the SD. The blue line is the threshold for MODIS IST
pixels representing homogeneous sea ice as true data.

To select the appropriate multi channels for use in the development of the split window algorithm
for the ASTER IST retrieval, we compared the brightness temperatures of the five ASTER TIR bands
with the 7938 MODIS IST pixels (Figure 5). The best correlation was found in ASTER BT13, with a
bias of 0.031 K and a RMSE of 0.515 K (Table 3). ASTER showed the second best correlation with a
bias of −0.402 K and a RMSE of 0.678 K. This is because the wavelengths of the ASTER BT13 and BT14

are similar to the wavelengths of the MODIS band 31 and 32 used in the split window technique of
the MODIS IST product (Table 1). Even before the atmospheric effect was removed, the total bias
(>240 K) between the ASTER BT13 and the MODIS IST was small (0.031 K). However, when the range
of brightness temperatures was divided, the results showed a bias of 0.17 K at below 260 K and −0.12 K
at above 260 K. The bias at low temperatures was associated with long-wave radiative cooling and the
bias at high temperatures appeared to be due to the atmospheric effect.



Remote Sens. 2018, 10, 662 8 of 13
Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 13 

 

 
Figure 5. Scatter plots of MODIS IST versus ASTER brightness temperature for (A) band 10 through 
to (E) band 14 (n = 7938 × 121). The solid line is the 1:1 line. The dashed red line is the best-fit line. 

We derived the regression coefficient of Equation (4) using the MODIS IST and the ASTER two 
channels (𝐵𝑇ଵଷ and 𝐵𝑇ଵସ) (Table 4): 

𝑇௦ = 𝑎 + 𝑏𝐵𝑇ଵଷ + 𝑐(𝐵𝑇ଵଷ − 𝐵𝑇ଵସ) (4) 

where 𝑇௦  is the ASTER IST; 𝑎 , 𝑏 , and 𝑐  are regression coefficients; and 𝐵𝑇ଵଷ  and 𝐵𝑇ଵସ  are the 
brightness temperatures at ASTER bands 13 and 14. In this equation, the satellite scan angle term was 
not considered. Since ASTER has a small scan angle with a narrow swath, the dependence on scan 
angle in a split window algorithm can be ignored [22]. The regression coefficients for 17 ASTER 
scenes used for algorithm development were derived for the following temperature ranges: 𝐵𝑇ଵଷ > 
240 K, 240 K < 𝐵𝑇ଵଷ < 260 K, and 𝐵𝑇ଵଷ > 260 K (Table 4). There was no significant difference in ASTER 
IST retrieval accuracy between the results of applying the all range (𝐵𝑇ଵଷ > 240 K) coefficients and the 
divided range (240 K < 𝐵𝑇ଵଷ  < 260 K, 𝐵𝑇ଵଷ  > 260 K) coefficients (Table 5). Figure 6A shows the 
relationship between ASTER IST retrieved from Equation (4), which used the divided range 
coefficients, and MODIS IST. The bias was 0 K because it was adjusted statistically, and the 
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Table 3. Bias and RMSE between ASTER brightness temperature bands and MODIS IST.

Range BT10 BT11 BT12 BT13 BT14

Bias
>240 K −0.705 −0.955 −1.197 0.031 −0.402

240–260 K 0.26 −0.676 −1.029 0.173 −0.247
>260 K −1.179 −1.252 −1.375 −0.12 −0.568

RMSE
>240 K 1.06 1.167 1.361 0.515 0.678

240–260 K 0.749 0.943 1.226 0.547 0.592
>260 K 1.321 1.365 1.492 0.479 0.759
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We derived the regression coefficient of Equation (4) using the MODIS IST and the ASTER two
channels (BT13 and BT14) (Table 4):

Ts = a + bBT13 + c(BT13 − BT14) (4)

where Ts is the ASTER IST; a, b, and c. are regression coefficients; and BT13 and BT14 are the brightness
temperatures at ASTER bands 13 and 14. In this equation, the satellite scan angle term was not
considered. Since ASTER has a small scan angle with a narrow swath, the dependence on scan angle
in a split window algorithm can be ignored [22]. The regression coefficients for 17 ASTER scenes
used for algorithm development were derived for the following temperature ranges: BT13 > 240 K,
240 K < BT13 < 260 K, and BT13 > 260 K (Table 4). There was no significant difference in ASTER
IST retrieval accuracy between the results of applying the all range (BT13 > 240 K) coefficients and
the divided range (240 K < BT13 < 260 K, BT13 > 260 K) coefficients (Table 5). Figure 6A shows the
relationship between ASTER IST retrieved from Equation (4), which used the divided range coefficients,
and MODIS IST. The bias was 0 K because it was adjusted statistically, and the uncertainty (RMSE) was
0.469 K. As the atmospheric effect and long-wave radiative cooling were corrected, the slope became
closer to 1. The validation of the 2-channel (BT13 and BT14) ASTER IST for seven validation images
(Table 2) showed a 0.168 K bias and 0.497 K uncertainty (Figure 6B). This result shows that ASTER IST
can provide accuracy in sea ice surface temperatures as much as the MODIS IST product.

Table 4. ASTER IST coefficients for Alaska coastal sea ice. Two-channel coefficients were used with
Equation (4). Five-channel coefficients were used with Equation (5).

Range a b c d e f

2 Ch
>240 K −7.13193 1.02792 −0.24093

240–260 K −9.26874 1.03662 −0.35169
>260 K −5.95003 1.02318 −0.11206

5 Ch
>240 K −9.733 0.149995 0.082399 0.028279 0.599756 0.178344

240–260 K −12.9486 0.226197 0.073846 −0.08225 0.552123 0.281406
>260 K −8.60318 0.036583 0.134919 0.132995 0.697087 0.032862

Table 5. Bias and RMSE for comparison of two-channel and five-channel algorithms for development
and validation images.

Type 1 Coefficient 2 Ch 5 Ch

D
All range Bias 0 0

RMSE 0.471 0.467

Divided range Bias 0 0
RMSE 0.469 0.462

V
All range Bias 0.17 0.209

RMSE 0.497 0.507

Divided range Bias 0.168 0.472
RMSE 0.497 0.746

1 The types were divided into images for algorithm development (D) and for validation (V).

Matsuoka et al. [22] showed that multiple regression equation using five TIR bands of ASTER
was the most accurate for SST estimation. Using five TIR bands (BT10 to BT14), the five-channel ASTER
IST equation is expressed as follows:

Ts = a + bBT10 + cBT11 + dBT12 + eBT13 + f BT14 (5)
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where Ts is the ASTER IST; a, b, c, d, e, and f are regression coefficients (Table 4); and BT10 to BT14 are the
brightness temperatures at ASTER bands 10 to 14. At the five-channel ASTER IST for 17 ASTER scenes
used for algorithm development, the bias and uncertainty were slightly less than the two-channel
IST (Table 5). However, the bias and uncertainty of the five-channel IST for the seven validation
images were considerably higher than that of the two-channel IST. Considering the above results,
we concluded that the ASTER IST retrieval using two bands (BT10 and BT14) and the divided range
coefficients (240 K < BT13 < 260 K, BT13 > 260 K) was suitable for Alaskan coastal sea ice.
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Figure 7B shows the ASTER IST image generated using the two-channel algorithm of Equation
(4) and the divided range coefficients are presented in Table 4. The image displays the temperature
variations of the thin sea ice near the coast in detail, which were difficult to identify in the MODIS
IST image with 1 km resolution (Figure 7A). The ASTER IST image also clearly revealed the thermal
differences (yellow and red colors in Figure 7B) between the ice crevices in the thick ice layers
(blue colors in Figure 7B) far from the coast than MODIS IST.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 13 

 

two-channel IST (Table 5). However, the bias and uncertainty of the five-channel IST for the seven 
validation images were considerably higher than that of the two-channel IST. Considering the above 
results, we concluded that the ASTER IST retrieval using two bands (𝐵𝑇ଵ଴ and 𝐵𝑇ଵସ) and the divided 
range coefficients (240 K < 𝐵𝑇ଵଷ < 260 K, 𝐵𝑇ଵଷ > 260 K) was suitable for Alaskan coastal sea ice. 

Figure 7B shows the ASTER IST image generated using the two-channel algorithm of Equation 
(4) and the divided range coefficients are presented in Table 4. The image displays the temperature 
variations of the thin sea ice near the coast in detail, which were difficult to identify in the MODIS 
IST image with 1 km resolution (Figure 7A). The ASTER IST image also clearly revealed the thermal 
differences (yellow and red colors in Figure 7B) between the ice crevices in the thick ice layers (blue 
colors in Figure 7B) far from the coast than MODIS IST. 

 
Figure 7. (A) MODIS IST image and (B) ASTER IST image near Red Dog Dock. Thin ice or wetted ice 
types near the coast or in crevices had a higher temperature (yellow to red colors). 

4. Discussion 

The satellite-derived ISTs were obtained in the clear skies where pixels affected by clouds were 
removed through cloud masking procedures. However, similar reflectance characteristics of clouds 
and sea ice at visible wavelengths made it difficult to remove small clouds and fog completely. In 
addition, the saturation was found in the VNIR bands of some ASTER Polar images, and the use of 
SWIR bands was impossible after April 2008. As a result, cloud masking using ASTER VNIR and 
SWIR bands has limitations. Improved cloud masking techniques for the polar environment are 
required to separate thin clouds and fog and their shadows from sea ice. A cloud masking algorithm, 
such as that using neural networks reported by Mclntire and Simpson [26], may be useful in polar 
regions. This will improve the accuracy of satellite-derived IST. 

ASTER and MODIS sensors on board the same satellite platform acquire data at the same 
elevation and coincident nadirs. Simultaneous observations have the advantage of reducing the 
difference between the two sensors due to the time difference. There have been studies to directly 
compare temperatures derived from two sensors due to this feature. The validation of ASTER LST 
products against the MODIS LST products on ice and snow surface over Greenland were reported to 
have a 0.22 °C bias and 0.54 °C RMSE [34]. The result of the ASTER-derived SST validation using 
MODIS-derived SST for Sendai Bay, Japan showed that the bias was 0.10 °C and RMSE was 0.46 °C 
[15]. In this study, ASTER-derived ISTs had a mean 0.168 K higher than MODIS IST products and 
showed an RMSE of 0.497 K. The difference between ASTER and MODIS was highest in LST, 
intermediate in IST, and lowest in SST. This is related to the variability of surface conditions. LST 
estimates are generally known to be less accurate than SST estimates due to the large variability of 

Figure 7. (A) MODIS IST image and (B) ASTER IST image near Red Dog Dock. Thin ice or wetted ice
types near the coast or in crevices had a higher temperature (yellow to red colors).



Remote Sens. 2018, 10, 662 11 of 13

4. Discussion

The satellite-derived ISTs were obtained in the clear skies where pixels affected by clouds were
removed through cloud masking procedures. However, similar reflectance characteristics of clouds and
sea ice at visible wavelengths made it difficult to remove small clouds and fog completely. In addition,
the saturation was found in the VNIR bands of some ASTER Polar images, and the use of SWIR bands
was impossible after April 2008. As a result, cloud masking using ASTER VNIR and SWIR bands has
limitations. Improved cloud masking techniques for the polar environment are required to separate
thin clouds and fog and their shadows from sea ice. A cloud masking algorithm, such as that using
neural networks reported by Mclntire and Simpson [26], may be useful in polar regions. This will
improve the accuracy of satellite-derived IST.

ASTER and MODIS sensors on board the same satellite platform acquire data at the same
elevation and coincident nadirs. Simultaneous observations have the advantage of reducing the
difference between the two sensors due to the time difference. There have been studies to directly
compare temperatures derived from two sensors due to this feature. The validation of ASTER LST
products against the MODIS LST products on ice and snow surface over Greenland were reported
to have a 0.22 ◦C bias and 0.54 ◦C RMSE [34]. The result of the ASTER-derived SST validation using
MODIS-derived SST for Sendai Bay, Japan showed that the bias was 0.10 ◦C and RMSE was 0.46 ◦C [15].
In this study, ASTER-derived ISTs had a mean 0.168 K higher than MODIS IST products and showed an
RMSE of 0.497 K. The difference between ASTER and MODIS was highest in LST, intermediate in IST,
and lowest in SST. This is related to the variability of surface conditions. LST estimates are generally
known to be less accurate than SST estimates due to the large variability of surface conditions [35].
As a result, the larger the variability of the surface condition, the larger the temperature difference
between the ASTER and MODIS.

A key question is whether the ASTER two-channel regression coefficients derived from Alaskan
coasts can be used for higher-latitude coastal sea ice temperature retrieval. We tested the performance
of the two-channel ASTER IST algorithm in some high-latitudes, including the Greenland coasts, the
Laptev coastal sea, and the Canadian Archipelago. The cloud-free ASTER images were used and the
MODIS IST range was 250–270 K. The validation of ASTER-retrieved IST showed a bias of 0.182 K and
a RMSE of 0.488 K, which was similar to the validation result on the Alaskan coast (bias: 0.168 K and
RMSE: 0.497 K).

5. Conclusions

A high-resolution retrieval IST algorithm from ASTER TIR images for Arctic coast sea ice was
presented. Due to the difficulty of continuous field measurements on the sea ice surface, the MODIS
IST image near the three Alaskan tide stations were used as true data. The bias between MODIS IST
products and near-surface air temperatures was −1.98 K and the RMSE was 2.39 K, where the negative
bias meant that the MODIS IST was lower than the near-surface air temperatures. Considering the
long-wave radiative cooling effect under a cloud free-sky during the winter season, the MODIS IST
bias and uncertainty may actually be smaller. In addition, since near-surface air temperature data are
recorded at one point and a MODIS pixel recorded for the 1 km area, the near-surface air temperature
data may often not be representative of a pixel [34].

The five-channel ASTER IST algorithm showed an RMSE of 0.746 K for the validation images.
The uncertainty of the two-channel ASTER IST algorithm was 0.497 K, which was better than the
five-channel algorithm. In fact, it is difficult to say that, in almost all cases, the RMSE of the two-channel
algorithm is lower than five-channel algorithm. This is because we did not evaluate every Arctic coast.
However, we have confirmed that at higher latitudes such as Greenland coasts, Laptev coastal sea, and
Canadian Archipelago the two-channel algorithm was more accurate than five-channel algorithm and
the two-channel ASTER IST coefficients could be used well. We, thus, concluded that the two-channel
ASTER IST algorithm was an optimal model for surface temperature retrieval of coastal sea ice in
Arctic in the 240–270 K range.
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The ASTER ISTs first developed in this study are the highest resolution spatial information that
can be acquired via current satellites. ASTER-derived high resolution IST can be used instead of
the low-resolution MODIS IST product to observe small-scale thermal variations on sea ice surface
in the Arctic coast, and may aid understanding in the interaction between ice, polynya, ocean, and
atmosphere. In addition, it can be used as ancillary data for studies on growth, morphology, safety,
and the dynamics of coastal sea ice that affect human activity.
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