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Abstract: Forest Aboveground Biomass (AGB) is a key parameter for assessing forest productivity and
global carbon content. In previous studies, AGB has been estimated using various prediction methods
and types of remote sensing data. Increasingly, there is a trend towards integrating various data
sources such as Light Detection and Ranging (LiDAR) and optical data. In this study, we constructed
and compared the accuracies of five models for estimating AGB of forests in the upper Heihe River
Basin in Northwest China. The five models were constructed using field and remotely-sensed data
(optical and LiDAR) and algorithms including Random Forest (RF), Support Vector Machines (SVM),
Back Propagation Neural Networks (BPNN), K-Nearest Neighbor (KNN) and the Generalized Linear
Mixed Model (GLMM). Models based on the RF algorithm emerged as being the best among the
five algorithms irrespective of the datasets used. The Random Forest AGB model, using only LiDAR
data (R2 = 0.899, RMSE = 14.0 t/ha) as the input data, was more effective than the one using optical
data (R2 = 0.835, RMSE = 22.724 t/ha). Compared to LiDAR or optical data alone, the AGB model
(R2 = 0.913, RMSE = 13.352 t/ha) that used the RF algorithm and integrated LiDAR and optical data
was found to be optimal. Incorporation of terrain variables with optical data resulted in only slight
improvements in accuracy. The models developed in this study could be useful for using integrated
airborne LiDAR and passive optical data to accurately estimate forest biomass.

Keywords: forest AGB; airborne LiDAR; prediction model; terrain variables

1. Introduction

Forests are the dominant carbon stock in terrestrial ecosystems and play a vital role in reducing
concentrations of greenhouse gases in the atmosphere and slowing down global warming [1,2]. Forest
Aboveground Biomass (AGB) is a key biophysical parameter for measuring carbon and is generally
used to quantify the contribution of forests to the global carbon cycle [3]. Therefore, rapid and
accurate estimation of forest aboveground biomass can greatly reduce the uncertainty in carbon stock
assessments [4]. Traditional methods used to estimate forest AGB based on field measurements or
long-term forest inventories can accurately obtain forest AGB, but are usually time-consuming and
labor-intensive [5–7]. Remote-sensing technologies provide quick and repeated information about
wide geographical areas that can be effectively used for estimating forest AGB [8,9].

Various types of remote-sensing data are used for forest biomass estimation: optical sensor
data, radio detection and ranging (radar) data, Light Detection And Ranging (LiDAR) data [10], etc.
Each of these data sources has its own advantages and disadvantages for estimating forest biomass.
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Optical sensors were first applied to the remote sensing of forests because they give aggregate spectral
signatures (reflectance or vegetation indices) and can be used to retrieve horizontal forest structure,
such as type and canopy cover [11–14]. The characteristics of optical data with long observation
times, wide spatial coverage and multiple bands can provide abundant information about forest
structure [15,16]. There are many studies utilizing moderate spatial resolution sensor data (e.g., MODIS
and TM) for forest biomass estimation [12,17]. However, moderate spatial resolution data lose more
spatial detail of AGB variability relative to high-resolution satellite data (e.g., ZY-3 and SPOT). SPOT
can provide high spatial information with respect to the size of vegetation units [18]. Especially, ZY-3,
which was designed for the collection of stereo imagery, has a better performance on the description
of forest structures [16,19,20]. Although optical data are widely used in AGB estimation, widespread
use is limited by frequent cloud cover in mountainous regions and data saturation problems in areas
with high vegetation biomass or canopy density [15]. Unlike passive optical systems, radar data will
penetrate through clouds and forest canopies, but signal saturation poses a problem [21,22]. A good
alternative to optical and radar data is LiDAR data, an active remote-sensing technology that can
capture the vertical structure of a forest in great detail and provide 3D information, which is strongly
related to forest biomass [23]. LiDAR data have been widely used for estimating forest biomass in both
natural and human-modified landscapes [24–26]. Spaceborne LiDAR, such as the Geoscience Laser
Altimeter System (GLAS), can capture large-area forest biomass and update information regularly.
Compared to spaceborne LiDAR, airborne LiDAR data are collected over small to moderate spatial
extents and at a high resolution, thus making it possible to estimate forest biomass more accurately [27].

Optical data can provide complementary texture and spectral information to the forest 3D
structure, which is derived from LiDAR data, and the accuracy of forest biomass estimates could be
improved by a combined use of LiDAR and optical data [12]. Su et al. [28] used a combination of
spaceborne LiDAR, optical imagery and forest inventory data to estimate the spatial distribution of
forest aboveground biomass in China and found that improved estimation accuracy of forest AGB
can be achieved. Hong et al. [29] estimated forest AGB using GLAS LiDAR and Landsat TM data
for Changbai Mountain in China, and it was found that the accuracies of the forest AGB model
that used integrated data were significantly improved compared to those that used GLAS LiDAR
alone. In addition, some research explored the potential of integrated LiDAR and optical data for
the estimating forest biomass. Luo et al. [30] showed that the fusion of airborne LiDAR data and
optical imagery for forest biomass estimation can improve R2 by 2.2% and reduce RMSE by 1.1%,
when compared with LiDAR data alone. Brovkina [31] and Swatantran et al. [32] used the integration
of LiDAR and hyperspectral data to estimate biomass, and they found that fused data generated a
better predicted result than other data.

Different methods have been used to estimate forest biomass and can be divided into two
categories: parametric and nonparametric algorithms [33]. The parametric algorithms usually refer
to the common statistical methods (e.g., linear regression models). However, there is no simple
linear relationship between remote sensing data and forest biomass, as the latter is affected by many
factors. Non-parametric techniques including machine learning techniques such as Back Propagation
Neural Network (BPNN), K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random
Forest (RF) have a higher ability to identify complex relationships between predictor and dependent
variables and have subsequently have yielded better results [34,35]. The distribution of forest types
was influenced by the slope aspect of terrain, especially for the mountain regions [36–38]. However,
there are still too few research works that have explored the effects of topography in the process of
estimating forest biomass. Consequently, we analyzed the effect of additional terrain data on the
model accuracy of forest biomass.

Although various remote sensing data and modeling methods have been adopted in forest
biomass estimation, there is no universal model for accurate estimation [39]. Therefore, it is important
to compare the prediction accuracy of the model using different remote sensing data and modeling
methods. Remote sensing data, which matched the resolution of the field plot area, were chosen as the
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input data, and five prediction methods (RF, SVM, BPNN, KNN and Generalized Linear Mixed Model
(GLMM)) were used to quantify the relationship between the remote-sensing variables and measured
AGB in the field plots. In this study, our aim was to explore the best methods and optimal kinds of
remote sensing data for forest AGB estimation. Finally, we discuss the effects of terrain variables on
estimating forest AGB.

2. Materials and Methods

2.1. Study Area

The study area is located in the Tianlaochi Catchment (38◦24′ to 38◦26′N, 99◦53′ to 99◦56′E),
measuring 10.247 km2, and is one basin of the upper reaches of the Heihe River in the province of
Gansu in Northwest China (Figure 1); it belongs to the arid and semi-arid region. The area is in a
mountainous region located on the northern slope of Qilian Mountain; the elevation gradually reduces
from northeast to southwest. The topography is rough, with steep slopes and deep valleys, and the
elevation ranges from 2500 m–3200 m. The mean annual temperature is from −0.6–2.4 ◦C, and mean
annual rainfall is from 400 mm–600 mm, falling mainly from May–September. The site consists of native
coniferous forest with moderately dense canopy cover, spreading along a topographically-mountainous
terrain. The dominant vegetation types are forest, which include spruce (Picea crassifolia) and cypress
(Sabina przewalskii); we mainly assess the forest biomass of these species in our study. Other vegetation
types, such as shrubs (Dasiphora fruticosa, Caragana jubata, etc.) and meadow, occasionally occur in
the area. The study area is located in a natural forest area, and most parts of the area consist of
naturally-regrowing secondary forest. The vegetation density is generally high, due to the lack of
management activities.

Figure 1. The spatial distribution of land use type and sample plots in our study area.
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2.2. Field Measurement

Field data measurements were carried out on 18 July and 12 August 2012. Due to the forest
landscape types being simple, we selected 32 typical sample plots with a size of 20 m × 20 m by
referring to previous studies [30,33]. The center coordinates of the sample plots used the Real-Time
Kinematic (RTK) Global Positioning System (GPS). RTK-GPS is one of the most precise positioning
technologies with which users can obtain cm-level accuracy of a position in real time [40]. Twenty
seven sample plots were distributed in the Picea crassifolia forest, and five sample plots were distributed
in the Sabina przewalskii forest. For each sample plot, we measured tree height (H, m) and Diameter
at Breast Height (DBH, only trees with DBH ≥5 cm were counted). Single tree biomass values were
obtained using allometric equations for water conservation forest developed by Wang et al. [41] in
Northwest China. Following the estimation of single tree biomass values, we then calculated the
biomass using the total biomass in each plot (sum of single tree biomass in the field plot) by conversion
to tons per hectare unit. The forest aboveground biomass values varied from 16.37 t/ha–207.67 t/ha,
with a mean value of 101.973 t/ha and standard deviation of 46.893 t/ha.

2.3. Optical Data

Optical data that contained spatial information have been widely used for forest AGB estimation.
We utilized data to estimate forest biomass from the Chinese satellite ZiYuan-3 (ZY-3) with a resolution
of 3.6 m for forward and backward views and 2.1 m for the nadir view. The ZY-3 data were acquired
during the time of the field measurement dates, which must cover the study region. The test image
was collected on 26 July 2012, and then, the Digital Number (DN) needed to be converted to reflectance
values in the preprocessing stage, which was performed using ENVI 5.3 software. Radiometric
calibration, atmospheric correction and topography correction were applied to the ZY-3 data. In order
to estimate the optical properties of terrestrial surfaces, it was necessary to eliminate the radiative
components due to the atmosphere. The data were converted to top-of-atmosphere reflectance, the
calibration coefficients of which were provided by China Centre for Resources Satellite Data and
Application; atmosphere correction was performed using the Fast Line-of-sight Atmosphere Analysis
of Spectral Hypercube (FLAASH). Finally, because there are many mountains in the study area, we had
to perform topography correction using the sun-canopy-sensor with C-correction (SCS + C) method
using Digital Elevation Model (DEM) data, which was performed using ENVI 5.3 software.

2.4. Airborne LiDAR Data

Airborne LiDAR data were collected on 25 August 2012, using a Leica Airborne Laser Scanner
(ALS70) [42]. The ALS70 airborne laser scanning system is mainly composed of a system controller,
laser controller, camera controller, laser scanner and operating and navigation terminal. The top pulse
frequency, maximum sweep frequency and maximum scan angle were 500 kHz, 200 Hz and 18◦,
respectively. The average point density of LiDAR data covering the study region was 1 point/m2,
with a laser beam diameter that reached the ground at 0.35 m. A dual-frequency Differential Global
Positioning System (DGPS) and Inertial Measurement Unit (IMU) were adopted in the LiDAR system,
which can achieve precise positioning. The horizontal and vertical accuracy of the ground points of
the LiDAR data were 0.1 m and 0.3 m. LiDAR data were originally acquired in GCS (Geographic
Coordinate System), but were later projected to UTM Zone 47 N. For this study, all laser returns are
included in the analyses. Thus, the Gaussian filter was used for the LiDAR point cloud, and this
was classified into ground and non-ground points using LiDAR data processing software (TerraScan,
TerraSolid, Ltd., Helsinki, Finland). Then, the point cloud was interpolated into a Digital Terrain
Model (DTM) and a Digital Surface Model (DSM) with a 2-m spatial resolution. A Canopy Height
Model (CHM) was produced by subtracting DTM and DSM. These normalized point cloud data were
further processed to derive metrics representing the height of the trees in the plot. The relative canopy
structure information was extracted by the intensity of point cloud data.
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2.5. Optical Features Extraction for Forest Biomass Estimation

2.5.1. Vegetation Indices

Vegetation Indices (VIs) can reflect the growth tendency of tree and have a better correlation
with vegetation biomass; they were generally used as variable predictors in the biomass model [43].
In particular, VIs can reduce the influence of soil background, atmosphere and water for the vegetation
reflectance [44,45]. Various VIs derived from optical data were used to estimate biomass, but there
was no universal index applied to all vegetation. Four kinds of vegetation indices (Table 1), Ratio
Vegetation Index (RVI), Normalized Difference Index (NDVI), Soil-Adjusted Vegetation Index (SAVI)
and Modified Soil-Adjusted Vegetation Index (MSAVI), were calculated from the bands of ZY-3 data.

Table 1. Vegetation indices and equations used in this study.

Variables Equations Description

Ratio Vegetation Index (RVI) bandNir/bandR
Reduces the effects of

atmosphere and topography

Normalized Difference Index
(NDVI) (bandNir − bandR)/(bandNir + bandR) Enhances the responsiveness

to the vegetation

Soil-Adjusted Vegetation
Index (SAVI)

(1+L)×(bandNir−bandR)
bandNir+bandR+L

L = 0.35

The value of L can be
automatically adjusted
following the density of

the vegetation

Modified Soil-Adjusted
Vegetation Index (MSAVI)

(2bandNir−bandR+1)−
√
(2bandNir+bandR)

2−8(bandNir−bandR)

2

Reduces the disturbances of
soil background

2.5.2. Texture Information

When we manipulate multivariate data, some information is potentially redundant. Therefore,
utilizing a simplified index to reserve original information will reduce the calculations and volume of
data. Among the many existing methods for reducing dimensionality, the most popular is Principal
Component Analysis (PCA) [46], which can be performed to reduce the redundancy of information.
We conducted PCA for the all bands of the ZY-3 data; the results can be used as the input factor for the
model of forest AGB estimation.

The potential of textural information from satellite images has been clearly demonstrated in the
estimation of forest biomass [47]. Texture information is the main characteristic of remote sensing
data; it can reveal the relationship between structure features of ground objects and the surrounding
environment and reflect the spatial variations of cover type at the same time. Texture information
is usually extracted from images using statistical, structural and spectral methods [48]. We adopted
a texture analysis method based on the Gray-Level Co-occurrence Matrix (GLCM) in our study.
Eight texture variables were selected, the Mean (ME), Variance (VA), Homogeneity (HO), Contrast
(CO), Dissimilarity (DI), Entropy (EN), Second Moment (SM) and Correlation (CR), and their values
were determined according to Equations (1)–(8). Texture analysis was carried out based on the first
component, which was the result of PCA; the size of the window is 3 × 3.

ME =
N−1

∑
i,j=0

i× Pi,j, (1)

VA =
N−1

∑
i,j=0

i× Pi,j(i−ME)2, (2)

HO =
N−1

∑
i,j=0

i×
Pi,j

1 + (i− j)2 , (3)
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CO =
N−1

∑
i,j=0

i× Pi,j(i− j)2, (4)

DI =
N−1

∑
i,j=0

i× Pi,j|i− j|, (5)

EN =
N−1

∑
i,j=0

i× Pi,j(− ln Pi,j), (6)

SM =
N−1

∑
i,j=0

i× P2
i,j, (7)

CR =
N−1

∑
i,j=0

i× P2
i,j

[
(i−ME)(j−ME)√

VAi ×VAj

]
. (8)

2.6. LiDAR Features Extraction for Forest Biomass Estimation

2.6.1. LiDAR-Derived Variables

The LiDAR point cloud is characterized by a certain number of features, mostly calculated by
analyzing the distribution of its neighboring points, which have the same characteristics [49]. Forest
AGB was closely related to tree height, and we selected metrics, such as the max (Hmax), mean (Hmean),
standard deviation (HSD) and coefficient of variation (HCV) of the tree height in the sample plot. The
metrics derived from LiDAR point cloud data were identified in previous studies as predictor variables
to estimate forest AGB [38,50,51].

In LiDAR data, the intensity of the point clouds was generally used to distinguish among the
ground points and tree species, and many studies used point clouds along with laser intensity to
obtain canopy structure information [52]. Canopy cover, which was defined as the fraction of ground
covered by vegetation canopy, had a strong correlation with forest AGB [53–55]. Canopy cover (Cc)
was calculated as the ratio of canopy intensity sums and all intensities Cc (see Equation (9)) within
each subplot [51,56]. The represented LiDAR metrics, such as canopy cover, vegetation intensity,
the max, mean, standard deviation and coefficient of variation heights (Table 2), were obtained from
the height-normalized point clouds by analysis in the LiDAR 360 Tools. In the operation process, layers
with a 20-m resolution were generated using the 2-m vegetation height threshold.

Cc =
Icanopy

Icanopy + Iground
, (9)

where Icanopy is the canopy intensity sums and the Iground is ground intensity sums.

Table 2. Summary of the LiDAR features extraction used in this study.

Metric ID Metric Description

LiDAR-derived
variables

Hmax Maximum of LiDAR height
Hmean Mean of LiDAR height
HSD Standard deviation of LiDAR height
HCV Coefficient of variation of LiDAR height

Canopy cover (Cc) Canopy cover derived from LiDAR returns number

Terrain variables

Topographic Wetness Index (TWI) Reflects the condition of soil
Hillshade Generalized directional topographic exposure

Profile Curvature (PC) Describes variation of slope
Slope Reflects tilt of local topography
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2.6.2. Terrain Variables

Data from airborne LiDAR can provide high-resolution terrain information of the Earth’s
surface [57]. We use terrain variables extracted from LiDAR ground points with a resolution of
20 m (Table 2). The Topographic Wetness Index (TWI) is similar to the Wetness Index (WI) and was
developed by O’Loughlin [58]; TWI quantifies the level of soil water storage and drainage. Profile
Curvature (PC) describes the variation of slope and influences the speed of movement, deposition
and erosion on the Earth’s surface. Hillshade, which represents topographic shadowing, is calculated
using an azimuth angle of 180◦ and a zenith of 30◦, according to the specified altitude of the Sun. Slope
has a close relation with the stability of soil, and it can reflect the tilt level of the local topography.
Calculation of slope, hillshade, TWI and PC was implemented in SAGA GIS (System for Automated
Geoscientific Analyses Version 2.1.4, available at http://www.saga-gis.org). These four variables are
important for quantifying the effects of topography on hydrological processes where hydrological data
are lacking.

2.7. Statistical Analysis and Modeling

Five combinations of data variables were used to estimate forest AGB: LiDAR variables (LVs),
optical variables (OVs), LiDAR and optical variables (LVs + OVs), LiDAR and terrain variables (LVs +
TVs) and optical and terrain variables (OVs + TVs). The predictor variables (9 variables for LiDAR
data and 12 variables for ZY-3 data) and corresponding AGB field data were used to estimate forest
AGB. Five parametric or nonparametric methods were considered: the five abovementioned modeling
methods (RF, SVM, BPNN, KNN and GLMM) and five input datasets were applied to build forest
AGB prediction models, respectively; 25 models were obtained in the results.

RF is a classification and regression tree approach that is often efficient in the predictive model [59],
with each tree randomly selected from the subsets of predictor variables. The number of trees (ntree) is
yielded by the original data, based on a bootstrap sample, which was determined from the relationship
between N and the error. For each regression tree, the number of different predictors tested at each
node (mtry) was selected based on the RMSE of the data. SVM is a training approach that is widely
used in classification and regression analysis; it has an efficient capacity of generalization [60]. BPNN
is one of the most popular algorithms in the neural network, which has potential for estimating forest
biomass, as it can deal with complex linear or nonlinear relationships of reflectivity data and vegetation
parameters [61]. Typically, the KNN method is frequently applied to a model when the number of
samples is small, and given that the redundancy of the result is low, it is suitable for forest biomass
estimation at a regional scale [62]. GLMM is a regression model that includes random effects in order
to have a wide range of dependent variables through linear combinations of one or multiple predictor
variables [63]. The packages and parameters of the five methods used in the R statistical software are
shown in Table 3.

Table 3. The packages and parameters of five methods used in the R.

Methods Package Parameters

Random Forest (RF) ‘randomforest’ Ntree with 500 and mtry with 25

Support Vector Machines (SVM) ‘kernlab’ Penalty factor with 2ˆ(−6:2) and kernel
parameters with 2ˆ(−4:4)

Back Propagational Neural
Networks (BPNN) ‘amore’ Number of iterations with 16

K-Nearest Neighbor (KNN) ‘knn’ Number of adjacent sample sizes, which
was set from 2 to 5

Generalized Linear Mixed Model
(GLMM) ‘lme4’ Logistic regression function was used and

the growth parameter with 0.2

http://www.saga-gis.org
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To assess the reliability and accuracy of forest AGB estimation models, the most common measures
in the reviewed research were R2 (correlation between observed and predicted values) and Root Mean
Square Error (RMSE). The RMSE was calculated using Equation (10), which can predict AGB versus the
AGB measured from field observations. As there were no additional data available for estimating the
accuracy of the prediction models. The Leave-One-Out Cross-Validation (LOOCV) method, an effective
method to evaluate the generalization capability of regression models, was used [64]. All statistical
calculations were performed in the R statistical package.

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n
, (10)

where ŷi represents the predicted biomass of sample i, yi represents the filed-measured biomass and n
represents the total number of samples.

3. Results

3.1. Comparison of Forest AGB Estimation Using Various Data Types

The performances of models using all data types, evaluated according to R2 and RMSE, are shown
as boxplots in Figure 2a,b. A comparison across the five data types indicated that integrated LiDAR and
optical data outperformed all other tested datasets; LVs + TVs performed almost as well. Comparing
the accuracy of the model using a single data source for estimating forest AGB, LiDAR data as input
variables were more effective than optical data. For LiDAR and optical data alone, the highest R2

values for forest AGB estimation were 0.899 (RMSE = 14.0 t/ha) and 0.835 (RMSE = 22.724 t/ha),
respectively. The biggest variation of estimation accuracies between LiDAR and optical data was in
models using the SVM method, and the values reached 0.21 for R2 and 7.06 t/ha for RMSE. The results
showed that LiDAR data had a better relationship with the observed forest AGB than optical data.

Models incorporating terrain data produced better accuracies than those built solely based on
LiDAR or optical data. The accuracies of mean R2 were slightly increased, and RMSE obviously
decreased using the five methods (Figure 2). The highest estimation accuracies of LiDAR and
optical data, when adding terrain variables separately, were 0.902 (RMSE = 13.45 t/ha) and 0.846
(RMSE = 21.923 t/ha). Model accuracy was slightly improved by incorporating additional terrain
variables, especially for optical data. For all prediction methods, only marginal differences in RMSE
and R2 were observed when comparing models using LiDAR or the integrated LiDAR and terrain
data. Compared with the optical data as input variables alone, the accuracies of mean R2 when adding
terrain data are increased in the five methods, and the RMSE decreased, especially for the KNN and
GLMM methods with RMSEs of 29.784 t/ha and 21.973 t/ha, respectively. These indicated that optical
data are affected by terrain more than LiDAR data in terms of forest biomass estimation.

According to Figure 2, the differences between model accuracy of LiDAR-only and combined
LiDAR and optical data were distinct. Compared with the LiDAR metrics alone, the AGB model using
integrated data had an improved estimation accuracy with an RMSE that decreased from 0.6 t/ha to
4.6 t/ha and an R2 that increased from 0.009 to 0.05. The accuracies of R2 were obviously improved
in three models: SVM (R2 = 0.834), KNN (R2 = 0.853) and GLMM (R2 = 0.879), and the mean RMSEs
were significantly reduced in the KNN models; the decreased proportion was nearly 17%. Integrated
LiDAR and optical data produced the best estimation accuracies with the highest R2 and a lower RMSE
among the five datasets of the input variables (OVs, LVs, OVs + TVs, LVs + TVs), especially when the
RF method was used (R2 = 0.913, RMSE = 13.352 t/ha). LiDAR data have an unparalleled advantage
over other remote-sensing data, but at a high cost. Optical data are less expensive; however, they
are vulnerable to the effects of saturation. Therefore, it is essential for extracting useful information
from a large amount of data and utilizing the advantages of multivariate remote sensing data, thereby
improving the accuracy of forest biomass estimation.
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Figure 2. The boxplots illustrate model accuracy results using different input datasets and prediction
methods: The distribution of the mean R2 (a) and the mean RMSE (b) from the 50 bootstrapped
models obtained using the five-fold-cross-validation for each prediction method. The black dotted
lines represent the mean value. RF, Random Forest; SVM, Support Vector Machines; BPNN, Back
Propagation Neural Networks; KNN, K-Nearest Neighbor; GLMM, Generalized Linear Mixed Model;
OVs, optical variables; LVs, LiDAR variables; OVs + LVs, the combination of optical and LiDAR
variables, OVs + TVs, the combination of optical and terrain variables; LVs + TVs, the combination of
LiDAR and terrain variables.

3.2. Optimal Prediction Methods for Forest AGB Estimation

A comparison of the results obtained using the different methods is presented (Figure 3); the
model with the RF method showed the best predicted accuracy, based on all of the data types. The
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performance of the SVM AGB models for modeling accuracy was the worst in terms of R2 and RMSE
among all methods tested. We assumed that this was due to the fact that they give poor results if the
number of features is much greater than the number of samples. Although the GLMM AGB model
had a relatively high R2, it also had a high RMSE, implying that the model was unstable. The observed
results concerning the prediction methods always exhibited a worse performance by BPNN and KNN
for forest AGB estimation, which may be strongly dependent on the relationship of the training dataset
with the prediction results. Outliers and erroneous values in the training data may reduce the model
accuracy. The complex relationship between forest AGB and remote sensing variables cannot be
well-explained using a simple linear model. The RF model, based on the machine learning method for
classification and regression, enabled the diversity of the relationships between the predictor variables
and the forest biomass to be taken into account in the studied area.

Figure 3. The mean R2 and RMSE of AGB models, which used five methods based on different datasets.
RF, Random Forest; SVM, Support Vector Machines; BPNN, Back Propagation Neural Networks; KNN,
K-Nearest Neighbor; GLMM, Generalized Linear Mixed Model; OVs, optical variables; LVs, LiDAR
variables; OVs + LVs, the combination of optical and LiDAR variables, OVs + TVs, the combination of
optical and terrain variables; LVs + TVs, the combination of LiDAR and terrain variables.

The performance of the model that used the RF, SVM, BPNN, KNN and GLMM methods was
further analyzed. Scatter plots of measured forest AGB against predicted data based on optical and
LiDAR data used five methods with 50 bootstraps (shown in Figure 4). The distribution of scatter points
is concentrated near the 1:1 line; the figure shows that SVM, BPNN, KNN and GLMM overestimated
forest AGB, especially SVM, which had a number of outliers in the results. The GLMM AGB model
has predicted AGB values distributed near the 1:1 line, but it had some dispersive outliers. This
phenomenon indicated that the GLMM method was unstable. The RF method was more stable than
the other methods, although the model overestimated forest AGB at low levels (0–120 t/ha) and
underestimated data at high value levels (120–250 t/ha), especially at levels with values greater than
180 t/ha. Thus, the results of the models, using different datasets and the five modeling methods,
showed that RF was the best method among all models, regardless of the types of datasets used.
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Figure 4. Predicted AGB vs. measured AGB. The black dotted line represents the 1:1 line. RF, Random
Forest; SVM, Support Vector Machines; BPNN, Back Propagation Neural Networks; KNN, K-Nearest
Neighbor; GLMM, Generalized Linear Mixed Model.

3.3. Mapping the Forest AGB Distribution

To summarize, this paper explores the best methods and the optimal combination of remote
sensing data for forest AGB estimation. According to Figure 2, the best methods for estimating forest
AGB are RF and an integration of LiDAR and optical data (OVs + TVs); these methods resulted in
the best prediction model among the five input data combinations, i.e., OVs, LVs, OVs + LVs, OVs +
TVs and LVs + TVs. We therefore used the best prediction model (based on LiDAR and optical data
and the RF method) to generate a forest AGB map for the study area (Figure 5a). For this study, large
areas show medium predicted biomass values, and higher biomass was mainly distributed in the
southwest. The predicted forest aboveground biomass values were from 15.05 t/ha–207.6 t/ha, and
many lower biomass values were concentrated in the northeast. Figure 5b presents that the higher
predictor variables were used in the estimation, including Hmean, Hmax, Hsd, canopy cover, Hcv, SAVI,
dissimilarity, NDVI, entropy and homogeneity ordered by normalized variable importance. The result
showed that the Hmean and Hmax contributed greatly to the estimation, the normalized importance of
which all exceeded 0.7. Comparing the data sources from which the predictor variables were derived,
we found that LiDAR data contributed more to the forest estimation than optical data.

Figure 5. Cont.
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Figure 5. (a) Map of the mean biomass estimates as obtained from the 50 bootstrapped model runs,
using the LiDAR and optical data variables in the random forest model; (b) the important contributions
of different predictor variables were used in the estimation.

4. Discussion

In this paper, we compared model accuracies using single and integrated remote sensing data and
five regression methods to estimate the forest AGB in arid and semi-arid regions of China. The results
of the models revealed that the RF AGB model, which integrated LiDAR and optical variables, yielded
the best estimation accuracy, with an R2 = 0.913 and RMSE = 13.352 t/ha. Therefore, it was essential to
discuss the effects of predictive factors (data types, modeling methods and terrain data, etc.) for forest
AGB model.

4.1. Importance of Predictive Factors for Model Performance

Previous studies revealed that the estimation accuracies of the models using different data types
and modeling methods were various [34,65–67]. Therefore, it is essential to discuss the effect of
data types and modeling methods on the forest biomass estimation. We used Analysis Of Variance
(ANOVA) to rank the importance of the prediction methods and data types on the accuracy of forest
AGB predictions (Table 4). In analysis results, the Sum of Squares values (SumSq) (which indicate an
important contribution to the explained variance of R2 and RMSE) evaluated the importance of the
predictive factors. Regarding variance in R2, the data types (SumSq = 0.082) seem to be more important
than the prediction methods (SumSq = 0.065) for the accuracy of biomass prediction. ANOVA results
for RMSE as the dependent variable showed that the SumSq of the predictor data types was high
(1230.246), while the prediction method reached a relatively low SumSq (148.086). This indicates that
the data type is more important than the modeling method for determining the model accuracy. The
results are similar to those of an earlier study performed by Fassnacht et al. [33]; they found that data
type was more important than prediction method and sample size in the forest biomass model.

Table 4. Results of ANOVA conducted to explain the variance of R2 and RMSE obtained for the
different experiments. SumSq, Sum of Squares.

Response Variable df
R2 RMSE

SumSq F Sig. SumSq F Sig.

Data types 4 0.082 17.603 0.000 1230.246 25.513 0.000
Methods 4 0.065 13.798 0.000 148.086 3.071 0.047
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4.1.1. Single vs. Integrated Data Sources for Estimating Forest AGB

In our study, the AGB models that used LiDAR data were better than optical data, and the results
were similar to those of earlier findings [68,69]. Gobakken et al. [49] estimated forest biomass using
airborne LiDAR data alone and obtained a very high accuracy (R2 = 0.95, RMSE = 19.02 t/ha) as a
result. Kulawardhana et al. [69] indicated that LiDAR has a significantly higher predictive efficiency
than optical data for estimating forest biomass. In related studies performed by Laurin et al. [23],
it was found that the AGB model using optical data alone could limit prediction ability. This may
be because optical data were generally disturbed by the saturation phenomenon in the region with
signal saturation of high biomass or canopy density, and the AGB model accuracy was reduced.
However, LiDAR data showed a close relationship with observed biomass and forest canopy structure
under the same conditions. The combination of LiDAR and optical data can improve the accuracy
of forest AGB estimation compared to the LiDAR-only model, to a certain degree, which is in line
with previous studies [31,32]. The results from our study confirmed those findings, i.e., integrated
LiDAR and optical data yielded the best results. The main reason is that optical data can provide
complementary spectral information to LiDAR data, which offer 3D structural information about
vegetation. The additional optical data improved R2 by 1.1%~6.2% compared with LiDAR data alone,
which showed that incorporating optical data made a small contribution towards improving estimation
accuracy. Predictor variables derived from LiDAR data were more important to biomass estimation
than optical data according to Figure 5b. The relationships between biomass and the top two predictor
variables (Hmean and Hmax) are shown in Figure 6. Hmean and Hmax were positively correlated with
measured biomass; especially for Hmean, the R2 reached 0.721. As the important forest biophysical
parameters, the height variables can effectively estimate the biomass due to the biomass of the branches
and stems accounting for over 95% of the AGB for a mature forest [70]. Other researchers also found
that the mean of the tree height was a good predictor factor for forest biomass estimation [71–73].
For example, Simard et al. [71] found that the mean tree height was highly related to the aboveground
biomass in Everglades National Park. Scale is a crucial issue of the remote-sensing data; the resolution
of optical data and the density of LiDAR point cloud have a strong effect on the forest biomass [74,75].
We will explore the effect of remote sensing data with different scales on biomass estimation accuracy
in the future.

Figure 6. Measured aboveground biomass versus the mean (a) and the max (b) of tree height in the
sample plot.

4.1.2. Influence of the Statistical Method on Estimation

The contribution of prediction methods is slightly smaller than that of data types according to the
SumSq of R2, but its value is far less than data types in terms of RMSE. Among the considered methods,
RF outperformed the other prediction methods, particularly when integrating LiDAR and optical
data. The results of the GLMM AGB model are unstable with a relatively higher R2 and RMSE. SVM
performed more poorly than the tested models, and the performances of the BPNN and KNN methods
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were always the worst. Fassnacht et al. [25] compared the accuracy of the forest AGB model that used
RF, KNN, SVM, LMSTEP (Stepwise Linear Models) and GP (Gaussian Processes) and found that RF
was the best method used for prediction. The RF method was also used by Liu et al. [26], and they
found that RF was a better method than Stepwise Regression (SR) and SVM, when estimating forest
AGB in Heilongjiang Province of China. Our study corroborated these research works; the RF method
was able to use different kinds of data for forest biomass estimation, and the prediction result is more
optimal than these general methods. The RF method performed very well compared to many other
regressions, which may be due to the fact that each node in the random forest is split using the best
among a subset of predictors randomly chosen at that node [76]. In this study, we only systematically
compared five common modeling methods (RF, SVM, BPNN, KNN and GLMM), but the model has its
own disadvantage in different degrees. The algorithms themselves can be further researched, and we
will explore the integrated modeling method with the advantages of each algorithm.

4.2. Impact of Sample Size on Forest AGB Estimation

A large number of sample plots in forest inventories is costly; however, sample size has an effect
on the precision of forest biomass estimation [77]. Therefore, it is necessary to explore the impact of
sample size on the prediction model and improve the sampling efficiency and prediction accuracy. The
modeling accuracy results of RF AGB models estimated with different sample sizes (50%, 60%, 70%, 80%,
90% and 100% of measured biomass) are shown in Figure 7. It is indicated that the R2 is increasing and
RMSE decreasing with the increase of the sample size; however, the range of variation slows when the
sample size to be more than 90%. This appears similar to Jacob et al. [30,78]; they analyzed the effects of
various LiDAR pulse densities and sample sizes on a model-assisted approach to estimate forest inventory
variables. The result showed that model accuracy was hardly increasing when the number was more than
35. In the previous studies, Fassnacht et al. [33] reviewed studies with regard to the number of sample
sizes and remote sensing data used in the forest biomass estimation. They have explored relevant studies
from 2000–2013 and found a sample size between 20 and 50 in most studies, especially for 30. Nie and
Luo et al. [30,51] have used airborne LiDAR data and 33 plots’ measurement data to estimate the forest
AGB and achieved better prediction results (R2 = 0.815 and 0.893, respectively). Their study regions were
similar to ours, which were located on Heihe River Basin in arid and semi-arid regions of China. These
research works indicated that the prediction model is achievable in our study, which also may be due to
the sample plot being typical. Compared to the number of sample sizes, the distribution of the sample
plots was also important for the prediction model [79]. The optimal distribution of the sample plots could,
to a certain extent, compensate for reducing the number of sample sizes [80]. Even though the number of
field sample plots (32 sample plots) is not abundant, we think that the prediction results are valid under
the area with a simple forest landscape in our study.

Figure 7. Accuracies of the RF AGB models estimated by different sample sizes.
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4.3. Effect of Terrain Variables on the Prediction Model

Our second-best model for AGB is the RF method that integrated LiDAR and terrain data; it
indicated that terrain data can contribute similar information as optical data. The results suggest
that terrain data may be sufficient to improving the accuracy of forest AGB estimation. This agrees
with the result found by Mohamedou et al. [56]; they concluded that the terrain data demonstrate
usefulness in improving prediction accuracy for tree growth in southeast Finland. Similar research
results were found by Claudia et al. [81]; they used GLAS data to estimate forest height and found that
the estimation was influenced by surface topography. Greaves et al. [57] found that the model accuracy
of shrub biomass was improved with additional terrain data, and they considered that both optical
and terrain data improved biomass prediction may be due to LiDAR point clouds that cannot capture
the structure of vegetation in areas with low biomass. The positive effect of terrain data for forest
biomass estimation was possibly due to the fact that the area of our study had a rough topography
with steep slopes and deep valleys. Further studies are required to explore the contributions of
terrain variables in estimating forest biomass under various topographical conditions and to develop
applicative methods for retrieving forest biomass in different regions, such as study areas with similar
topographic conditions.

5. Conclusions

In this study, we compared the prediction accuracy of various data types and modeling methods
for estimating forest AGB. The results indicated that RF is the best modeling method, no matter
the types of datasets. However, for the RF AGB model, the results from the five input datasets
were different. LiDAR data were more effective than optical data for estimating forest AGB, and
incorporating additional terrain variables could slightly improve the estimation accuracy. The optimal
AGB model, which used the RF method with integrated airborne LiDAR and optical data, mapped at
the regional scale over the Upper Heihe River Basin in Northwest China.

Our work was a modest contribution to the study of using the combination of LiDAR and optical
data to estimate forest biomass in arid and semi-arid regions. However, the utilization of LiDAR was
limited by the relatively small coverage, which led to a low ability to generalize the prediction methods
for different forest structure distribution areas. This requires extensive field and remote sensing data to
improve statistics and establish a link between regional and global-scale biomass information. Further
research is particularly important to focus on areas with special climate conditions, such as topical
forests and water conservation forests, in arid and semi-arid regions.
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