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Abstract: Infrared and visible image registration is a very challenging task due to the large geometric
changes and the significant contrast differences caused by the inconsistent capture conditions. To address
this problem, this paper proposes a novel affine and contrast invariant descriptor called maximally stable
phase congruency (MSPC), which integrates the affine invariant region extraction with the structural
features of images organically. First, to achieve the contrast invariance and ensure the significance
of features, we detect feature points using moment ranking analysis and extract structural features
via merging phase congruency images in multiple orientations. Then, coarse neighborhoods centered
on the feature points are obtained based on Log-Gabor filter responses over scales and orientations.
Subsequently, the affine invariant regions of feature points are determined by using maximally stable
extremal regions. Finally, structural descriptors are constructed from those regions and the registration
can be implemented according to the correspondence of the descriptors. The proposed method has
been tested on various infrared and visible pairs acquired by different platforms. Experimental results
demonstrate that our method outperforms several state-of-the-art methods in terms of robustness and
precision with different image data and also show its effectiveness in the application of trajectory tracking.
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1. Introduction

In recent years, the rapid development of sensor technology has made it possible to fully perceive
an object in complicated scenes. As the two most common visual sensors, infrared and visible sensors are
widely applied in various kinds of optoelectronic systems [1]. To make use of both sensors simultaneously,
a prerequisite is to achieve the image registration, which is a process of aligning two or more images of
a same scene captured by different sensors, at different times, or from distinct viewpoints [2]. The accuracy
of image registration has a significant impact on many computer vision tasks, such as image fusion [3],
image mosaic, visual-based navigation, and object recognition. In the registration field, infrared and
visible image registration is very challenging work mainly due to two reasons. First, as a result of the
differences in imaging mechanisms, the same scene’s content may be represented by different intensity
values, which means that images from two different sources have poor consistency in contrast. This makes
it difficult to find the correspondence based on their intensity or gradient values directly, which can
be seen from Figure 1. Second, he various intrinsic and extrinsic sensing conditions may lead to large
geometric deformations that exist between the images, which further increase the difficulty of registration.
A number of related methods have been proposed and applied successfully in the situation where the
geometric changes are small [4–8] or can be greatly alleviated according to the capture information [9,10].
However, automatic infrared and visible image registration has not been solved effectively in complicated
environments with large geometric changes and significant differences in contrast.
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Figure 1. Differences of contrast and viewpoints in input images. (a) Infrared image; (b) Corresponding
regions and their gradient images; and (c) Visible image.

This paper presents a novel affine and contrast invariant descriptor for the automatic registration
of infrared and visible images. The proposed method detects the significant feature points based on
moment ranking analysis and constructs structural features via merging phase congruency images in
multiple orientations. This embodies the significance of feature points maximally and makes structural
features to be contrast invariant. Descriptors of orientated phase congruency centered on the feature
points are constructed in the affine invariant regions detected by maximally stable extremal regions
(MSER), which ensures that the descriptors are affine invariant. This paper is organized as follows.
Related works in registration for infrared and visible images are described in Section 2. The proposed
registration method using a novel affine and contrast invariant descriptor is described in detail in
Section 3. Comparative and applied experimental results are discussed in Section 4. Finally, conclusions
are drawn, and future work is discussed in Section 5.

2. Related Works

At present, the registration methods for infrared and visible image can be classified into
two categories: global region-based methods and local features-based methods. Global region-based
methods obtain correspondence by using the whole image content in spatial domain or transform
domain, which mainly include mutual information (MI) [8,11,12], phase correlation (PC) [4], Fourier
transform [6,13], particle swarm optimization (PSO) [7], gradient information [5,14], and template
correlation matching [15,16]. Those methods can get remarkable performance for images with small
geometric changes or medical images with high correlation in global intensity. However, contrast
reversal, occlusion, uneven heated, and clutters occur frequently in some regions of input images,
which result in the global region-based methods being unable to achieve an accurate registration.

In contrast to global region-based methods, local feature-based methods utilize the extracted
features to establish correspondence, and they are generally divided into two groups: typical
features-based methods and structural features-based methods. In the first group, extracted typical
features include edges [17], lines [18–22], contours [23], gradient distribution [15,24], and their
variants [25–28]. Those methods above are robust in response to geometrical changes, occlusion,
background clutter, and noise. However, they treat all content equally, such that they are highly
sensitive to structural disparities caused by insignificant structures. This results in serious degradation
in matching performance when large differences in contrast appeared in input images. Two images
obtained from the same scene using different modalities may have significantly different intensity
characteristics but should have very similar structural features. Therefore, the structural features of
the disparate images can be compared in a direct fashion.

Compared with the typical features-based methods, structural features-based methods can
extract more robust common features from different modalities and are less sensitive to the
contrast differences. Due to these advantages, they have been successfully applied to multimodal image
registration [10,21,28–33]. As a valid structural feature extraction method, phase congruency was proposed
by Morrone et al. [34], which is the ratio of local energy to the overall path length taken by the local Fourier
components in reaching the endpoint. To improve the insensitivity of phase congruency to noise and
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provide good localization, Kovesi proposed a new sensitivity measure and noise compensation method
for phase congruency, which can locate the features that remain constant over scales [35]. Subsequently,
Kovesi presented a highly localized feature detector whose responses are invariant to image contrast [36].
These properties make local phase congruency an effective method for creating a structural representation
of the images. Wong and Orchard [29] constructed local phase-coherent representations of images and
applied their method to multimodal medical image registration successfully. Xia et al. [30] combined
phase congruency representations of images with scale-invariant feature transform (SIFT) to achieve
multimodal medical image registration. Recently, Liu et al. [31] proposed mean local phase angle (MLPA)
and frequency spread phase congruency (FSPC) by using local frequency information on Log-Gabor
wavelet transformation space, which improved the robustness compared with traditional multimodal
matching. Based on the structural properties of images, Ye et al. [10] developed the histogram of orientated
phase congruency (HOPC) descriptor, which outperforms several methods in matching performance.
These registration methods that relate to phase congruency are robust against complex nonlinear
radiometric differences and have good performance on image pairs with slight geometric changes.
However, they cannot obtain satisfactory results for image pairs with large geometric deformations.
Zhao et al. [21] proposed a novel multimodality robust line segment descriptor (MRLSD) and developed
a MRLSD matching method, which can deal with large-scale and rotation changes in image pairs, while the
registration results are poor when line segments or edges are deficient in some regions.

Motivated by the phase congruency-related methods [10,21,31], this paper develops an affine
and contrast invariant descriptor and presents a robust registration method based on that descriptor.
Firstly, feature points are extracted based on the moment analysis over orientations. Then, the coarse
description regions are estimated by Log-Gabor response over scales and orientations centered on the
feature points, and the descriptors are constructed by the orientations on the fine regions detected by MSER.
Finally, the registration is achieved according to the correspondence of descriptors between image pairs.
The whole process of the proposed method is shown in Figure 2.

Figure 2. Illustration of registration by using the proposed method.
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3. Methodology

The key issues in infrared and visible registration are what type of features should be detected
and how to extract the feature form input images. With the idea that feature points of high perceptual
significance coincide with points of high structural significance within an image, the salient feature
points (SFP) detection method based on the moment analysis in phase congruency images is presented
in Section 3.1. Then, the approach of construction for the maximally stable phase congruency (MSPC)
descriptor, using orientated phase congruency and MSER [37], is developed in detail in Section 3.2.
Finally, the algorithm of registration for infrared and visible image is described in Section 3.3.

3.1. Salient Feature Points Detection

The measure of phase congruency developed by Morrone et al. [34] is follows:

PC1(x) =
|E(x)|

∑n An(x)
, (1)

where An(x) is an amplitude of Fourier components at a location x in a signal, and |E(x)| is the
magnitude of the vector from the origin to the endpoint. From the definition above, if all the Fourier
components are in phase, all the complex vectors would be aligned, and PC1(x) would be 1. If there is
no coherence of phase, PC1(x) falls to a minimum of 0. Phase congruency provides a measure that is
independent of the overall magnitude of the signal, making it invariant to variations in image contrast.
Subsequently, Kovesi proposed an improved measure [35] as follows:

PC(x) =
∑n W(x)

⌊
An(x)(cos(fn(x)− f(x))−

∣∣∣sin(fn(x)− f(x))
∣∣∣)− T

⌋
∑n An(x) + ε

, (2)

where W(x) is a factor that weights for frequency spread, and An(x) is an amplitude of Fourier
components at a location x. fn(x) and f(x) are phase angle and weighted mean phase angle, respectively.
ε is a small constant, and T is a threshold that eliminates noise influence. The symbol b c denotes that
the enclosed quantity is equal to itself when its value is positive and zero otherwise. Based on the
measure, Kovesi presented a highly localized feature detector whose responses are invariant to image
contrast [36], which consists of the following steps:

(1) Compute the moment analysis equations at each point in the image as follows:

A = ∑ (PC(θ) cos(θ))2, (3)

B = 2∑ (PC(θ) cos(θ)) · (PC(θ) sin(θ)), (4)

C = ∑ (PC(θ) sin(θ))2, (5)

where PC(θ) refers to the phase congruency value determined at orientation θ.
(2) The minimum moment matrix m and principal axis matrix Φ are given by

m = (C + A−
√

B2−(A−C)2)/2, (6)

Φ = atan(B, A−C)/2. (7)

If the minimum moment of phase congruency is still large, then it means that the point should
be marked as a ‘corner’. The principal axis, corresponding to the axis about which the moment is
minimized, provides an indication of the orientation of the feature. Thus, the minimum moment is
used for detecting the feature points, and the principal axis matrix is used to guide the construct of the
structural feature image in Section 3.2.
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Therefore, the SFP extraction (MSFPE) based on salient ranking can be expressed as follows:

(1) Compute the minimum moment matrix m at each point in the input image using (2)–(6).
(2) To ensure the significance of feature points, candidate feature points FP are obtained by

filtering m:
FP = {(x, y)|m(x, y) >}, (8)

where Th = mean(m > 0.1) is the mean of values that are larger than 0.1 and adaptive to
matrix m.

(3) To make the feature points distributed uniformly, we extract MFP from FP by using
non-maximum suppress in the neighborhood of (x, y):

MFP =

{
(x + p̂, y + q̂)| argmax

p,q∈[−2,2]
(m(x + p, y + q))

}
. (9)

(4) The significance ranking space is built by sorting the positions in MFP according to corresponding
value in m from maximum to minimum.

(5) The top N of significance ranking space are selected as SFP.

In the above algorithm, the non-maximal suppression over a 5 × 5 neighborhood of a candidate
feature point is adopted to ensure the uniform distribution of feature points. An example for feature
points extraction using MSFPE is shown in Figure 3. It can be seen that the feature points are not only
significant, but also distributed uniformly in the whole image.

Figure 3. Feature points detection by the method of salient feature points extraction (MSFPE).

3.2. Maximally Stable Phase Congruency Descriptor

Salient feature points indicate that there are significant features around them. Hence, to improve
the robustness of feature matching, the description for structural features centered on the feature
points in an image is necessary. Consequently, a method of construction for structural features using
multi-orientation phase congruency is proposed, and the generation of the MSPC descriptor based on
the structural features is developed in this section.

3.2.1. Structural Features Extraction

The calculation model of phase congruency was improved by Kovesi [35] using Log-Gabor
wavelets over multiple scales and orientations. To make full use of multi-orientation phase congruency,
we construct the structural features from multiple phase congruency images over orientations
according to the principal axis information. The detailed calculation steps of the structural features
extraction (SFE) are shown as follows:

(1) Compute n different phase congruency images PCθ with θ ∈ OTS and the principal axis matrix
Φ from the input image using (2)–(7).

OTS = {(i− 1) ∗ π/n, i = 1, . . . , n}. (10)
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(2) To embody the significance of structural features over the image maximumly, structural features
image (SFI) is constructed from different PCθ according to the principal axis matrix Φ. The value
at (x, y) in SFI can be expressed as follows:

SFI(x, y) = PC
θ̃
(x, y), (11)

where
θ̃ = argmin

θ∈OTS
|Φ(x, y)− θ|, (12)

where PC
θ̃

is the phase congruency image corresponding to θ̃.

In the algorithm above, each value of SFI is from a special matrix PCθ, and θ is the closest
orientation to the corresponding value in Φ, which ensures that each point of SFI has a maximum
response in all orientations. The construction of structural features can be seen in Figure 4.

Figure 4. Structural features extraction using multi-orientation phase congruency.

3.2.2. Affine Invariant Structural Descriptor

In order to produce an affine invariant descriptor for a feature point, the coarse shape of the region
to be described centered on the feature point should be estimated first. Similar to SIFT [24], the coarse
shape can be determined by the feature point’s scale and orientation, which can be computed by the
responses of Log-Gabor wavelets over multiple scales and orientations.

In frequency domain, the Log-Gabor function is defined as

g(ω) = exp (
−(log(ω/ω0))

2

2(log(σω/ω0))
), (13)

where ω0 is the central frequency, and σw is the related width parameter. Let I denote the image,
LGe

n,θ and LGo
n,θ denote the even-symmetric and odd-symmetric component of Log-Gabor function

at the scale n and orientation θ, respectively. The responses of each quadrature pair of filters can be
expressed as

[en,θ(x), on,θ(x)] = [I(x) ∗ LGe
n,θ, I(x) ∗ LGo

n,θ]. (14)

The values en,θ(x) and on,θ(x) can be regarded as real and imaginary parts of a complex valued
frequency component. The amplitude and phase of the responses at the scale n and orientation θ are
given by

An,θ(x) =
√

en,θ(x)
2 + on,θ(x)

2, (15)

fn,θ(x) = atan(en,θ(x), on,θ(x)). (16)

The orientation for a point x in phase congruency is defined as

F(x) = ∑
θ

∑
n

en,θ(x), (17)
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H(x) = ∑
θ

∑
n

on,θ(x), (18)

Φ(x) = atan(F(x), H(x)). (19)

We can see that the results computed by (7) and (19) are the same. The coarse scale of a point x
can be obtained based on the responses of Log-Gabor filters, along with its orientation over scales in
phase congruency, which can be computed as follows:

σ̃(x) = argmax
n∈{1,2,...N}

An,θ̃(x), (20)

where θ̃ can be computed by (12) and is the closest orientation θ to the corresponding value in Φ(x).
Based on the coarse scale and orientation of a feature point x, the coarse rectangle shape of its
neighborhood can be estimated by

[R_size(x), R_ang] = [Initial_size ∗Mul_factor̂σ̃(x), Φ(x)], (21)

where R_size(x) is a two-dimensional (2D) vector that contains the length and width of the rectangle,
R_ang is the rotation angle, Initial_size is a given minimum size, and Mul_factor is the scaling factor
between successive Log-Gabor filters.

Because the scale of the feature point is approximate, the rectangle neighborhood is also imprecise.
Consequently, the fine ellipse region of a feature point is further obtained by MSER on the estimated
coarse rectangle neighborhood from SFI according to (21), which is the definitive description area
for the point and affine invariant in image content. Structural features computed by (11) indicate
the degree of phase congruency in some orientations; however, they cannot represent the significant
directions of feature variation [9]. Thus, it is insufficient to use only the amplitude of phase congruency
to construct robust feature descriptors. Therefore, we use orientated phase congruency that is weighted
by the amplitude of structural features to compute the descriptors. The construction process of the
maximally stable phase congruency (MSPC) descriptor can be expressed as follows.

(1) Compute the scale and orientation by using (14)–(20) for each feature point extracted by MSFPE.
(2) Estimate the coarse rectangle shape of the feature point’s neighborhood by (21).
(3) Get the fine ellipse region E for the feature point by applying MSER to the coarse rectangle region

on SFI obtained by (11).
(4) Normalize the ellipse region E to a circle region C according to the long axis to ensure the affine

invariance of the descriptor.
(5) Calculate the weighted statistical histogram with four orientations distributed in (00 − 1800) by

structural feature values in the circle region C, in which, the weight of a certain orientation θ can
be computed as follows:

C(θ) = {(x, y)|abs(Φ(x, y)− θ) ∈ [0,π/4)}, (22)

W(θ) = ∑
(x,y)∈C(θ)

SFI(x, y). (23)

(6) The orientation histogram is normalized as a descriptor by

Des = hi

/√√√√ 64

∑
i=1

hi . (24)

In the algorithm above, a circle region is divided into 4 × 4 small regions, and each small region
is computed in four directions. Therefore, a circle region can be described as a vector of 64 dimensions.
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In the process of description, we use both the orientation and amplitude of the phase congruency to
compute the descriptor in the ellipse region detected by MSER, which can effectively describe the
feature distribution in the orientation and strength of phase congruency and make the descriptors to
be affine invariant. The construction example of the descriptor is shown in Figure 5. From that, we can
see the descriptor is robust against contrast and geometrical distortion.

Figure 5. The construction of the maximally stable phase congruency (MSPC) descriptor from
input images. (a) Original patches around the feature points; (b) Rectangle regions from structural
features image (SFI) according to the scales and orientations of the feature points; (c) Fine ellipse regions
detected by maximally stable extremal regions (MSER) based on the rectangle regions; (d) Normalized
circle regions relate to the ellipse regions; (e) MSPC descriptors constructed in the circle regions.

3.3. Registration Using the MSPC Descriptor

After the extraction of salient feature points and the construction of the MSPC descriptors were
presented in Sections 3.1 and 3.2, the method of registration for infrared and visible images based on
those feature points and descriptors is proposed in this section.

The flow chart of the registration algorithm is shown in Figure 6, and the details are described
as follows.

(1) Compute the phase congruency images using Log-Gabor filters over the scales and orientations
from infrared and visible images, respectively.

(2) Extract the salient feature points based on the moment analysis of the phase congruency images
by the MSFPE algorithm proposed in Section 3.1.

(3) Construct the structural features using the multi-orientation phase congruency by the SFE
algorithm presented in Section 3.2.

(4) Generate the descriptors for the salient feature points using the construction algorithm of the
MSPC designed in Section 3.2.

(5) Find the matching points via the minimization of the Euclidean distances between the descriptors
and refine the matching with random sample consensus (RANSAC).

(6) Obtain the transformation from the matching and achieve the image registration.

In the registration algorithm above, the affine transformation model is used for describing the
geometric distortion between the input images, which can be expressed as follows: X

Y
1

 =

 a b e
c d f
0 0 1

 ·
 x

y
1

, (25)

where a, b, c and d are the combination of scale, rotation, stretch, and twist, and e and f are the
translation in the horizonal direction and vertical direction, respectively. (x, y) and (X, Y) are the
coordinates of the corresponding points in the input images. The transformation parameters are
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estimated by applying the least squares on the corresponding point pairs in our algorithm. In addition,
the significance of the feature points is ensured by minimum moment analysis and significance ranking.
Affine and contrast invariance of the descriptors is guaranteed by the scale and orientation of the
feature points and MSER detection. Therefore, the proposed algorithm can achieve good performance
for infrared and visible images with significant contrast changes and large geometric deformation,
which will be seen in Section 4.

Figure 6. Flow chart of the proposed registration.

4. Experimental Results and Analysis

To test our method in terms of validity and efficiency, three different sets of images were used
in comparative and evaluative experiments in this section. There were four infrared and visible pairs
from computer vision center (CVC) datasets in the first set, which are used to evaluate the matching
performance of the proposed method via a comparison with multimodal-SURF (MM-SURF) [27], fast
visual salient and descriptor-rearranging (FVS-DR) [28], local frequency information (LFI) [31], MRSLD [21],
and HOPC [10]. The second image set contained 300 image pairs captured from electro-optical pod
(EOP) on unmanned aerial vehicle (UAV) with discontinuous focus length change from 25 to 300 mm in
a mid-wavelength infrared camera and from 6.5 to 130.2 mm in a visible camera. Those remote sensing
images were used to test the validity of our method for registration with significant contrast change
and large geometric distortion. Several registration results of our method have been given, and the
corresponding registration errors have been compared with those of the related methods. The third image
set contained one large Google image and 40 infrared images captured from EOP on UAV, which are used
to confirm the practicability of the proposed method in trajectory tracking.

For evaluating the matching performance, precision and repeatability are employed, which can
be expressed as follows:

Precision =
NCM
NTM

, (26)

Repeatability =
NCM

min(NFPref, NFPsen)
, (27)

where NCM and NTM are the number of correct matched and total correct matched point pairs,
respectively, and NFPref and NFPsen are the number of feature points extracted from the reference and
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sensed image, respectively. For each feature point in the reference image, we compare its mapped
point with the corresponding point in the sensed image. If the Euclidean distance is less than 3 pixels,
the match is considered to be correct.

To assess the registration results, root-mean-square error (RMSE) is used in the overlapped area
between the reference image and the transformed sensed image, which is calculated as follows:

RMSE =

√
(Xr

i − Xts
i )

2
+ (Yr

i − Yts
i )

2/N, i = 1, . . . , N, (28)

where (Xr
i , Yr

i ), (X
ts
i , Yts

i ) are the coordinates of pixels in the reference image and the transformed
sensed image, respectively, and N is the number of pixels in their overlapped area.

4.1. Comparative Experiments

To evaluate the matching performance of the proposed method, four multimodal stereo image pairs
from CVC datasets were used to compare with the related methods presented in [10,21,27,28,31] in terms of
precision and repeatability. The set of image pairs with size of 506×408 are shown in Figure 7, which have
large difference in contrast and small viewpoint changes. Matching results using the proposed method
for the image pairs in Figure 7 are shown in Figure 8. It can be seen that our method obtained a good
matching when significant difference contrast occurs in the image pairs. In addition to LFI, the other five
methods belong to local feature matching and contain the feature points detection steps. To compare the
proposed method with LFI conveniently, the feature points are extracted by the Harris corner detector first,
and then, the matching of regions is computed by LFI. The precision and repeatability of the matching
results of different methods are shown in Table 1. From that, we can see that the proposed method has
better performance than the other five related methods. The average precision of the proposed method for
the four image pairs is 93.32%, which is 5.79%, 10.43%, and 14.30% higher than that of HOPC, MRLSD,
and LFI, respectively. This is mainly due to the affine and contrast invariance of the MSPC constructed by
the proposed method. The average precision of both MM-SURF and FVS-DR is less than 75%, which is
due to the fact that simple intensity symmetry or reversal cannot eliminate the difference in contrast
completely. The average repeatability of our method for the four image pairs is 33.30%, which is 5.88%,
6.02%, and 10.64% higher than that of HOPC, MRLSD, and LFI respectively. This advantage is attributed
to the great significance of the extracted feature points in sequence and the high communization of the
constructed structural features in the proposed method.

Table 1. Matching performance of the related methods in Figure 8.

Image Pairs MM-SURF FVS-DR LFI MRLSD HOPC Our Method

Precision

(a) 40.72 75.36 80.22 85.58 87.13 91.85
(b) 35.14 77.81 82.56 88.72 93.37 97.78
(c) 22.31 73.30 77.28 82.15 91.26 96.65
(d) 9.84 69.81 75.95 78.31 81.54 90.21

Repeat-ability

(a) 10.83 20.48 28.47 35.19 32.24 39.60
(b) 5.77 14.63 25.23 33.64 35.79 42.80
(c) 3.23 11.12 21.41 20.33 23.82 26.00
(d) 2.18 6.42 15.52 19.97 17.82 24.80

Figure 7. Cont.
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Figure 7. (a–d) are different infrared and visible image pairs from CVC datasets.

Figure 8. Matching results using the proposed method for Figure 7. (a–d) are the matching results of
the Figure 7a–d respectively.

4.2. Validity Verification Experiments

To test the validity of the proposed method, the second set of images captured from EOP on UAV
were used in this section. Those images not only have scale differences caused by focus length changes,
but also have a variety of scenes with infrared and visible images with size 1024×768 and 640×512,
respectively, and several examples are shown in Figure 9. From that, we can see that (a), (b), (c), and (d)
have focus length changes of the visible camera with different scenes, while that of infrared camera
keeps to 25 mm. Figure 9e and f have focus length changes of the infrared camera with different scenes,
while that of visible camera keeps to 130.2 mm. The six image pairs not only contain large geometric
changes, but also have significant differences in contrast.

To ensure the attainment of salient structural features, eight orientations are adopted for different
phase congruency images, and Th = 0.1 is used to filter the minimum moment image in feature
points extraction. Figure 10 shows the matching results of the image pairs in Figure 9 by using the
proposed method. In those image pairs, we consider the image that has the larger field of view as
the reference image and the other one as the sensed image. It can be seen from those results that
the proposed method can achieve good performance whether images have rich texture information
(Figure 9a,c,d) or not (Figure 9e,f). In particular, in blurry situations (see Figure 9b) and with large
differences in scale (Figure 9e), the proposed method can still get enough correct matching point pairs,
while several of the state-of-art methods failed in those cases. For example, MRLSD failed for Figure 9b
due to the fact that there are not enough lines to be extracted from the images. MM-SURF and FVS-DR
failed for Figure 9e,f, because they cannot get the robust feature descriptors for textures. HOPC failed
for Figure 9e as result of the large geometric changes in the image pairs.
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Figure 9. (a–f) are the samples of image pairs captured from electro-optical pod (EOP) on UAV.

Figure 10. Cont.
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Figure 10. Matching results by the proposed method for Figure 9. (a–f) are the matching results of the
Figure 9a–f respectively.

The matching performance of the proposed method compared with MM-SURF, FVS-DR, LFI,
MRLSD, and HOPC are shown in Figure 11. From those results, we can see the proposed method
outperforms the other methods both in precision and repeatability. The average precision of our method
is higher than 89%, and the average repeatability is higher than 37%, while the average precision and
repeatability of the best performances in the other methods are lower than 85% and 33% (failures are
not calculated), respectively, which is because of large difference in scale and contrast between the
input images. The proposed method can achieve better performance, even in the cases where other
methods are invalid for Figure 9b,e,f. In addition to our method, both MRLSD and HOPC achieve
better performance (except for the failure case) than the rest of the methods due to the fact that they
use phase congruency information and structural features in the feature description. However, linear
features do not always exist in the images (Figure 9b) that result in the failure of MRLSD. HOPC cannot
deal with large geometric changes, so it failed for Figure 9e. LFI uses the differences of features as the
similarity measure directly, which resulted in a matching performance that was worse than our method.
Although FVS-DR and MM-SURF have a certain tolerance for geometric changes, they are less able to
deal with differences in contrast based on the reversal or symmetry of intensity; therefore, they had
a worse matching performance than the proposed method.

Figure 11. Comparison of matching performance by the related methods. (a) is the matching precision
for the six image pairs in Figure 9 by the related methods; (b) is repeatability for the six image pairs in
Figure 9 by the related methods.
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The registration results of using the proposed method for the image pairs in Figure 9 are shown in
Figure 12. It can be observed that our method achieves good performance whether the infrared image
is used as a reference or not, which indicates that our method is robust against the changes in geometry
and contrast. The RMSE of the registration results of using different methods are given in Table 2,
where MM-SURF and FVS-DR failed for Figure 10e and f and MRLSD and HOPC failed for Figure 10b,e,
respectively, because they could not get enough correct matched point pairs. The proposed method
can not only achieve the registration of all the image pairs, but also make the average RMSE less
than 2 pixels. Furthermore, the average RMSE in the registration of the second set with 300 images is
1.8 pixels, which is acceptable for practical application.

Figure 12. Registration results by the proposed method for Figure 9. (a–f) are the registration results of
the proposed method for Figure 9a–f respectively.

Table 2. Root-mean-square error (RMSE) of registration results of the related methods in Figure 9.

Image Pairs MM-SURF FVS-DR LFI MRLSD HOPC Our Method

(a) 2.61 2.44 3.54 1.57 2.11 0.82
(b) 3.36 2.88 2.72 —- 3.63 1.23
(c) 4.68 3.39 3.66 2.35 4.55 0.76
(d) 3.97 3.73 4.19 2.56 4.62 0.58
(e) —- —- 5.57 3.12 —- 1.37
(f) —- —- 4.81 3.38 2.26 1.41

Moreover, the experiments are implemented on computer with Intel Core i7-4810MQ CPU at 2.80
GHz, and the average registration times achieved by the related methods for the six image pairs in
Figure 9 are shown in Table 3. From that, we can see that the run time of the proposed method is
moderately fast, but the registration performance is significantly improved compared with the other
related methods.

Table 3. Average time of registration by the related methods in Figure 9.

Method MM-SURF FVS-DR LFI MRLSD HOPC Our Method

Run time 0.8S 1.85S 2.8S 2.5S 15.8S 2.1S
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4.3. Applied Experiments

Finally, we apply the proposed method to UAV trajectory tracking via the registration of the
real-time images and the reference image. The real-time images were captured by EOP on UAV, and the
reference image was downloaded from Google. To achieve fast registration, the sub-images (300×300)
from the real-time images were used to search the matching on the reference image. The reference
image (with 1.5 m resolution) is shown in Figure 13, and samples of the sub-image from the real-time
images are shown in Figure 14. From that, we can see there are large geometric changes and significant
contrast differences existing in those images.

Figure 13. Reference image download from Google.

Figure 14. Samples of the sub-images from the real-time images.

Several registration results of samples are given in Figure 15. We can see that the proposed
method can deal with large geometric changes, significant differences in contrast, and variance in
some structures. The tracking results are shown in Figure 16. It can be seen that the trajectory can
be tracked precisely and steadily. In the process of trajectory tracking, the registration time can be
shortened to 230 ms when the number of feature points is reduced to 150, which is acceptable in
this application. The average RMSE of the registration results is less than 2 pixels, which equals that
when the error of tracking is no more than 3 m. Therefore, the proposed method has the potential for
practical application.
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Figure 15. Several registration results of the samples in Figure 14 and the sub-regions of the reference
image in Figure 13.

Figure 16. UAV trajectory tracking results of our registration method.

5. Conclusions

In this paper, a robust registration method for infrared and visible image using structural features
extracted based on phase congruency is presented. The main contribution of the proposed method
is the development of a novel affine and contrast invariant descriptor (MSPC). MSPC firstly uses
moment ranking analysis to detect feature points, and then describes structural features by using
orientated phase congruency in the regions detected by MSER. Several groups of infrared and visible
pairs were used to test the validity and practicality of the proposed method. The experimental
results show that our method outperforms several state-of-the-art methods in terms of matching
performance and RMSE of registration and also demonstrate its effectiveness in the application of UAV
trajectory tracking. For the more than 300 infrared and visible images captured by UAV, the average
RMSE of the registration results of the proposed method was less than 2 pixels, which is acceptable for
practical application.

Improving the speed of the proposed method and implementing it in the embedded environment
is the direction of our future work.
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