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Abstract: Landsat time series commonly contain missing observations, i.e., gaps, due to the orbit
and sensing geometry, data acquisition strategy, and cloud contamination. A spectral-angle-mapper
(SAM) based spatio-temporal similarity (SAMSTS) gap-filling algorithm is presented that is designed
to fill small and large area gaps in Landsat data, using one year or less of data and without using
other satellite data. Each gap pixel is filled by an alternative similar pixel that is located in a
non-missing region of the image. The alternative similar pixel locations are identified by comparison
of reflectance time series using a SAM metric revised to be adaptive to missing observations. A time
series segmentation-and-clustering approach is used to increase the search efficiency. The SAMSTS
algorithm is demonstrated using six months of Landsat 8 Operational Land Imager (OLI) reflectance
time series over three 150 × 150 km (5000 × 5000 30 m pixels) areas in California, Minnesota and
Kansas. The three areas contain different land cover types, especially crops that have different
phenology and abrupt changes due to agricultural harvesting, which make gap filling challenging.
Fillings on simulated gaps, which are equivalent to 36% of 5000 × 5000 images in each test area,
are presented. The gap filling accuracy is assessed quantitatively, and the SAMSTS algorithm is
shown to perform better than the simple closest temporal pixel substitution gap filling approach
and the sinusoidal harmonic model-based gap filling approach. The SAMSTS algorithm provides
gap-filled data with five-band reflective-wavelength root-mean-square differences less the 0.02, which
is comparable to the OLI reflectance calibration accuracy.
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1. Introduction

Since the free availability of Landsat data, there has been a rapid increase in the use of Landsat
data for time series analyses, typically for change detection, but also for classification and biophysical
parameter retrieval [1,2]. The Landsat satellites provide the longest, 45+ years, moderate spatial
resolution record of the terrestrial surface. Since the 1982 launch of Landsat 4, each Landsat mission
has acquired 30 m data with a 16-day repeat cycle and, for extended periods, there have been two
Landsat satellites in orbit nominally providing an eight-day repeat cycle [3]. Landsat data are provided
in a global path/row World Reference System (WRS-2), and each approximately 180 × 180 km
WRS-2 path/row location is overpassed by a Landsat sensor 22 or 23 times per year [4]. However, a
number of sensor, ground station and data communication issues, and variable mission acquisition
strategies, reduce the acquisition frequency [3,5–7]. These effects, combined with cloud obscuration
at the time of Landsat overpass [8,9], result in Landsat reflectance time series that have missing
observations at various aperiodic times of any year.
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Gap filling of reflectance satellite time series is complex because of a number of factors, including
surface cover and condition changes, residual clouds, shadows, atmospheric contamination, and
temporal reflectance variations caused by surface reflectance anisotropy and directional illumination
and viewing variations [10–12]. Landsat-specific methods that fill gaps at individual acquisition
dates have been developed. For convenience, they are categorized as temporal interpolation (TI) and
alternative similar pixel (ASP) gap filling approaches and are reviewed in Section 2.

In this paper, a new ASP gap filling algorithm, which is designed specifically to fill large gaps
in Landsat data and work reliably over complex (spatially- heterogeneous and temporally dynamic)
surfaces and using one year or less of Landsat data, is described and demonstrated. It uses a
similarity metric based on a form of the spectral-angle-mapper (SAM) metric that is adaptive to missing
observations in time series and has been demonstrated over temporally-dynamic agricultural areas [13].
It searches for alternative similar segments using a time-series-based segmentation-and-clustering
method, and the ASP search window size is not spatially constrained, which makes it suitable for
large-area gap filling. The proposed SAM based spatio-temporal similarity (SAMSTS) gap-filling
algorithm is demonstrated using 26 weeks (i.e., six months) of Landsat 8 time series data projected
into a tiled georeferenced coordinate system. Three 150 × 150 km (5000 × 5000 30 m pixels) test areas
over agricultural regions in Minnesota, Kansas and California are considered, which include various
crops and other land cover types, including grassland, shrub, forest and urban areas. Simulations
removing different pixel areas followed by gap-filling are undertaken to provide insights into the
gap-filling algorithm performance. The results are compared qualitatively and quantitatively with
the more-straightforward closest temporal pixel substitution gap filling approach and the sinusoidal
harmonic model temporal interpolation gap filling approach.

2. Satellite Gap-Filling Literature Review

Methodologies to “fill” gaps in satellite-retrieved reflectance time series were developed initially
for systematically-acquired coarse-resolution satellite data acquired by the Advanced Very High
Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS)
that provide near-daily global coverage due to their polar low earth orbit and wide (110◦) field of view.
Compositing procedures were developed to provide reflectance and vegetation index datasets that
represent the surface over consecutive n-day time periods [14–16]. Compositing approaches have also
been developed for Landsat data, but are typically less reliable because the cloud-free observation
frequency is lower than provided by near-daily coarse resolution polar orbiting satellite data [17–19].
Compositing approaches that invert a bi-directional reflectance distribution function (BRDF) model
against n-days of reflectance observations to estimate the reflectance at nadir view and for a consistent
solar zenith have been developed as well [20,21]. However, these more physically-based compositing
approaches do not work reliably with Landsat data because of the narrow (15◦) Landsat field of view
that precludes representative sampling of the surface BRDF [22,23].

Coarse-resolution satellite data have been used to help fill gaps in Landsat time series.
For example, Roy, D.P. et al. [24] developed a semi-physical fusion approach that used the MODIS
BRDF 500 m product to predict 30 m Landsat spectral reflectance for a desired date. Other empirical
approaches have been developed based on the spatial and temporal adaptive reflectance fusion
model (STARFM) that blends 16-day 30 m Landsat with near-daily or daily 500 m MODIS data
to generate synthetic daily Landsat-like 30 m reflectance data [25]. These include methods that
are somewhat adaptive to land surface change such as the spatial temporal adaptive algorithm for
mapping reflectance change [26], and the spatial and temporal data fusion approach (STDFA) [27].
The enhanced STARFM [28] was developed to handle complex and heterogeneous landscapes by
incorporating spectral unmixing and has been demonstrated over agricultural areas [29–31]. However,
coarse-resolution satellite data that may not always be available or cloud-free, for example, prior to the
launch of MODIS in 1999, global coverage near-daily coarse-resolution data suitable for gap-filling
Landsat are not available.
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Temporal interpolation (TI) gap-filling approaches have been developed that fit time series statistical
models to predict reflectance or vegetation index values on a given day. Linear, logistic, or sum of
sinusoidal models have been used [32–39]. The model fits are conducted on individual pixel time series.
Model fitting is sensitive to the quality, number of available observations, and the seasonality of missing
observations. TI methods are typically less reliable for surfaces that have abrupt changes, for example,
due to land cover change, flooding, fire, or for surfaces with complex phenology, such as double or triple
agricultural cropping [35,40,41]. Time series change detection methods that account for both abrupt and
gradual trends in coarse spatial resolution data have been developed [41], but are less well suited for
Landsat application as they require a higher observation frequency than provided by Landsat.

The ASP gap-filling approach fills a gap pixel with the values of one or more alternative pixels
selected from non-missing pixels found usually in the same image. Alternative similar pixel locations
are identified from a reference image that may be the same, a previous, or a subsequent image that
has no gap at the location to be filled [42–50]. The ASP method was first developed to fill gaps in
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images introduced by the Scan Line Corrector (SLC)
failure that occurred in 2003. Landsat 7 ETM+ images with the SLC failure, usually referred to SLC-off
images, have 22% less ETM+ image pixels with missing wedge-shaped gaps [5]. The earliest ASP
approach used a segmentation map generated from a pre-2003 Landsat 7 ETM+ image without gaps
that was overlain on the spatially-coincident SLC-off image [42]. For each band, the missing pixel values
were replaced by the majority non-missing pixel values falling in the segment from the same SLC-off
image. This was later improved by using a multi-scale segmentation [43]. The strength of this approach
is that the gaps are filled with coincident spectral values from the same Landsat image. However,
it requires a segmentation that should reflect the surface conditions of the image to be gap filled, which
is difficult to obtain everywhere and for all times, and so this is not usually a reliable method. Other
ASP methods find alternative similar pixels in local search windows centered on the gap pixel location.
For example, Pringle et al. [44] derived the gap pixel value by kriging alternative similar pixel values
and locations in the gap image, and also by co-kriging the alternative similar pixel values in both the gap
image and previous and/or subsequent reference image(s) when insufficient alternative similar pixels
were available. Similarly, Chen et al. [45] derived the gap pixel value as the weighted average of the
alternative similar pixels on the gap image. The weight was determined by the spatial distances of each
alternative similar pixel to the gap pixel location and the root-mean-square difference of the alternative
similar pixel values in the gap image and the reference image. More recent approaches have used
Landsat time series. Malambo and Heatwole [49] described a pixel-time-series-comparison-based ASP
method to estimate missing spectral-index data and provide gap filling under both gradual and abrupt
surface change conditions. They used Landsat time series of a spectral index suitable for burned area
discrimination, and alternative similar pixels were identified using a similarity metric that measured the
maximum difference between two pixels’ index time series after removing their mean index difference.
The filling was conducted iteratively within a search window no more than 41 pixels around the gap
pixel location, with gaps progressively “eroded” until they were completely filled. Other researchers
have noted that progressive filling in this manner may propagate filling errors and so is less suitable for
filling spatially-extensive gaps with heterogeneous land covers [50–52].

Large gaps frequently occur in Landsat time series due to extensive regions of cloud obscuration [8,9]
and swaths of missing observations caused by the Landsat sensing and orbit geometry [53]. Development
of gap-filling methods that can fill large gaps is expected to be particularly difficult over heterogeneous
and rapidly-changing areas. Heterogeneous areas have a greater likelihood of containing pixels with
fewer available alternative similar pixels [43,47]. For example, adjacent agricultural fields may contain
the same crop, but may have a variety of spatial surface variations associated with soils, drainage,
irrigation, topography, sowing, harvest date, and growth stage differences that are evident at moderate
resolution [54,55]. Similarly, if time series reference data are used, then the reference images are less likely
to be similar to the image to be gap filled if the surface land cover and/or condition changes [26,28].
Despite these issues, the ASP approach does not require contemporaneous coarser resolution satellite
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data that may not be available or cloud-free. Further, unlike TI approaches, the ASP approach makes
no assumptions concerning the surface temporal variation and does not require long-term (i.e., annual
or multiple year) time series. These observations motivate the SAMSTS algorithm that uses an ASP
approach and is described below.

3. Data

3.1. Landsat 8 Data

Landsat 8 Operational Land Imager (OLI) data, which were processed in a similar manner to the
recently-available Landsat Analysis Ready Data (ARD) data [56], were used in this study. Images for
26 weeks (six months) sensed from 28 April to 26 October 2013 were used. The reflectance band data
were converted to surface reflectance using the established Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) code that uses aerosol characterizations derived independently from
each Landsat acquisition and assumes a fixed continental aerosol type and uses ancillary water vapor
data [57]. The Landsat 8 quality assessment band was used to liberally remove cloud-contaminated
pixels, defined in this study as medium and high confidence cloud pixels and high confidence cirrus
pixels. The Landsat 8 OLI data are acquired over a 15◦ field of view and so small bi-directional
reflectance effects (due to viewing and solar geometry variations and surface reflectance anisotropy)
are present [23,58], but they were not corrected for in this study. Only the OLI surface reflectance for
the green (0.56 µm), red (0.66 µm), near-infrared (NIR) (0.87 µm), and two shortwave infrared (SWIR)
(1.61 µm and 2.20 µm) bands were used; the shorter wavelength Landsat 8 OLI blue bands were not
used because atmospheric correction is considerably less reliable at shorter blue wavelengths [59,60].

Gridded atmospherically-corrected weekly Landsat 8 OLI data were generated using the
Web-Enabled Landsat Data (WELD) processing system [17]. The WELD data are defined in the
Albers Equal Area projection in 5000 × 5000 30 m pixel tiles, which was adopted to generate the
ARD [56,61]. These data have been used previously for large-area time series land cover and surface
change mapping applications [62–66]. At CONUS latitudes, the sensed Landsat 8 image swaths do not
spatially overlap in any calendar week [53]. In the weekly CONUS WELD time series, like the ARD,
a fixed pixel location may be sensed seven or nine days apart due to the orbit and sensing geometry.

3.2. Cropland Data Layer

The United States Department of Agriculture (USDA) National Agricultural Statistics Service
(NASS) Cropland Data Layer (CDL) product was used to provide insights into the results and to
understand the land surface dynamics in terms of the dominant land cover classes. The CDL is
generated annually using moderate-resolution satellite imagery and extensive agricultural ground
truth via a supervised non-parametric classification approach. It defines about 110 land cover and crop
type classes at 30 m for all the CONUS in the same Albers Equal Area conic projection as the WELD
data and the ARD [67,68]. The CDL for 2013 was used as it is the same year as the Landsat 8 OLI data
used in this study and was obtained from [69].

4. Test Areas

Three WELD/ARD 150 × 150 km (5000 × 5000 30 m pixel) tiles located in California, Minnesota
and Kansas were selected as test areas. The tiles are representative of different land cover types
(Figure 1) with seasonally dynamic and different land covers (Figure 2), and have representative
amounts of missing data including large spatial gaps (Table 1). The California tile (Figure 1a) is in
Northern California, encompassing Colusa and San Joaquin counties, and has the greatest number of
land cover classes, but relatively less pronounced phenological variations due to its more temperate
climate. The Minnesota tile (Figure 1b) encompasses the southwest corner of Minnesota and parts of
Northern Iowa. The Kansas tile (Figure 1c) is in the southwest of Kansas and encompasses parts of
Northern Oklahoma. The Minnesota and Kansas tiles are predominantly agricultural and are located
in the U.S. corn belt [70,71] and wheat belt [72], respectively.
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Figure 1. The locations of the three WELD/ARD 150 × 150 km (5000 × 5000 30 m pixel) test tiles
and the corresponding 2013 CDL data. (a) California (38.22991560◦ to 39.16110308◦N, 120.67484015◦

to 122.81778573◦W, WELD tile h02v08/ARD tile 002008) main CDL classes are grassland/pasture
(24.2%), forest (13.5%), shrub/scrub (11.9%), developed (11.3%), rice (6.4%), fallow/idle cropland
(5.8%), water (3.0%), grapes (2.9%), herbaceous wetlands (2.5%), alfalfa (2.4%), and corn (2.0%);
(b) Minnesota (43.36640358◦ to 44.72180606◦N, 94.33364760◦ to 96.19691668◦W, WELD tile h17v06)
main CDL classes are corn (44.7%), soybean (31.9%), grassland/pasture (6.6%), developed (5.9%),
and herbaceous wetlands (5.0%); (c) Kansas tile (36.62626467◦ to 37.90044279◦N, 99.56286386◦ to
101.34813598◦W; WELD tile h13v12) main CDL classes are grassland/pasture (49.1%), winter wheat
(18.7%), fallow/idle cropland (8.5%), corn (8.4%), sorghum (7.3%), and developed (4.0%). The red
square in (c) shows the location of a 15 × 15 km (500 × 500 30 m pixel) area subset for detailed gap
filling demonstration described in Section 7.1. Please refer to Figure 2 for the CDL color legend.

Figure 2. Cont.
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Figure 2. Mean CDL class-specific weekly (weeks 18–43, 2013) NDVI values derived from the three
WELD/ARD test tiles (Figure 1) California (top), Minnesota (middle), and Kansas (bottom). Only
values for the CDL classes that cover more than 2% of the tile are shown. Weeks with no data are not
illustrated, but the plotted lines are shown dashed.

Table 1. Summary of missing weekly pixel observations (26 weeks from 28 April to 26 October 2013) in
the three test tiles. Note that in the same week different Landsat-8 orbits can overpass the eastern and
western sides of a 5000 × 5000 30 m tile.

Test Sites

Number of weeks
(Out of 26) with at Least
One Valid 30 m Pixel (n)

in the Study Area

Percentage of Missing
WELD Tile 30 m Pixel
Observations over the

26 Weeks

Percentage of Missing
Weekly WELD Tile 30 m

Pixel Observations
Computed over the n Weeks

California 22 47.5% 40.6%
Minnesota 22 54.2% 45.9%

Kansas 20 46.2% 30.1%

Figure 2 illustrates the mean weekly Normalized Difference Vegetation Index (NDVI) for the
major CDL classes in each test area. Phenological variations among the CDL classes occur due to
a number of factors, including geographic location, weather and site conditions, crop planting and
harvesting dates, and land cover differences. The NDVI profiles typically have unimodal distributions
with pronounced spring and summer NDVI peaks. In the California tile, except for the CDL corn and
rice classes, there is relatively less pronounced phenological variation. The summary values illustrated
in Figure 2 do not clearly reflect gaps, except for weeks 18, 20, 23, and 39 (California), weeks 21, 22,
24, and 34 (Minnesota), and weeks 19, 21, 25, 32, 37, and 42 (Kansas), when there were no Landsat
acquisitions due to the location of the tiles relative to the Landsat 8 ground track.

Table 1 summarizes the number of missing pixel observations (i.e., cloudy or not sensed) over the
three tiles for the 26 weeks of 2013. The left column summarizes the number of weeks with at least one
valid 30 m pixel in the tile, denoted by n. The percentage of missing weekly 30 m pixels is summarized
in two ways: as the sum of the number of missing 30 m pixels observations in each weekly tile divided
by the product of 26 and the tile spatial dimensions (Table 1, middle column); and as the sum of the
number of missing 30 m pixels observations in each weekly tile divided by the product of n and the
tile spatial dimensions (Table 1, right column). Over the 26 weeks, about 50% of the study area data
were missing but, when considering only those weeks with at least one valid pixel, the percentage is
41% (California), 46% (Minnesota), and 30% (Kansas).
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5. Gap-Filling Methodology

5.1. Overview

Figure 3 illustrates the workflow of the SAMSTS algorithm. It can be summarized by several
steps. First, the input Landsat multispectral time series images are considered together and segmented
(across time and space) into a single segmentation image. The resulting segments are divided into
two groups (≥3 pixels and <3 pixels) for the subsequent processing. The segments (in either group)
are clustered, and each segment is associated to M clusters. Then, the gap filling is undertaken for
a specified target image in the time series that has missing pixels. For each segment (Sgap) with one
or more missing pixels in the target image, an alternative similar segment (Salt

gap), which has valid
non-missing pixel values in the target image, is identified using the cluster information. Then, for each
missing pixel in segment Sgap, its alternative similar pixel palt

gap is identified within Salt
gap and is used to

fill the gap pixel’s values.

Figure 3. Workflow of the SAMSTS algorithm.

A refined spectral angle mapper similarity metric (SAMr) is incorporated in the steps of the
time series segmentation, segment clustering, and identification of alternative similar segments and
pixels in the target image. This measure is based on the spectral angle mapper (SAM) that is used
conventionally to determine the spectral similarity between two pixels by calculating the cosine of the
angle subtended between their points in feature space and the feature space origin [73–75]. Previously,
we refined SAM to allow the comparison of two single-pixel Landsat multispectral time series with
missing temporal observations [13] as:

SAMr0(
⇀
a ,

⇀
b ) =

n
∑

z=1

[
xa

z · xb
z · χ(xa

z , xb
z)
]

√
n
∑

z=1

[
(xa

z)
2 · χ(xa

z , xb
z)
]√ n

∑
z=1

[(
xb

z
)2 · χ(xa

z , xb
z)
]

(1)

χ(xa
z , xb

z) =

{
1, i f xa

z not mis sin g and xb
z not mis sin g

0, otherwise
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where
⇀
a and

⇀
b are two vectors whose feature space values are defined by xz∈[1 . . . n], and n (≥2) is the

number of feature space dimensions, i.e., the product of the number of spectral bands and the number
of images in the time series; χ(xa

z , xb
z) is a step-function returning 1 if both xa

z and xb
z are non-missing

observations and returning 0 otherwise. Thus, SAMr0 measures the similarity between two pixels’ time
series considering only their temporally-corresponding non-missing observations. SAMr0 is bounded
in the range [0,1], tends to 1 as the time series values of the two pixels become similar, and is 1 when
the time series values are identical. However, where there is a high proportion of missing observations,
then only a small number of temporally-corresponding observations will be available, which will
reduce the reliability of SAMr0. To minimize the impact of this issue, the SAMr is used:

SAMr(
⇀
a ,

⇀
b ) = SAMr0(

⇀
a ,

⇀
b )−misalign(

⇀
a ,

⇀
b , obs50%)

misalign(
⇀
a ,

⇀
b , obs50%) =

 0, i f n′ ≥ obs50%

1
n′

n
∑

z=1

[∣∣∣xa
z − xb

z

∣∣∣ · χ(xa
z , xb

z)
]
, i f n′ < obs50%

(2)

n′ =
n

∑
z=1

χ(xa
z , xb

z)

where SAMr0(
⇀
a ,

⇀
b ) is defined by Equation (1), n′ is the number of temporally-corresponding

observations between
⇀
a and

⇀
b , n is the number of feature space dimensions, i.e., the product of

the number of spectral bands and the number of images in the time series (5 × 26), and the term
1
n′

n
∑

z=1

∣∣∣xa
z − xb

z

∣∣∣χ(xa
z , xb

z) is the mean difference between the two time series’ temporally-corresponding

observations. Like SAMr0, the SAMr is bounded in the range [0,1] and equals 1 when the time series
are identical.

In this study, obs50% in Equation (2) is set as the percentage of non-missing tile 30 m pixel
observations over the 26 weeks multiplied by the product of the number of weeks (26) and the number
of bands (five Landsat bands, Section 3.1) times 0.5. For example, for the California study area, 47.5%
of the tile 30 m pixel observations over the 26 weeks are missing (Table 1, middle column) and so

obs50% is 34 (derived as ((100 − 47.5)/100) × 26 × 5 × 0.5). Thus, the misalign(
⇀
a ,

⇀
b , obs50%) penalty

term occurs for the California gap-filling when the five-band 26-week vectors
⇀
a and

⇀
b have less than

34 temporally-corresponding values. If there are more temporally-corresponding values, i.e., n′ is high,
then the penalty term is not invoked.

The SAMr is used to compare not only single-pixel time series, but also to compare the mean time
series values of pixels that are associated together after the application of a segmentation algorithm.
For brevity, we define the term “segment signature” as the mean reflectance values for each of the
five Landsat bands over the 26 weeks (i.e., a vector of 130 × 1 mean values). The mean values are
derived considering all the non-missing pixels in the segment. The SAMr is then calculated as Equation

(2) with
⇀
a and

⇀
b defined by segment signatures or single pixel time series. We also define the term

“cluster signature” as the mean of the segment signatures in a cluster. The cluster signature is a vector
of 130 × 1 reflectance values.

5.2. The Spectral-Angle-Mapper-Based Spatio-Temporal Similarity (SAMSTS) Gap-Filling Algorithm

The SAMSTS gap filling algorithm utilizes a segment-and-clustering approach that is illustrated
in Figure 4. The approach is undertaken as follows: (1) the input time series images are considered
together and segmented (across time and space) into a single segmentation (e.g., six segments,
Figure 4a); (2) the segments are clustered in an unsupervised manner (e.g., into two clusters denoted
by hatched lines in Figure 4b); (3) the SAMr time series calculations are undertaken comparing the
segment containing the gap pixel (cross, falling in the red segment with diagonal hatching) with
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alternative similar segments that belong to the same cluster (diagonal hatching), and the most similar
alternative segment that maximizes SAMr is selected; and (4) for each gap pixel in the gap segment,
its corresponding alternative pixel is individually searched only among the candidate pixels in the
corresponding most similar alternative segment. These four steps are described below in detail through
Sections 5.2.1–5.2.3

Figure 4. Overview of the SAMSTS gap filling algorithm. (a) The segmentation map obtained from the
time series; (b) The clustered segment (denoted by different hatching); (c) Given a segment with gaps
(e.g., the red segment), its alternative segment is searched for considering only the segments in the
same cluster (i.e., the purple, cyan and blue segments). The missing-observation-adaptive similarity
metric SAMr is used in the segmentation, clustering, and alternative similar segment search.

5.2.1. Time Series Image Segmentation

The input time series images, i.e., 26 weeks of five bands, each 5000 × 5000 pixels, are segmented
into a single segmentation map composed of 5000 × 5000 pixels. Conventionally, segmentation
algorithms cannot work if there are missing data, or the missing data are not segmented. As Landsat
time series contain arbitrarily-distributed gaps across space and time, the segmentation should be
adaptive to them. The SAMr is used with a simple region-growing image segmentation method [76].
Each pixel is associated with a spatially-adjacent pixel (considering an 8-connected pixel neighborhood)
if the SAMr value of the two pixels’ time series is >0.9995. The 0.9995 threshold is purposefully set
high to ensure that pixels belonging to the same segment are highly similar, i.e., have a nearly identical
26 week temporal evolution in the five-band reflectance. This threshold was empirically determined
through tests on the input data for the three test areas. Since the agricultural study areas typically have
a higher degree of spatio-temporal complexity than most other landscapes [31,51], we anticipate that
this threshold will be suitable for general cases when six months of Landsat data are used.

Over-segmentation may occur that reduces the computational efficiency of the algorithm.
Consequently, spatially-adjacent similar segments are merged to reduce the number of segments.
For each segment, the segment signature is derived as the mean non-missing reflectance for each
band over the 26 weeks where the mean is derived considering all the pixels in the segment. Then,
for each pixel in the segment, the SAMr between the pixel time series and the segment signature is
derived, and for segments composed of more than one pixel, the standard deviation of these SAMr
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values is derived. Two neighboring segments are considered sufficiently similar to be merged if either
segment’s SAMr standard deviation value is less than twice the value of 1 – SAMr derived between their
segment signatures (as 1 – SAMr quantifies the degree of disimilarity of two signatures). The merging
is undertaken in an iterative manner. In each iteration, only unmerged segments are eligible to be
merged, and the merged segments are taken as a new segment in the next iteration. A maximum
of three iterations was found to be sufficient to avoid over-merging. Large numbers of small-sized
segments may exist in the merged segmentation results, primarily due to mixed pixel effects occurring
along object edges in the Landsat 30 m data. The segment signatures of small segments are more likely
to be affected by mixed pixel effects than large ones. In particular, segments composed of one, two,
or three pixels have long perimeters relative to their areas, and so are usually mixed. Therefore, as
illustrated in Figure 3, the merged segments are divided into two size groups (>3 pixels and ≤3 pixels)
and the groups are treated separately in the following clustering and gap-filling steps to speed up
the processing.

5.2.2. Segment Clustering

The segments are clustered, i.e., each segment is associated to a unique cluster, using the
unsupervised K-means clustering approach that has, for example, been used previously to cluster
satellite time series [77]. There are many clustering algorithms [78] and other algorithms developed
for high-dimensional data; for example, mean shift [79], expectation maximization [80], or fuzzy
clustering [81] could also potentially be used. However, we use the K-means approach as it is
straightforward to incorporate the SAMr measure that can handle time series with missing observations.
The K-means approach requires initialization with K observations, i.e., K observations that can be
treated as candidate clusters. In this study, the candidate clusters are selected in an iterative manner
starting with one randomly-selected segment. Then in each iteration, every unselected segment’s
signature is compared with the signature(s) of the currently selected segment(s), and if the SAMr

values are smaller than 0.96, the segment is selected as a new candidate cluster. In this way, the number
of candidate clusters typically increases with each iteration. If no new candidate clusters are found
and there are fewer than 300 candidate clusters, the process is stopped. If there are more than 300,
the process is restarted, but the SAMr 0.96 threshold is decreased by 0.01 so that fewer candidate
clusters will be selected. We note that 300 is considerably larger than the number of CDL classes in
the 5000 × 5000 30 m pixel test areas (Figure 1), but this is needed to account for subtle land cover
and surface differences, and the thresholds set ensure that close to (but less than) 300 clusters can be
obtained. All the segments are then clustered using the K-means clustering approach initialized with
the K candidate clusters. The SAMr metric is used as the K-means distance measure as it can handle
missing Landsat time series observations [13].

After the K-means clustering, an additional merging step is implemented to reduce the number of
clusters. Specifically, the SAMr standard deviation of each cluster is derived based on the SAMr value
between a cluster signature and the signature of each segment in the cluster; the SAMr between each
pair of clusters is also calculated. Two clusters are merged conservatively if they are mutually the most
similar cluster to each other and their cluster SAMr standard deviations are relatively small. Here,
small is defined as less than 1/2 of the 1 – SAMr value derived between their cluster signatures (note
that 1 – SAMr reflects the dissimilarity between two cluster signatures). The merging is repeated up to
five times until no merging takes place. After this step, the number of clusters are typically reduced by
more than 50%, i.e., to fewer than 150 clusters.

Finally, each segment in the segmentation map is associated to the M most similar clusters with
ranked similarities, defined by SAMr. For Landsat time series, M should be sufficiently large to
capture perturbations in the time series due to non-surface variations imposed by the remote sensing
process (e.g., differences in illumination and observation angles, atmospheric contamination, sensor
calibration/degradation changes, sensor noise) while being small enough to be computationally
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efficient. In this study, M was set as 10 as we found M higher than this did the not provide improved
results and reduced the computational efficiency.

5.2.3. Identification of Alternative Segments and/or Pixels to Fill Gaps

As illustrated in Figure 3, after the segmentation and segment clustering steps, the gaps are
filled individually for each image in the time series that has missing pixels. For each target image
with missing pixels, the gap filling is conducted considering the large-size-segment group (≥3 pixels)
and the small-size-segment group (<3 pixels) independently, and the final gap-filling results are
obtained by combining the gap-filling results from the two groups together. The detailed algorithms
for alternative similar segment identification and alternative pixel identification are provided in
Appendixs A and B, respectively.

6. Analysis Methodology

6.1. Gap-Filling Assessment Metrics

Gap filling performance was assessed using simulated gaps generated by artificially removing
pixels from a single target image in the time series. The spectral root-mean-square difference (RMSD)
between the filled and the original non-missing pixel values was calculated with respect to the five
Landsat 8 OLI bands as:

RMSD(i, j) f ill =

√√√√∑5
k=1

(
poriginal

k (i, j)− p f illed
k (i, j)

)2

5
(3)

where RMSDfill(i, j) is the spectral root-mean-square difference at pixel location (i, j) between the

original pixel reflectance poriginal
k (i, j) and the gap-filled p f illed

k (i, j) reflectance values considering five
Landsat bands, i.e. the green (0.56 µm), red (0.66 µm), near-infrared (NIR) (0.87 µm), and the two
shortwave infrared (SWIR) (1.61 µm and 2.20 µm) bands.

In order demonstrate the algorithm performance with respect to surface changes (similar to the
gap-filling assessment approach described in [24]), the spectral root-mean-square difference (RMSD)
between the reflectance observed on the preceding temporally-closest non-missing pixel observation,
and the subsequent temporally-closest non-missing pixel observation was also assessed as:

RMSDpreceding(i, j) =

√
∑5

k=1 (poriginal
k (i, j)− ppreceeding

k (i, j))
2

5
(4)

RMSDsubsequent(i, j) =

√
∑5

k=1 (poriginal
k (i, j)− psubsequent

k (i, j))
2

5
(5)

where RMSDpreceding(i, j) and RMSDsubsequent(i, j) are the spectral root-mean-square differences at

pixel location (i, j) between the original pixel reflectance value poriginal
k (i, j) and the preceding

temporally-closest observation reflectance value ppreceding
k (i, j), and the subsequent temporally-closest

observation reflectance value psubsequent
k (i, j), respectively. As some gap-filling methods may simply

take the temporally-closest non-missing pixel observations, regardless of whether the closet observation
occurred before or after the gap, the closest RMSD was also derived as:

RMSDtemporallyclosest
(i, j) =

√
∑5

k=1 (poriginal
k (i, j)− ptemporally closest

k (i, j))
2

5
(6)

where the equation terms are defined as for Equations (4) and (5) and ptemporally closest
k (i, j) is the

temporally-closest observation reflectance value that occurred either before or after the target gap
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week pixel to be filled. If the preceding and subsequent pixel non-missing observations are equally
temporally close, then the preceding observation was selected.

6.2. Gap-Filling Experiments

6.2.1. SAMSTS Gap Filling

First, to demonstrate the SAMSTS gap-filling algorithm performance in detail, a 500 × 500 30 m
pixel (15 × 15 km) cloud-free area was removed from the target week of the Kansas tile, which
was selected because it had pronounced agricultural harvesting. Next, to examine the algorithm
performance when large and different portions of the data are missing across the tile, 25 simulated
gaps, each 600 × 600 30 m pixels (18 × 18 km), were removed from across the target week of the
California, Minnesota and Kansas tiles. This is equivalent to removing 36% of the 5000 × 5000 tile
pixels, an so is comparable to the average annual Landsat CONUS cloud cover observed by Landsat
8 [9] or Landsat 7 [4]. In each experiment, the SAMSTS algorithm was applied to fill the gaps in the
target week considering the surrounding tile pixels and all of the 26 weeks of data, except for the pixels
removed from the target week. Target weeks 29 (California), 34 (Minnesota), and 38 (Kansas) were
selected as the greater majority (>98%) of their tile data were not missing or cloudy. In addition, they
were acquired in different periods of surface changes. The Minnesota week 34 and the Kansas week
38 data were acquired near the peak and in the senescence/harvest seasons, respectively, whereas the
California week 29 data were acquired in approximately the middle of the growing season (Figure 2).

6.2.2. Comparison with Sinusoidal Harmonic Model-Based Gap-Filling

The SAMSTS gap-filling algorithm performance was compared with the established sinusoidal
harmonic model TI gap-filling approach that has been demonstrated with Landsat time series [34,37].
The sinusoidal harmonic model was defined as:

f (t) = a0 +
M

∑
m=1

(
amcos

2πt
L

+ bmsin
2πt

L

)
(7)

where f (t) is the modelled satellite reflectance for a single-pixel location; a0 is a coefficient describing
the mean of f (t) over the time series; am and bm are coefficients for harmonic component m with M ≥ 1
components; L is the length of the time period; and t is time. The model can reproduce periodic time
series, but higher model orders (larger M) are required to fit more complex time series and may result
in spurious oscillations, particularly with noisy data and/or if there are gaps in the time series where
change occurred [35,82,83]. Zhu et al. [38] applied the sinusoudal model as shown in Equation (7)
to several years of Landsat data, but used an additional coefficient to model inter-annual changes.
In this study, as only six months of Landsat data were used, the inter-annual change coefficient was not
used. The six-months of Landsat data were sensed from 28 April 2013 (DOY = 118) to 26 October 2013
(DOY = 299) and so L was set to 182 (299 – 118 + 1). Zhu et al. [38] recommended that there should be
at least three times more valid surface observations than the number of model coefficients, and did
not run the model but output the median observation value if there were fewer than six observations.
Therefore, in this study, the sinusoidal model shown in Equation (7) was implemented with M = 2
(i.e., five Fourier coefficients) when the number of valid observations was ≥15 and with M = 1 when
there were 5 to 14 observations, and the median observation value was output if there were fewer than
five observations. The sinusoidal harmonic model was applied independently at each pixel location
in the 25 600 × 600 30 m pixel simulated gaps over the California, Minnesota and Kansas tiles, and
was applied to the Landsat time series independently for each of the five Landsat bands and used to
predict the reflectance on the dates of the simulated gaps.
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7. Results

7.1. Detailed Gap-Filling Example Demonstration

Figure 5 illustrates the gap-filling results for the 500 × 500 30 m pixel subset removed from the
5000 × 5000 30 m pixel Kansas tile. The original 500 × 500 30 m pixels that were removed from the
target week 38 are illustrated (b) to enable detailed comparison with the SAMSTS gap-filling results (e).
The temporally-closest preceding (d) and subsequent (f) weeks of Landsat data are also shown with the
same contrast stretches as the gap-filling results (e). The 2013 CDL image is illustrated (a) to provide
the land cover context. The comparison of the original data (b) with the gap-filled results (e) illustrates
that the methodology works well, especially considering that such a relatively large agricultural area
(15 km × 15 km) in the harvest season is gap filled. The five-band spectral root-mean-square difference
(RMSD) histograms are illustrated in (c) and are colored as blue (RMSDfill), red (RMSDpreceding) and
green (RMSDsubsequent). The SAMSTS RMSDfill histogram has a greater frequency of smaller RMSD
values than the RMSDpreceding and RMSDsubsequent histograms. Thus the SAMSTS performs better than
simple closest temporal pixel substitution.

The bottom row of Figure 5 shows maps of RMSDpreceding (g), RMSDfill (h) and RMSDsubsequent
(i), and their comparisons illustrate gap-filling errors and sensitivities. This subset is dominated by
circular center-pivot irrigation agricultural fields and within some of the circular fields, “pie slice”
circular sectors are evident that are associated with harvesting [84]. The majority the RMSDpreceding
pixel values (78.1%) and the RMSDsubsequent pixel values (65.3%) are greater than the corresponding
RMSDfill values. The mean RMSDfill value is 0.022 (median is 0.016), and 7.2% of the pixels have
RMSDfill values > 0.05, and 0.7% have RMSDfill values > 0.1. The largest SAMSTS gap-filling errors
occur where there were abrupt surface changes due to agricultural harvesting that is evident when
the preceding (d) and subsequent (f) weeks are compared. The mean RMSDsubsequent value (0.045) is
slightly greater than the mean RMSDpreceding value (0.042) due to the greater amount of harvesting that
occurred between weeks 38 and 40, compared to the harvesting between weeks 36 and 38. However,
despite the rapid surface changes, much of the Kansas SAMSTS gap-filled image (e) is consistent with
the original image (b).

The locations in Figure 5, which changed between weeks 36 and 38 and that also changed
between weeks 38 and 40, typically have the greatest gap-filling errors. For example, two of the largest
gap-filling errors occurred in circular center-pivot irrigation fields (denoted by red circles) where
partial harvesting occurred between weeks 36 and 38 and then complete harvesting occurred between
weeks 38 and 40. Since the week 38 observations were removed by the gap simulation, information on
when the abrupt harvest change occurred was not present in the time series. When short-term abrupt
changes occur, gap-filling errors may be introduced if the obtained similar alternative segments do not
also contain the abrupt changes. This is not always the case. For example, a flooded pixel example
(denoted by the yellow arrow) exhibited flooding effects that lasted from weeks 34 to 40, but was gap
filled coherently. Figure 6 illustrates the NDVI time series of the flooded pixel and its corresponding
alternative similar pixel from which the gap-filling pixel value was selected. The alternative similar
pixel was located 17.5 km (583 30 m pixels) away, which is relatively far from the flooded gap pixel,
but quite closely resembles both the NDVI (Figure 6) and the reflectance (Figure 5) of the gap pixel.
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Figure 5. Cont.
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Figure 5. Kansas 500 × 500 30 m pixel subset (centered at 37.75755020◦N, 100.78698061◦W, Figure 1c red square shows the subset tile location) results. 2010 CDL
subset (a), Landsat 8 false-color (1.61 µm, 0.87 µm, 0.66 µm) images of the original (b), the preceding (d), and subsequent (f) weeks and the gap-filled version of the
original data (e) and associated RMSD images (g–i) (colored: 0 ≤ dark blue ≤ 0.05; 0.05 < light blue ≤ 0.08; 0.08 < green ≤ 0.11; 0.11 < yellow ≤ 0.13; 0.13 < orange ≤
0.15; 0.15 < red < 0.2; brown ≥ 0.2). The two red circles denote two circular center-pivot irrigation fields where partial harvesting occurred between weeks 36 and
38 and then complete harvesting occurred between weeks 38 and 40. The yellow arrow denotes a small area that was flooded between weeks 36 and 38.
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Figure 6. Example NDVI time series for the flooded pixel (denoted by the yellow arrows in Figure 5,
located at 37.70121869◦N, 100.82220237◦W), and the corresponding NDVI time series for the selected
alternative similar pixel. For clarity, the NDVI, rather than five-band reflectance time series, is shown.

7.2. Large Area Gap-Filling Results

Figures 7–9 illustrate the results of the gap-filling where 25 large 600 × 600 30 m pixel simulated
gaps distributed across each 5000 × 5000 30 m pixel tile, denoted by the white square outlines in (b),
were removed from week 29 (California), week 34 (Minnesota), and week 38 (Kansas). The gap-filled
pixels are shown in (e). The gaps were also independently filled by simple temporal pixel substitution
from the temporally-closest preceding (d) and subsequent (f) available pixels. The temporally-closest
available non-missing preceding and subsequent observations were acquired from one to five weeks
before (a) and after (c) the target week. The bottom rows show RMSDpreceding (g), RMSDfill (h), and
RMSDsubsequent (i) maps.

These results illustrate that the gap-filling using the temporally-closest preceding or subsequent
available pixel can be relatively inaccurate. The gaps that were independently filled by simple temporal
pixel substitution (Figure 7d,f, Figure 8d,f and Figure 9d,f) are sometimes spatially quite incoherent
with obvious gap-filling errors observed as squares in the gap-filled images and high RMSDpreceding (g)
and RMSDsubsequent (i) values. As discussed above, these errors are primarily due to surface changes
before or after the target image acquisition. In addition, residual atmospheric contamination and
bi-directional effects due to differences in illumination and observation angles [23,57] may also cause
temporal differences.

In contrast to the temporally-closest gap-filling results, the gap-filled images provided by the
SAMSTS method (Figures 7e, 8e and 9e) have more natural looking because the filled pixels were
selected from elsewhere in the target week. Interestingly, despite the quite variable availability of
pixel observations in the time series, the RMSDfill values do not obviously increase further from the
spatially-closest valid observations, as observed in other ASP gap filling methods [50]. The majority of
the RMSDfill values are smaller than the corresponding RMSDpreceding tile pixels values (62.5%, 69.6%,
72.3% for California, Minnesota and Kansas, respectively), RMSDsubsequent tile pixel values (68.8%,
75.6%, 55.2% for California, Minnesota and Kansas, respectively), and RMSDtemporally_closest pixel values
(61.4%, 69.1%, 71.6% for California, Minnesota and Kansas, respectively).
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Figure 7. Cont.
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Figure 7. California tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (b), were removed
to simulate gaps and then filled by the SAMSTS method (e), and by closest preceding (d) and subsequent (f) pixel substitution. Associated RMSD images are shown
(g–i) colored as for Figure 5. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired
from one to five weeks before (a) and after (c) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).
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Figure 8. Cont.
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Figure 8. Minnesota tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (b), were removed
to simulate gaps and then filled by the SAMSTS method (e), and by closest preceding (d) and subsequent (f) pixel substitution. Associated RMSD images are shown
(g–i) colored as for Figure 5. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired
from one to five weeks before (a) and after (c) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).
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Figure 9. Cont.
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Figure 9. Kansas tile (5000 × 5000 30 m pixels) gap filling experiments, 25 600 × 600 30 m pixel areas, shown by white squares in the target week (b), were removed to
simulate gaps and then filled by the SAMSTS method (e), and by closest preceding (d) and subsequent (f) pixel substitution. Associated RMSD images are shown (g–i)
colored as for Figure 5. The temporally-closest non-missing preceding and subsequent observations did not always belong to the same image and were acquired from
one to five weeks before (a) and after (c) the target week, colored as black (1), dark gray (2), light gray (3), and white (4 or 5).
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Figure 10 illustrates histograms of the RMSD values, including the RMSDtemporally_closest, for
each study site. The SAMSTS gap filling method (blue line) has generally smaller errors than the
closest temporal pixel substitution approaches. As with the detailed gap-filling results, the gap-filling
errors are greatest for the Kansas, then Minnesota, then California tile data. The majority of the
RMSDfill errors are less than 0.05 with mean values less than 0.02, i.e., less than the 3% OLI reflectance
calibration accuracy [85]. The mean tile RMSD values provide a straightforward way to assess the gap
filling. The smallest mean RMSD values are consistently observed for the SAMSTS gap-filling method
with mean RMSDfill values of 0.014 (California), 0.016 (Minnesota) and 0.018 (Kansas). The mean
RMSDpreceding, RMSDsubsequent, and RMSDtemporally_closest values vary considerably, but are greater than
the mean RMSDfill values by at least 61% (California), 69% (Minnesota), and 55% (Kansas). For
the California and Minnesota tiles, the mean RMSDtemporally_closest value is smaller than the mean
RMSDpreceding and RMSDsubsequent values, which is expected as the closest observation is selected from
either the subsequent or preceding observation. The Kansas tile has a higher mean RMSDtemporally_closest
value (0.031) than the mean RMSDsubsequent value (0.027), but is only marginally higher than the
RMSDpreceding value (0.030). This is because the Kansas target week (Figure 9b) is in the harvesting
season with considerable preceding and subsequent surface reflectance changes (Figure 2).

Figure 10. Histograms of RMSDpreceding (red), RMSDsubsequent (green), RMSDtemporally_closest (black), and
RMSDfill (blue) for the (a) California (Figure 7), (b) Minnesota (Figure 8) and (c) Kansas (Figure 9)
tile results.

Figure 11 illustrates the results of the sinusoidal harmonic model gap-filling for the three tiles.
Figure 11a–c show the false color gap-filling results. The California gap-filled image appears natural,
like the SAMSTS results (Figure 7e), but the Minnesota and particularly the Kansas gap-filled results
have obvious gap-filling errors observed as squares in the gap-filled images. Figure 11d–f show the
RMSD values between the gap-filled data and the corresponding original data. The majority of the
sinusoidal harmonic model RMSD values are larger than the corresponding SAMSTS gap-filled values
(Figure 7h, Figure 8h, and Figure 9h), specifically 65.1%, 72.9%, and 57.9% of the gap-filled pixels for
the California, Minnesota and Kansas tiles, respectively.
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Figure 11. Sinusoidal harmonic model gap-filling results for the 25 600 × 600 30 m pixel simulated gap areas for the California (a), Minnesota, (b) and Kansas (c) tiles.
The original images before gap removal are illustrated in Figure 7b, Figure 8b, and Figure 9b. The associated RMSD gap-filling values are shown in (d–f) colored as for
Figures 7–9.
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Table 2 summarizes the RMSD values of the SAMSTS and the sinusoidal harmonic model
gap-filling methods for the three tiles with respect to all gap-filled pixels, and with respect to only the
crop and only the non-crop gap-filled pixels defined by the 2013 CDL. For both gap-filling methods,
larger RMSD errors were observed for the crop than non-crops pixels over the California and Kansas
tiles. This is expected because the Landsat reflectance was observed to change more rapidly over crops
than non-crops in these tiles (Figure 2). Over the Minnesota tile, there was less difference between
the crop and non-crop RMSD values for either gap-filling method. The SAMSTS method had slightly
smaller RMSD values for the crop than non-crop pixels over the Minnesota tile. This is because the
non-crop pixels were primarily grassland/pasture, developed and herbaceous wetlands (defined by
the CDL classes) that were small and sparsely distributed (Figure 1b), which reduced the availability
of similar alternative non-crop segments/pixels in the SAMSTS algorithm. Despite this, for all three
tiles, considering crop, non-crop, and both crop and non-crop pixels, the SAMSTS method had smaller
RMSD gap-filling values than the sinusoidal harmonic model method.

Table 2. Mean five-band RMSD values of the SAMSTS (Figures 7h, 8h and 9h) and the sinusoidal
harmonic model gap-filling results (Figure 11d–f), with respect to all the pixels, the crop pixels, and the
non-crop pixels as defined by the 2013 CDL (Figure 1).

Test Sites
All (Crop and Non-Corp) Crop Non-Crop

SAMSTS Harmonic SAMSTS Harmonic SAMSTS Harmonic

California 0.014 0.019 0.020 0.0300 0.012 0.016
Minnesota 0.016 0.025 0.015 0.026 0.018 0.021

Kansas 0.018 0.023 0.023 0.036 0.015 0.016

8. Discussion

To date, no ASP approaches have been demonstrated to be capable of filling large-area Landsat
gaps over agricultural areas that are spatially heterogeneous and temporally dynamic. Current
approaches (reviewed in Section 2) are limited by the requirement for cloud-free reference image(s)
and/or the need to search for alternative similar pixels in a relatively small spatial window. These
constraints are reduced in the SAMSTS gap-filling algorithm. The factors affecting the SAMSTS
gap-filling performance are complicated, and they include the spatio-temporal distribution of gaps
relative to surface changes and the reflectance magnitude of the missing and non-missing pixels
through time. It is difficult to unambiguously identify and quantify these individual factors because
they function in a combined manner. The gap filling experiments described in this paper suggest larger
gap-filling errors over surfaces with rapid change, e.g., due to agricultural harvesting or flooding.
In addition, errors occur when the gap pixels have few similar pixels in the tile, i.e., in this study,
for certain crop classes that occupy a minority of the tile. Similarly, urban pixels in the California
tile were less accurately gap filled because they encompassed a variety of land cover types and land
uses that were spatially mixed within a pixel. Despite these issues, the SAMSTS gap-filling algorithm
demonstrably has the potential to generate gap-free Landsat 8 OLI time series when only six months
of Landsat 8 reflectance data are used.

The SAMSTS algorithm was demonstrated for large-area gap filling using six months of Landsat
8 OLI reflectance time series over three 150 × 150 km (5000 × 5000 30 m pixels) tiles. Using larger tiles
(or groups of adjacent tiles) could provide more opportunities for finding alternative similar pixels but
at a cost of increased computation. The actual location of the alternative similar pixels is not relevant
if the tile is sufficiently large to contain alternative similar pixels with non-missing reflectance time
series, and so the issues of sensitivity to tile location [86] are expected to be unimportant. Arguably,
given a suitable data structure, there is no reason why a gap pixel should not be filled with a value
that is very far distant. Conceptually this is similar to supervised land cover classification where a
sample of training data are used to classify very large area Landsat time series [32,87,88]. Using larger
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tiles (or groups of tiles) may help overcome the main limitation of the SAMSTS algorithm: if there are
no existing alternative similar pixels, then a gap cannot be filled reliably.

The SAMSTS algorithm was compared to the sinusoidal harmonic model per-pixel temporal
interpolation approach [35,38]. For all three tiles, considering crop, non-crop, and both crop and
non-crop pixels, the SAMSTS method had smaller mean five-band reflective wavelength RMSD values
than the sinusoidal harmonic model method. The majority of the sinusoidal harmonic model RMSD
values were larger than the corresponding SAMSTS gap-filled values (65.1%, 72.9%, and 57.9% of
the gap-filled pixels for the California, Minnesota and Kansas tiles, respectively). We note that the
sinusoidal harmonic model may perform more reliably at locations with smoother temporal changes.
In addition, the sinusoidal harmonic model may perform more reliably when multiple years of Landsat
data are used [38], although the likelihood of land surface condition changes that reduce sinusoidal
harmonic model gap-filling reliability will increase, for example, due to crop rotation over agricultural
areas between years.

In this study, the SAMSTS algorithm was implemented in the C language in Visual Studio 2013
(from Microsoft Corporation located at Redmond, Washington, USA) run on a Windows-7 64-bit
operating system with 3.6 GHz CPU and 16 GB memory. The large-area gap-filling experiments over
the California, Minnesota and Kansas tiles took 4–5 hours to run per tile. The majority (>90%) of the
computation was on the alternative similar segment identification (Section 5.2.3) that was CPU, rather
than memory, limited. The search for alternative pixels is initially conducted on a segment basis, and
then on a pixel-basis within the identified segments to improve computational efficiency. The time
series segmentation-and-clustering step may not be needed if the data had only a small proportion of
gaps to be filled (e.g., Landsat SLC-off gaps only). The algorithm computational efficiency could be
improved further by parallel processing the similar segment identification across different processors.

The SAMSTS algorithm uses a number of parameters that were set to provide reliable gap-filling
over the agricultural study areas. As agriculture typically has a higher degree of spatio-temporal
complexity than many other landscapes [30], we expect the algorithm to perform similarly elsewhere.
However, in the cases where phenology is more complex or where cloud contamination is very
persistent at the time of satellite overpass, the algorithm may perform less well. Further research to
analyze the sensitivity of the gap-filling to the algorithm parameterization for other locations may be
necessary. Inclusion of other Landsat-like data, such as from the Sentinel-2 Multi Spectral Instrument
(MSI), should enable improved SAMSTS gap-filling; this is subject to further research to accommodate
sensor spectral resolution differences, provided that the MSI data can be well registered with Landsat
which is currently an issue [89,90].

As an ASP (alternative similar pixel) gap-filling method, the SAMSTS algorithm is based on
the selection of a similar pixel observation and does not use temporal interpolation or reflectance
prediction approaches. Consequently, there is no reason why the two Landsat 8 Thermal Infrared
Sensor (TIRS) bands [91] could not be gap filled by copying the TIRS band pixels from the alternative
similar pixel found by the current algorithm. However, this would need to be subject to further research
and is likely to be challenging due to the greater surface temporal variation at thermal wavelengths
compared to reflectance wavelengths [16,92].

9. Conclusions

This paper presented and assessed a new algorithm for Landsat reflectance time series gap filling
that is designed to fill both small and large-area gaps in Landsat data, using one year or less of Landsat
data and without using other satellite data. This spectral-angle-mapper (SAM) based spatio-temporal
similarity (SAMSTS) gap-filling algorithm follows the approach of alternative similar pixel (ASP) gap
filling, whereby a gap pixel value is filled by an alternative similar pixel that is located in a non-missing
region of the image. The search is based on comparison of reflectance time series using a revised SAM
metric adapted to accommodate missing time series observations.
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Three 150 × 150 km (5000 × 5000 30 m pixels) test tiles in California, Minnesota and Kansas were
considered, which contained heterogeneous land cover types, including those with different phenology
and abrupt changes due to agricultural harvesting that make gap-filling challenging. The tests involved
the simulation of 36% missing data that are comparable to the average annual CONUS cloud cover in
Landsat data. The SAMSTS algorithm performed better than the closest temporal pixel substitution and
the sinusoidal harmonic model temporal interpolation gap-filling methods. The SAMSTS algorithm
was demonstrated to be capable of filling large gaps in heterogeneous areas in Landsat time series
and provided mean five-band reflective wavelength RMSD values less than 0.02, i.e., less than the 3%
Landsat 8 OLI reflectance calibration accuracy.
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Appendix A. Alternative Similar Segment Identification Algorithm

Given a segment with a gap pixel to be filled on the t-th image in the time series, termed Sgap,
the best alternative similar segment, termed Salt

gap is selected. The segment signature, i.e., the vector of

130 × 1 (five bands by 26 weeks) mean reflectance values, is denoted
⇀
S . The algorithm to identify Salt

gap
is as follows, where k is initially set as 2, and the number of M most similar clusters is set as 10:

(i) Start a spatial search from Sgap examining the spatially nearest segments.
(ii) For each candidate segment Scandidate

gap , check whether it has any valid non-missing observations on
the t-th temporal image. If not, skip it and flag it as processed to be excluded in further searches;
if yes, and if its first k nearest clusters (k ≤M, M = 10) overlap with Sgap’s first k nearest clusters,

then SAMr(
⇀
S gap,

⇀
S

candidate

gap ) is calculated, and Scandidate
gap is flagged as processed. The largest SAMr

value is recorded as SAMcandidate_max
gap with respect to Sgap, and the corresponding Scandidate

gap is

recorded as Scandidate_optimal
gap with respect to Sgap.

(iii) Stop the search and go to step (vii) if one of the following conditions are met; otherwise continue
to step (iv).

1© If SAMcandidate_max
gap > 0.990 and at least 100 candidate segments are processed, i.e.,

100 candidate segments have been inspected based on SAMr(
⇀
S gap,

⇀
S

candidate

gap );

2© If SAMcandidate_max
gap > 0.980 and more than 5000 candidate segments have been processed;

3© If SAMcandidate_max
gap > 0.970 and the whole image space has been searched with k = M, i.e.,

available segments in all the M nearest clusters have been inspected.

(iv) If the whole image space is searched and k < M, increment k by 1 and go to step (i) to restart the
search with the new k and only considering the unprocessed segments.

(v) If the whole image space is searched and k = M, go to step (i) to restart the search considering all
unprocessed segments, and still increment k by 1.

(vi) If the whole image space is searched and k = M + 1, which means all available segments have
been considered, stop the search.

(vii) Record Scandidate_optimal
gap as Sgap’s alternative similar segment Salt

gap.

The purpose of the three SAMr thresholds (0.990, 0.980 and 0.970) in (iii) is to speed up the search
computation only. If no thresholds are used, then an exhaustive search through all the available
candidate segments would occur. The search is stopped when an alternative similar segment with
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high SAMr is found, given that a certain number of candidate segments have been considered.
Three corresponding candidate segment number thresholds (100, 5000, and all segments in Sgap’s M
clusters) are used in step (iii). They ensure that a relatively large number of candidate segments are
considered and so maintain the robustness of the search-stopping criteria.

Appendix B. Alternative Similar Pixel Identification Algorithm

The alternative similar segment identification provides the one-to-one-corresponding alternative
similar segments Salt

gap for all gap segments Sgap with respect to the t-th temporal image that contains
gaps. By definition, Sgap has gaps on the t-th temporal image and Salt

gap has valid observations on the
t-th temporal image. For a gap pixel pgap in segment Sgap, its alternative similar pixel palt

gap is searched
in Salt

gap among the candidate pixels with valid observations on the t-th temporal image. The algorithm
to identify the palt

gap of a gap pixel pgap in Sgap is as follows:

(i) From Salt
gap, extract all the pixels with valid observation on the t-th temporal image. Randomly

sample a maximum of 100 pixels from the extracted pixels.

(ii) For each pgap in Sgap, calculate SAMr(
⇀
p gap,

⇀
p

candidate
gap ) where pcandidate

gap is from the

up-to-100 sampled pixels obtained in steps i). The palt
gap with respect to pgap is identified as

the one with the maximum SAMr.
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