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Abstract: Quarry sites result from human activity, which includes the removal of original vegetation
and the overlying soil to dig out stones for building use. Therefore, the dynamics of the quarry area
provide a unique view of human mining activities. Actually, the topographic changes caused by
mining activities are also a result of the development of the local economy. Thus, monitoring the
quarry area can provide information about the policies of the economy and environmental protection.
In this paper, we developed a combined method of machine learning classification and quarry region
analysis to estimate the quarry area in a quarry region near Beijing. A temporal smoothing based on
the classification results of all years was applied in post-processing to remove outliers and obtain
gently changing sequences along the monitoring term. The method was applied to Landsat images to
derive a quarry distribution map and quarry area time series from 1984 to 2017, revealing significant
inter-annual variability. The time series revealed a five-stage development of the quarry area with
different growth patterns. As the study region lies on two jurisdictions—Tianjin and Hebei—a
comparison of the quarry area changes in the two jurisdictions was applied, which revealed that the
different policies in the two regions could impose different impacts on the development of a quarry
area. An analysis concerning the relationship between quarry area and gross regional product (GRP)
was performed to explore the potential application on socioeconomic studies, and we found a strong
positive correlation between quarry area and GRP in Langfang City, Hebei Province. These results
demonstrate the potential benefit of annual monitoring over the long-term for socioeconomic studies,
which can be used for mining decision making.
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1. Introduction

After the 1980s in China, especially in Beijing, there was a rapid expansion in economic growth
with cities and urban areas consuming a huge amount of building materials. Between 1982 and
2015, the population in Beijing increased from 9.23 million to 21.71 million with an annual increase
of 2.6%. In the same period, the built-up area in Beijing grew from 303.91 km2 to 1401.01 km2

(http://data.stats.gov.cn/english/easyquery.htm?cn=E0103). The growing population, the urban
sprawl, and the improvement of infrastructures during the past three decades in Beijing have
meant that quarries have progressively exploited the surrounding mountains. More specifically,
quarries in Langfang City of Hebei Province went through an enormous expansion because of the
great development of the major cities around this region. Metropolises such as Beijing and Tianjin
experienced a wide upsurge in building construction and the materials of these buildings came
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mainly from the nearby quarries considering the transportation fees. Overall, the continuous urban
sprawl has given rise to long-lasting quarry activity in the nearby mountains. Quarries contribute a
great part to local government revenue, which pushes the industry of building material to a leading
position in Hebei‘s economy. Quarries developed in a highly unsupervised manner during its early
age, and its change was mainly subject to supply and demand at that time. With rapidly increasing
house prices and in the absence of sound supervision from local governments, quarry areas may
undergo continuous growth. However, with the intervention from local government, the direction
and magnitude of its dynamics may change dramatically due to changes in economic policy and
environmental initiatives. Therefore, monitoring quarry-rich regions at multi-temporal and high
spatial resolution is important for local governments to gain information that is needed for the policies
of economic and environmental protection.

Surface mining activities range from large open-cast coal and base metal mines to much
smaller aggregate (rock, gravel, and sand), industrial minerals (potash, clay), and building material
(granite, stone and marble) quarries [1]. Mining operations are done in a place called a quarry or quarry
site. A successful monitoring approach for evaluating surface mining processes and their dynamics on
a regional scale requires observations with frequent temporal coverage over a long time to differentiate
natural changes from those associated with human activities. To meet such challenges, accurate and
up-to-date information is needed. Since the 1970s, analog aerial photographs have been used to
map spatial changes in mined areas [2]. Today, remote sensing with its capability of establishing
calibrated observations over decadal-scale time periods and at sufficiently high spatial resolution
(≤30 m) can provide this information to achieve better insight into quarry dynamics. Several local
and regional studies have focused on the dynamics of quarries using a variety of remotely-sensed
datasets with various spatial and temporal resolutions [1,3–10]. The findings from these studies have
demonstrated the ability of remote sensing to detect and analyze the magnitude and spatial changes of
natural environments as a result of mining activities [3,4]. However, most prior remote sensing studies
focusing on quarry area changes have been temporally limited, relying on the comparison of imagery
from two to three time slices (e.g., [1,5,6,9,10]). Studies [5,6] with high spatial resolution images (<5 m)
usually focused on rather short time scales, ranging from several months to a couple of years due to
the limited extent and availability of very high-resolution imagery, while other analyses typically span
a couple of decades. On the other hand, several studies have turned to multi-temporal analyses either
with multi-sourced data [8] or a single source of data (Landsat) [7]. Moreover, the diversity of data
sources and the acquisition timing has resulted in limited comparability among the different studies.
In this study, we used Landsat data series over a long time and with sufficient observations to fully
investigate quarry dynamics. Unlike [7,8], we aimed to obtain an annual result of quarry area, trying
to further investigate the relationship between quarry dynamics and local economy using the acquired
quarry area series.

Since the entire Landsat archive is freely provided by USGS, it becomes viable to exploit this
valuable and consistent data source to access multi-scaled land surface dynamics in most regions.
Recently, with increasing computation capacities and novel processing techniques, more and more
studies focusing on monitoring high-resolution land cover changes have shifted focus toward a high
frequency multi-temporal analysis using the entire Landsat archive, with over 40 years of continuous
acquisitions. Examples include mostly forestry applications. For example, Kennedy, Cohen, and
Schroeder [11] applied a trajectory-based change detection method to a stack of Landsat images from
1984 to 2004 to monitor forest disturbance dynamics; Hansen et al. [12] mapped global forest loss and
gain from 2000 to 2012 based on Landsat data; Rosenau, Scheinert, and Dietrich [13] monitored glacial
flow velocities both at decadal and seasonal time scales using Landsat imagery; and Macander et al. [14]
mapped snow persistence for Northwest Alaska using Landsat images from 1985 to 2011. These studies
are predominantly based on the analysis of multi-spectral indices (MSI) or the original spectral bands.
In Fraser et al. [15], robust linear trend analysis of temporal Landsat Tasseled Cap (TC) index time-series
was proposed and applied in different studies of land changes, such as post-fire forest recovery [16],
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lake dynamics [17], and the land cover change classification [18]. Recently, Google Earth Engine [19] has
greatly facilitated the temporal applications of the Landsat archive with its powerful cloud computing
ability, such as the monitoring of urban boundaries [20] and woody vegetation clearing [21].

We noticed that quarry changes might have a potential relationship with the regional economy
for it is a result of human activities and economic development. However, with the scarce observations
so far, the potentially strong relationship between quarry area and economic parameters have
not been sufficiently analyzed. Few studies have examined the correlation between quarry area
and GDP or gross regional product (GRP), whereas a large number of statistical studies have
demonstrated that there is a positive correlation between GDP and remotely sensed nighttime light data
captured by Operational Linescan System (OLS) of the US Defense Meteorological Satellite Program
(DMSP) [22–25]. This research indicates that it is feasible to use nighttime lights to estimate GDP or
GRP. Therefore, we were inspired to research whether quarry area captured by Landsat satellites has a
positive correlation with GDP or GRP and investigate the possibility of using daytime remote sensing
data for socioeconomic study.

In this study, we first examined the areal expansion of aggregate quarries over 34 years in the
study region in Northern China, using remote sensing techniques. Due to the small extension of
quarries in one year, we chose a single imagery captured by the Landsat 5 or Landsat 8 satellite for each
year between 1984 and 2017. We then applied a modified random forest classification for quarry range
extraction and analyzed quarry dynamics in the study region. The studied regions governed by the
Hebei and Tianjin governments allow us to compare different quarry dynamics responding to different
policies in these two places. Our analysis aims to detect decadal-scale changes in the quarry sites,
as well as the relationship between quarry area and socioeconomic parameters. We try to demonstrate
in this study that quarry area extracted from remote sensing data can be used to sense society changes,
for many land cover changes should be a result of human activities and social development.

2. Study Area

The study area we chose is part of the middle range of the Yanshan Mountains, located in the
northeast of Langfang City, Hebei Province, China, where it has been exploited for aggregate since
the 1980s. The study area is situated on the border of Beijing, Tianjin, and Hebei, east of Beijing city
(Figure 1). Its location is in the north of China between latitudes 39◦59′ and 40◦5′N and longitudes
117◦5′ and 117◦14′E and covers an area of about 145 km2 (Figure 1). The highest altitude in this area is
527 m above sea level and the lowest is 4 m.

There is a large amount of high-quality dolomite ore, limestone, shale, and other minerals under
the hills in the study area. In the early 1980s, some locals had exploited these minerals for profit.
With the development of urbanization in the surrounding region, a large amount of stone building
materials have been required for a growing number of construction projects in the cities every year.
Considering the cost of transportation, most stone building materials such as aggregates and cement
come from quarry sites around the cities. The growing rock market triggered the rapid extraction
of rocks from these hills. With the rise in housing prices, the price of stone in mining enterprises
soared, resulting in mining activity that can be seen everywhere in the hills inside the study area.
We choose this region as the study area because it contains quarry sites in both Langfang and Tianjin.
This facilitates the comparison of quarry dynamics in the two regions, and the study period can
effectively represent the quarry changes both in the early period when local people dominated the
exploitation activity and in the later period when the government has managed the production and
recovery in the quarry sites. The changes in the study area also reflect the many socioeconomic
parameters and some big events that happened around this region.
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Figure 1. Study area located at the boundary of Beijing, Tianjin, and Hebei; the upper left image is the 
Landsat imagery in 2016 depicting severe damage to the mountain body caused by mining activities; 
the lower left image is a digital surface model (DSM) map of the study area. Data comes from Advanced 
Land Observing Satellite (ALOS) DSM. (http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm). 
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While there are numerous satellites orbiting the globe with a multitude of instruments onboard 
that explore various bandwidths in the electromagnetic spectrum, Landsat-based images are ideally 
suited for surface feature analyses because of the long history of earth observation and rich bands 
with ample spectral information [26]. Note that Landsat 5 Thematic Mapper (TM) operational 
imaging ended in November 2011 [27]; subsequently, Landsat 8 was launched in February 2013 [28]. 
Therefore, only Landsat 7 imagery with missing data are available for 2012 due to the failure of the 
Enhanced Thematic Mapper Plus (ETM+) Scan Line Corrector (SLC) on Landsat 7 post-2003. 

In this study, an annual observation is enough for tracking quarry areal extents because the 
processes that drive quarry area growth or decline are slow enough to be captured well with an 
annual repeat frequency. Thanks to the high temporal frequency of capturing images, we can easily 
find ideal annual observations with low cloud coverage from 1984 to present. Eventually, 33 Landsat 
5 (TM) and Landsat 8 (Operational Land Imager—OLI) images were picked from the US Geological 
Survey’s (USGS) EarthExplorer platform (https://earthexplorer.usgs.gov), representing years from 
1984 to 2017 (except 2012), and WRS Paths 122 to 123 and Rows 32. All scenes were ordered as surface 
reflectance (SR) data. Landsat 5 SR data provided by USGS are generated using the atmospheric 
correction chain called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [29]. 
In 2010, USGS Earth Resources Observation and Science Center (EROS) released on-demand LEDAPS 
processing for generating SR products for the entire Landsat 5 archives (http://espa.cr.usgs.gov). On 
the other hand, Landsat 8 SR data are generated from the Landsat Surface Reflectance Code (LaSRC) 
[30]. Currently, both Landsat 5 and Landsat 8 SR data can be ordered using EarthExplorer. Because 
of the SLC failure of Landsat 7, we chose not to pick data for 2012 in order to avoid the influence of 
the missing scan line data in ETM+ images. The images from TM and OLI sensors have a common 

Figure 1. Study area located at the boundary of Beijing, Tianjin, and Hebei; the upper left image
is the Landsat imagery in 2016 depicting severe damage to the mountain body caused by mining
activities; the lower left image is a digital surface model (DSM) map of the study area. Data comes
from Advanced Land Observing Satellite (ALOS) DSM. (http://www.eorc.jaxa.jp/ALOS/en/aw3d30/
data/index.htm).

3. Materials and Methods

3.1. Data

While there are numerous satellites orbiting the globe with a multitude of instruments onboard
that explore various bandwidths in the electromagnetic spectrum, Landsat-based images are ideally
suited for surface feature analyses because of the long history of earth observation and rich bands
with ample spectral information [26]. Note that Landsat 5 Thematic Mapper (TM) operational
imaging ended in November 2011 [27]; subsequently, Landsat 8 was launched in February 2013 [28].
Therefore, only Landsat 7 imagery with missing data are available for 2012 due to the failure of the
Enhanced Thematic Mapper Plus (ETM+) Scan Line Corrector (SLC) on Landsat 7 post-2003.

In this study, an annual observation is enough for tracking quarry areal extents because the
processes that drive quarry area growth or decline are slow enough to be captured well with an annual
repeat frequency. Thanks to the high temporal frequency of capturing images, we can easily find
ideal annual observations with low cloud coverage from 1984 to present. Eventually, 33 Landsat 5
(TM) and Landsat 8 (Operational Land Imager—OLI) images were picked from the US Geological
Survey’s (USGS) EarthExplorer platform (https://earthexplorer.usgs.gov), representing years from
1984 to 2017 (except 2012), and WRS Paths 122 to 123 and Rows 32. All scenes were ordered as surface
reflectance (SR) data. Landsat 5 SR data provided by USGS are generated using the atmospheric
correction chain called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [29].
In 2010, USGS Earth Resources Observation and Science Center (EROS) released on-demand LEDAPS
processing for generating SR products for the entire Landsat 5 archives (http://espa.cr.usgs.gov).
On the other hand, Landsat 8 SR data are generated from the Landsat Surface Reflectance Code
(LaSRC) [30]. Currently, both Landsat 5 and Landsat 8 SR data can be ordered using EarthExplorer.

http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
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Because of the SLC failure of Landsat 7, we chose not to pick data for 2012 in order to avoid the
influence of the missing scan line data in ETM+ images. The images from TM and OLI sensors have a
common spatial resolution (30 m) and (six) overlapping spectral bands: blue, green, red, near-infrared
(NIR), shortwave infrared 1 (SWIR1), and shortwave infrared 2 (SWIR2). All common spectral bands
were used for analysis while the remaining bands were excluded from further processing. Images from
the first Landsat sensor generation (Multispectral Scanner/MSS) were not taken into consideration at
this point because of their coarser spatial resolution and lower spectral fidelity. The image selection
was filtered to acquisition dates in May as we observed that Landsat images of the study area always
had no or very little cloud in May among these years. Finally, we got 33 scenes with a cloud coverage
near to zero in the study area. Detailed image ID and acquired dates are shown in Appendix A.

For our analysis, we used GRP data of Langfang City from 1990 to 2016. All data came from the
Hebei Economic Yearbook [31], which contains the annual economic development of Hebei Province
as recorded by the Statistics Bureau of Hebei Province.

3.2. Methods

The method developed in this study follows a workflow of automatic image clipping and indices
calculating, and subsequent classification and calculation of the quarry area based on a modified
classification and quarry region analysis. The methodological framework is presented in Figure 2 and
described in the following four subsections: pre-processing (Section 3.2.1), classification (Section 3.2.2),
post-processing (Section 3.2.3), and calculation of quarry area (Section 3.2.4).
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3.2.1. Pre-Processing

After being downloaded from USGS, all images were clipped into the study area.
Then, we calculated several multispectral indices for each scene, serving as proxies for different
land surface properties. We included the Landsat specific Tasseled Cap indices of brightness (TCB),
greenness (TCG), and wetness (TCW) [32–34], as well as other general indices, such as the Normalized
Difference Vegetation Index (NDVI) [35], the Normalized Difference Water Index (NDWI) [36], and the
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Normalized Difference Building Index (NDBI) [37]. They were chosen to reflect a variety of surface
characteristics such as vegetation status, surface moisture, or buildings. The TC indices were calculated
with the sensor-specific formulas for reflectance data. The calculation was performed using the
following equations:

TCx = ρB ∗ FB + ρG ∗ FG + ρR ∗ FR + ρNIR ∗ FNIR + ρSWIR1 ∗ FSWIR1 + ρSWIR2 ∗ FSWIR2 (1)

NDVI =
ρNIR − ρR
ρNIR + ρR

(2)

NDWI =
ρG − ρNIR
ρG + ρNIR

(3)

NDBI =
ρSWIR1 − ρNIR
ρSWIR1 + ρNIR

(4)

Then, the six calculated index layers were stacked together with the six original bands to get a
12-band scene for each year.

3.2.2. Classification

We first applied a supervised machine learning classification approach, which separated the
image into two target classes: quarry class and non-quarry class. Random forest [38] (RF) has been
established as one of the most accurate and widely used algorithms [39–42] for remote sensing
and other classification applications. One of its advantages is that it produces an estimation of
classification accuracy based on out-of-bag cross-validation (OOB-CV) [43–45]. However, OOB-CV
strongly overestimates model accuracy when classifying remote sensing imagery using training areas
with several pixels, which was recently demonstrated in [46]. The authors of [46] think the reason is
that pixels in a training patch are not independent—they have a strong spectral similarity—whereas
the OOB-CV takes all samples as being independent. To deal with the problem, a modification of the RF
algorithm, splitting the training patches instead of the pixels that compose them, is proposed in [46] and
implemented in the R package called SDRF (Spatial Dependence Random Forest). For the classification
process, we used the modified random forest function in the SDRF package. In this function, there are
two important parameters that should be controlled to acquire a better classification result: ntree
(number of trees to grow), and mtry (number of variables randomly sampled as candidates at each
split). Since the random forest classifier is computationally efficient and does not overfit, the number
of trees can be as large as possible [47]. However, the classification no longer improved as the number
of trees increased above a threshold, as demonstrated in some studies investigating the sensitivity of
the RF classifier to the number of trees [42,48]. A default value of ntree for remote sensing imagery
classification is 500. Higher mtry will result in stronger individual decision trees but with an enhanced
correlation between trees the model accuracy is reduced [49]. Usually, a square root of the total number
of variables is used in the classification task.

Training Sampling

We selected 20~50 training sample areas within and in close proximity to our study sites with
respect to a set of remote sensing imagery with higher resolution, which mainly came from Google
Earth. The ground truth selection process is based on a stratified manual sampling. Since the
non-quarry class can have a variety of different surface conditions, we increased its sample size
to attribute for this variety. We assumed that quarry range changes slightly over several years and its
change limits to its boundary. Therefore, once a sample is identified as an inside part of the quarry
according to high-resolution images, we can assume this sample remains unchanged in several near
years unless it shows an extensive spectral change on these years’ images. The Landsat data and in situ
data, as well as high-resolution images, were used for determining suitable locations of the manually
selected and determined ground truth locations.
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Classification Method Details

The six common spectral bands (blue, green, red, NIR, SWIR1, and SWIR2), as well as the
six calculated indices (TCB, TCG, TCW, NDVI, NDBI, NDMI), were used as input features for the
pixel-based classification process. The SDRF classification model was trained for each image in every
year using the respective training samples. The two parameters ntree and mtry were determined with
a test based on the modified out-of-bag (M-OOB) accuracy in this study and we found that the number
of 500 for ntree and 4 for mtry worked well for the classification task. As the quarry area covered only
a small fraction of the study area before 1995, we used the class weights for the models before 1995
according to the prior of the sample areas.

The classification output contains a hard classification output with the two pre-defined classes
(Table 1). This is an ensemble result voted by all decision trees in the RF classifier. The random
forest can also output a ratio result for each class, which is calculated as the proportion of trees
voting for one class against all votes. Each ratio result is output as a confidence layer for each class,
which contains the classification probability (confidence index) of each class in a range from 0 to 1.
The SDRF-internal M-OOB accuracy, Cohen’s Kappa, and area under the ROC curve (AUC) were used
for quality assessment of the classification.

Table 1. Classification scheme with the number of training samples (number of sample pixels and
sample areas in six selected years).

Year
Class Name

Quarry Non-Quarry (Building, Forest, Farm, Bare Ground)

1984 431 (12) 21,226 (46)
1992 1429 (33) 19,934 (47)
2002 1517 (18) 17,445 (43)
2010 3341 (36) 17,312 (42)
2013 2791 (30) 16,341 (43)
2016 3828 (18) 18,975 (31)

3.2.3. Post-Processing

The output from the random forest is a per-pixel classification with two classes. The per-pixel
results tend to be noisy due primarily to the effects of pixel-scale misclassification. These effects
include couples of pixels among vegetation area where naturally bare stones are misclassified as
quarry. There are also some speckles in the classification results, which is common to many per-pixel
classification results. Thus, a post-classification editing step is necessary.

The presence of bright topographic features dominated by cement and stones poses a challenge
when trying to extract quarry location. For example, cement ground, cement roads, and the depositories
for raw rock materials in the flat terrain can be mistaken by the analysis algorithm as quarry sites
as they present a very similar ground feature because of their similar surface materials. Thus, we
need to introduce some degree of filtering that would eliminate anomalous pixels from the quarry
pixels. For example, quarry sites only exist near or on hill slopes where the altitude is higher than
other flat terrain. Therefore, we decided to process the classification result images with an altitude
mask. We obtained the altitude mask from the ALOS DSM data by taking an area higher than 50 m as
a valid field and then dilating this field by 9 pixels in order to cover quarry hollows at the foot of the
hills. Figure 3 illustrates the altitude mask we processed from DSM image. Only quarry pixels inside
the valid area were considered as true quarry area.
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3.2.4. Calculation of Quarry Area 

During the final step, we calculated the areal extent of quarries in the study area. We noted that 
unlike other naturally occurring changes, such as land becoming a lake, quarries are exploited by 
humans in a short time, which means we cannot distinguish a transitional state of the land between 
quarry and other land-cover types. Therefore, it is reasonable that we obtained a per-pixel 

Figure 3. (a) DSM image of the study area; (b) Altitude mask of the study area.

Temporal Smoothing

After all scenes are processed using the above steps, we applied a temporal smoothing to exclude
some non-quarry pixels in the quarry class, such as dusty land caused by wind around the quarry in
certain years and also to obtain a consistent change result. Once other classes are changed to quarry
(always with the removal of vegetation and surface soil), it will remain as quarry for deep exploration
of stones for the following years. For the reverse situation, once a quarry changes to other classes,
whether naturally or artificially, it would not change back to a quarry in a short time because it is
obviously forgotten or protected by humans. Based on this, it is safe to assume that outliers in the
temporal sequence of confidence index is very possible a misclassified one. For each class, we first
composed a confidence sequence for each pixel by putting together the confidence index of each year
in order. Then, we applied a median filter to the sequences in order to remove outliers and obtain
gently changing sequences along the observation period. An example of this method is expressed
in Figure 4 where the lines indicate the confidence index of the quarry class during the monitoring
period. Obviously, an outlier in 2005 is successfully removed using the temporal smoothing strategy.
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3.2.4. Calculation of Quarry Area

During the final step, we calculated the areal extent of quarries in the study area. We noted that
unlike other naturally occurring changes, such as land becoming a lake, quarries are exploited by
humans in a short time, which means we cannot distinguish a transitional state of the land between
quarry and other land-cover types. Therefore, it is reasonable that we obtained a per-pixel classification
with just two classes. However, in the quarry margins, quarry expansion tends to occur on a sub-pixel
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scale (<30 m), resulting in mixed pixels in these areas. In order to obtain an accurate area result,
we calculated the area of the internal zone and margin zone in different ways.

Based on the hard classification results, edges of quarries were identified. Then, we defined
two zones to obtain a sub-pixel level accuracy in the quarry area calculation. The quarry margins
are defined by the edges being dilated by 1 pixel to capture the sub-pixel expansion of the quarry.
To obtain the internal zone, we used the hard-classified quarry mask and applied a morphological
erosion to reduce the quarry’s radius by 1 pixel to avoid the quarry margin.

The two defined zones were treated differently. The internal zone was regarded as pure pixels and
its area was therefore calculated as a full quarry area. For margins, we chose a more dynamic sub-pixel
analysis approach to account for its mixed pixels. Its area was represented by the classification
probability (confidence index), which was assumed to be the fraction of each endmember/class
and they were tested for plausibility on high-resolution imagery, as well as field measurements and
observations, which were available for selected locations. These confidence indices were used as a
weighing factor of quarry class within each pixel of the quarry margins. For example, a pixel in the
margin zone has a confidence index of 0.705 for a quarry, representing 70.5% of the 900 m2 per- pixel;
hence, 634.5 m2 is calculated as quarry within this pixel. Figure 5 is an example taken from the
classification result of 2002 to illustrate the calculation process.
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Figure 5. Process illustration using 2002 as an example. (a) Edges of quarry; (b) Three defined zones;
(c) Three types of zones in detail: zone (A) is the internal quarry region, which is fully accounted for
in the area calculation; zone (B) is the margin of the quarry zone, which is partly accounted for in the
area calculation taking the confidence index as a weight coefficient; zone (C) is the region classified
as non-quarry.
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4. Results

4.1. Classification Accuracy

The classification of two defined classes yielded a very good separation on the ground truth data
of the defined classes. M-OOB and Cohen’s Kappa, as well as AUC for the quarry class, are listed
in Table 2, which suggest that the classifier archived a high accuracy using the parameters defined
in Section 3.2.2.

Table 2. Accuracy of the classification results on the ground truth data.

Year M-OOB Kappa AUC Year OOB Kappa AUC

1984 0.97339 0.94199 0.99608 2001 0.97936 0.94864 0.99724
1985 0.97353 0.93944 0.99366 2002 0.97177 0.92991 0.99689
1986 0.96850 0.93227 0.99343 2003 0.93379 0.81045 0.98081
1987 0.96300 0.91500 0.99635 2004 0.95965 0.90914 0.99326
1988 0.95909 0.91005 0.99283 2005 0.97118 0.92891 0.99508
1989 0.96172 0.90129 0.99500 2006 0.97269 0.94694 0.99616
1990 0.97850 0.95124 0.99854 2007 0.96985 0.92488 0.99293
1991 0.96458 0.91188 0.99433 2008 0.96660 0.93317 0.99408
1992 0.96921 0.92225 0.99530 2009 0.97748 0.95445 0.99669
1993 0.97177 0.91871 0.99290 2010 0.97391 0.93918 0.99476
1994 0.97711 0.94931 0.99450 2011 0.97780 0.95656 0.99722
1995 0.97324 0.94332 0.99479 2013 0.94541 0.89418 0.98797
1996 0.97278 0.93496 0.99144 2014 0.95515 0.90864 0.99157
1997 0.96842 0.92273 0.99193 2015 0.94397 0.88609 0.98819
1998 0.96799 0.93110 0.98967 2016 0.96577 0.93542 0.99557
1999 0.96782 0.92415 0.99157 2017 0.95537 0.91516 0.99353
2000 0.98299 0.95761 0.99817

4.2. Quarry Time Series

During the final step, the annual areal extent of the quarry was calculated. The quarry time series
was produced after passing all images through the workflow that we described earlier spanning the
period from 1984 to 2017, i.e., about 33 years of coverage. The image series had a gap in 2012 and,
therefore, we actually attained a 34-year time series of quarry area.

The quarry area dynamics are presented as line charts (Figure 6). The left line chart indicates
the area change of the quarry during the past 34 years. Generally, the area increased before 2013 and
decreased during the following 3 years. In May 2017, the quarry experienced a great expansion again.
The right line chart represents its change speed at different time points, where each point means the
change amount from the last year to this year. This chart insinuates different change rates at different
time periods. According to its change patterns presented in the graph, five different change periods
are distinguished: (1) The first period was from 1984 to 2002. In this period, the change speed kept at
a low level, mainly under 0.5 km2 per year, except for the speed in 1993. The speed changed slowly,
taking roughly 4–5 years to rise and fall. (2) The next period with a high change speed continued from
2002 to 2010. Its speed was greater than 0.6 km2 per year during this period, except in 2008. (3) The
area then underwent a low-speed increase over the following 3 years from 2011 to 2013. (4) Its change
rate dropped to negative values in the following 3 years (2013–2016), which means the quarry area
went through a decline in these years. (5) Finally, from May 2016 to June 2017 sees a great areal growth
in the quarry.
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We then portrayed the changes in the quarry boundaries in each period as follows. Each map
delineates the quarry ranges before and after one period. In these maps, the blue area represents
unchanged quarry regions, the red area represents extended quarry regions, and the cyan area
represents recovered quarry regions.

Figure 7a,b shows the two stages of change in the first period, changes between 1984 and 1992
and changes between 1992 and 2002. In the early stage of quarry activities, since 1984, quarries had a
scattered distribution. In the beginning, local people were motivated to exploit the rocks for the great
profits from the building materials. They extracted stones and rocks without any planning and never
considered the amount of prospecting for rocks in the quarry sites. Gradually they abandoned some
smaller quarries and flocked to areas where plentiful rocks suitable for construction were extracted.
By 1992, the scattered quarries in places that were rich in rocks were expanded and then merged into
several large quarry sites. Others sites were abandoned and then re-covered with vegetation naturally
in a short time for these quarries had only been minimally exploited. Then, from 1992 to 2002 in
Figure 7b, the abandoned quarries continued their recovery with vegetation cover while the large
quarry area kept expanding. By 2002, the scattered quarry sites can be distinguished as three main
continuous quarry regions as shown in Figure 7f: Quarry A lies in the northwest, Quarry B lies in
the south, and Quarry C lies in the northeast. During the 8 years between 2002 and 2010, each of the
three quarry areas expanded rapidly, which is clearly illustrated by Figure 7c. The decrease mainly
happened inside Quarry C; other small decreasing parts in Quarry B were primarily on the south
edge of the quarry, which was exploited earliest. From 2010 to 2013 in Figure 7d, the area increased
only slightly on the north side of Quarry B. Most quarry sites remained unchanged during this period.
Figure 7e demonstrates that the quarry areas in all three regions decreased between 2013 and 2016,
although a small expansion occurred in Quarry C and the western part of Quarry B. We should point
out that the small decreasing parts inside Quarry B were newly built buildings.

From the line charts in Figure 6, two special years are identified for presenting very different
tendencies: 2008 and 2017. Between May 2007 and August 2008, the quarry area had almost no change
compared to its nearby years (Figure 8a). While the main trend was still toward a decrease in the three
quarry regions from June 2016 to May 2017 (Figure 8b), a very large newly exploited area in the west
of Quarry B resulted in an increment in the total area. Again, the small speckles inside Quarry B were
a result of intense internal rebuilding.
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Figure 7. Change maps of quarry region in five periods where the blue regions mean no change
happened, red regions mean quarry extension, and cyan regions mean quarry recovery. (a) 1984–1992;
(b) 1992–2002; (c) 2002–2010; (d) 2013–2016; (e) 2010–2013; (f) Three continuous quarry regions.
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4.3. Uncertainties and Errors

For the classification step, we used a supervised learning method, which required a set of
accurate and enriched samples. As we classified scenes of each year along the past 34 years, sampling
was required for each scene and the accuracy of the results depends on the quality of the samples.
Deriving operative samples from temporally adjacent samples and classifiers was demonstrated to work
well in this study. However, further studies on other datasets or monitoring tasks are needed to confirm
the conclusion. One more uncertainty is that when discussing the influence of social events and local
policies on quarry changes, our analysis is based on the comparison of quarry areas in two jurisdictions
considering some well-known events and policies. Maybe integrating some kind of quantization of the
social events and policies into the analysis can present their close connection more clearly.

5. Social Discussion

Prior work has documented the feasibility of the Landsat archive for monitoring land cover changes
and analyzing their dynamics in a high-resolution multi-temporal way [14]. However, studies on quarry
monitoring remain temporally limited. Whether using several decades of spanned space-borne imagery
or higher resolution images focusing on a short time scale, prior studies have generally relied on a
comparison of imagery from two to three time slices [1,5,6,9,10]. Hence, with the focus on scarce
observations so far, the socioeconomic reasons behind these quarry changes have not been thoroughly
analyzed. In this study, we used a long time series data from the Landsat archive to fully investigate the
annual change in the quarry area. In this section, as the annual monitored result of the quarry has been
derived, we try to discuss the factors driving the quarry development from a socioeconomic viewpoint
and demonstrate the potential benefits of annual monitoring in a socioeconomic study.

5.1. Comparison of Two Regions

The study area is located on the border of Beijing, Tianjin, and Hebei, making a comparison
of quarry development among these areas possible. Since the development of quarry extraction is
influenced deeply by human activities, it is also reasonable to discuss the quarry area extension and
contraction with the different policies in the three regions, especially after the local government began
to actively manage the mining.

Because the quarries in the Beijing region are actually exploited by people from Hebei Province,
the study area was separated into two regions, one under the governance of Hebei Province and the
other under the governance of Tianjin City, according to the boundary line between Hebei and Tianjin
(Figure 9). Then, we separated the dynamics of the quarry area into two zones.



Remote Sens. 2018, 10, 517 14 of 19

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 19 

 

other under the governance of Tianjin City, according to the boundary line between Hebei and Tianjin 
(Figure 9). Then, we separated the dynamics of the quarry area into two zones. 

. 

Figure 9. The study area is split into two regions according to the boundary between Hebei and Tianjin. 

The amount of quarry area in Tianjin is quite small in the study area compared to that in Hebei 
Province, but is actually the biggest quarry site in Tianjin and most aggregates used in Tianjin 
buildings come from here. As it is so near to Hebei, its dynamics has a close relationship with that of 
the quarries in Hebei. Similarly, line charts are presented for a better observation of its dynamics 
(Figure 10). In order to compare them more easily, they are scaled in Figure 10b, which indicates that 
their change trajectories before 2008 were very similar. From 2008 to 2016, the change trends of the 
quarries in Tianjin and Hebei developed in opposite directions. The quarry area in Tianjin decreased 
and then increased during this period, whereas that in Hebei grew first and then decreased. They 
both experienced a sharp increment in 2017.  

  

(a) (b) 

Figure 10. (a) Quarry area in two regions from 1984 to 2017; (b) Quarry area depicted with two y-axes 
for the two regions. 
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Hence, the economy was the main factor affecting the quarries’ expansion in the two regions. 
However, from 2008, the government started managing quarry activities. One big reason was 

Figure 9. The study area is split into two regions according to the boundary between Hebei and Tianjin.

The amount of quarry area in Tianjin is quite small in the study area compared to that in Hebei
Province, but is actually the biggest quarry site in Tianjin and most aggregates used in Tianjin buildings
come from here. As it is so near to Hebei, its dynamics has a close relationship with that of the quarries
in Hebei. Similarly, line charts are presented for a better observation of its dynamics (Figure 10).
In order to compare them more easily, they are scaled in Figure 10b, which indicates that their change
trajectories before 2008 were very similar. From 2008 to 2016, the change trends of the quarries in Tianjin
and Hebei developed in opposite directions. The quarry area in Tianjin decreased and then increased
during this period, whereas that in Hebei grew first and then decreased. They both experienced a
sharp increment in 2017.
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for the two regions.

Behind these different tendencies, there are multiple socioeconomic reasons. In the early time, the
government had no objection to the exploitation because of the great contribution of quarries to local
revenue. Quarry activities were dominated by local people who were driven by the profits. Hence, the
economy was the main factor affecting the quarries’ expansion in the two regions. However, from 2008,
the government started managing quarry activities. One big reason was Beijing’s Olympic Games in
2008, which caused a forceful restraint on quarry activities, arresting the extension of the quarry area
from 2007 to 2008 in total. Specifically, the Tianjin government took stricter actions on regulating its
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quarry since January 2008 because a serious landslide inside a quarry site of our study area in Ji County,
Tianjin, resulted in the death of 12 people (http://www.gov.cn/jrzg/2008-01/14/content_857398.htm).
While these actions brought about an acute recovery of the quarry area, most of the truck drivers
living on the quarry sites in Tianjin had to move to nearby sites in Hebei to continue their business,
thereby causing an increase in the quarry area in Hebei despite the big inhibitory factor—Beijing
Olympic Games in 2008. Overall, the quarry area in Tianjin decreased and the quarry area in Hebei
increased while the total quarry area stayed nearly stable. After 2011, the economic transition in China
required an environmentally friendly way in which to develop the economy. Inevitably, the total area
of quarries decreased before an environmentally friendly developing pattern in the mining industry
was found. Additionally, around 2013, CCTV-2 Half-Hour Economy reported that many local people
contracted serious respiratory diseases because of the heavy dust in the air around the quarry sites in
Hebei, and pointed out that this quarry region was the largest source of air pollutants on the east side
of Beijing (http://finance.sina.com.cn/china/dfjj/20130621/220515877577.shtml). After that, all these
quarry sites were forced by the government to close. Therefore, this time, the miners and truck drivers
moved to sites in Tianjin, causing the quarry area in Tianjin to grow again. Therefore, we can see a
different tendency in quarry changes in these two regions again and an overall decreasing trend in the
study area.

5.2. Relationship between Quarry Area and GRP

It seems natural to relate quarry area increase and economic growth because the construction
industry is one of the most profitable trades in China after reform and opening up. After we have
acquired the annual monitoring results of the quarry, it also becomes possible to demonstrate this
potential positive relationship. In this section, we discuss the relationship between the gross regional
products (GRP) and quarry area in Langfang City using linear regression.

We first obtained the GRP in Langfang City from the Statistics Bureau of Hebei Province. The data
and quarry area are depicted in Figure 11a where the line charts of GRP and quarry area express very
similar developing trajectories that deviated after 2009. Moreover, from the analysis in Section 5.1,
we know that in 2008 the government began to restrain quarry activities. We think this restraint shows
its effects in the economy from 2009. Therefore, regression analyses between quarry area and GRP were
conducted on data subsets of from 1990 to 2009 and from 2009 to 2016. The coefficient of determination
between quarry area and GRP from 1990 to 2009 is 0.96531 (Figure 11b), evincing that the quarry area
has good correlation with GRP in Langfang. The coefficient of determination for data after 2009 is
0.30004 (Figure 11c), which is much lower than that before, demonstrating that the correlation between
quarry area and Langfang economy decreased after 2009. In summary, the above analysis indicates a
very strong positive relationship between quarry area and GRP in Langfang City before 2009.
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respiratory diseases because of the heavy dust in the air around the quarry sites in Hebei, and pointed 
out that this quarry region was the largest source of air pollutants on the east side of Beijing 
(http://finance.sina.com.cn/china/dfjj/20130621/220515877577.shtml). After that, all these quarry sites 
were forced by the government to close. Therefore, this time, the miners and truck drivers moved to 
sites in Tianjin, causing the quarry area in Tianjin to grow again. Therefore, we can see a different 
tendency in quarry changes in these two regions again and an overall decreasing trend in the study 
area. 

5.2. Relationship between Quarry Area and GRP 

It seems natural to relate quarry area increase and economic growth because the construction 
industry is one of the most profitable trades in China after reform and opening up. After we have 
acquired the annual monitoring results of the quarry, it also becomes possible to demonstrate this 
potential positive relationship. In this section, we discuss the relationship between the gross regional 
products (GRP) and quarry area in Langfang City using linear regression.  

We first obtained the GRP in Langfang City from the Statistics Bureau of Hebei Province. The 
data and quarry area are depicted in Figure 11a where the line charts of GRP and quarry area express 
very similar developing trajectories that deviated after 2009. Moreover, from the analysis in Section 
5.1, we know that in 2008 the government began to restrain quarry activities. We think this restraint 
shows its effects in the economy from 2009. Therefore, regression analyses between quarry area and 
GRP were conducted on data subsets of from 1990 to 2009 and from 2009 to 2016. The coefficient of 
determination between quarry area and GRP from 1990 to 2009 is 0.96531 (Figure 11b), evincing that 
the quarry area has good correlation with GRP in Langfang. The coefficient of determination for data 
after 2009 is 0.30004 (Figure 11c), which is much lower than that before, demonstrating that the 
correlation between quarry area and Langfang economy decreased after 2009. In summary, the above 
analysis indicates a very strong positive relationship between quarry area and GRP in Langfang City 
before 2009. 

(a) (b) 

Figure 11. Cont.
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quarry area. A 34-year annual monitoring result from 1984 to 2017 in a quarry region near Beijing 
was derived in this study using an efficient approach based on a modified random forest 
classification and quarry region analysis. A temporal smoothing strategy was proposed and applied 
to the multi-temporal result of classification for post-processing. The result exhibits a large growth in 
quarry area in the study region, namely from 4.2574 km2 to 16.4969 km2, which is more than one-
tenth of the total area of the study region. The quarry area time series revealed a five-stage 
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quarry area declined for the first time from 16.3797 km2 to 15.9658 km2; (5) 2016–2017: a large growth 
in the quarry area recurred with the area in 2017 reaching 16.5002 km2. This study is the first to our 
knowledge to produce an annual quarry limits in one region for the past 34 years, which is more 
valuable than analyses on several observations as it can be used to reveal a potentially strong 
relationship between quarry changes and socioeconomic dynamics. For example, we did a 
comparison of quarry area dynamics between two nearby regions, from which their reactions to 
influential social events can be identified. With this time series of quarry area, we also proved a strong 
positive relationship between quarry area and local economic development. Moreover, as many 
ancient temples inside the study area were destroyed during the quarry activity, the time series of 
quarry area are of great benefit for the conservation of historic heritage. A further study may focus 
on a combined analysis of quarry area and other socioeconomic parameters, such population, 
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Figure 11. (a) Line charts of gross regional products (GRP) in Langfang and the quarry area in Langfang;
(b) The scatter diagram of the regression variables before 2009; (c) The scatter diagram of the regression
variables after 2009.

6. Conclusions

We used long time-series data from the Landsat archive to investigate the annual change in
the quarry area. A 34-year annual monitoring result from 1984 to 2017 in a quarry region near
Beijing was derived in this study using an efficient approach based on a modified random forest
classification and quarry region analysis. A temporal smoothing strategy was proposed and applied to
the multi-temporal result of classification for post-processing. The result exhibits a large growth in
quarry area in the study region, namely from 4.2574 km2 to 16.4969 km2, which is more than one-tenth
of the total area of the study region. The quarry area time series revealed a five-stage development
with different growth patterns: (1) 1984–2002: the quarry area continually grew at a low speed, mainly
below 0.5 km2 per year (average 0.32 km2 per year), with its area expanding from 4.2574 km2 to
10.0584 km2; (2) 2002–2010: the quarry area grew from 10.0584 km2 to 15.9346 km2 with an average
annual growth rate higher than 0.7 km2 per year; (3) 2010–2013: this period saw a modest increase in
the quarry area with a total increment of 0.4451 km2 during the 3 years; (4) 2013–2016: the quarry area
declined for the first time from 16.3797 km2 to 15.9658 km2; (5) 2016–2017: a large growth in the quarry
area recurred with the area in 2017 reaching 16.5002 km2. This study is the first to our knowledge
to produce an annual quarry limits in one region for the past 34 years, which is more valuable than
analyses on several observations as it can be used to reveal a potentially strong relationship between
quarry changes and socioeconomic dynamics. For example, we did a comparison of quarry area
dynamics between two nearby regions, from which their reactions to influential social events can be
identified. With this time series of quarry area, we also proved a strong positive relationship between
quarry area and local economic development. Moreover, as many ancient temples inside the study
area were destroyed during the quarry activity, the time series of quarry area are of great benefit for
the conservation of historic heritage. A further study may focus on a combined analysis of quarry area
and other socioeconomic parameters, such population, highway mileage, and cement production.
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Appendix A

Table A1. Detailed information of all Landsat images that we used in this study.

Sensor ID WRS_2 PATH/ROW DATE

LANDSAT 5/TM LT51230321984133HAJ00 123/032 12 May 1984
LANDSAT 5/TM LT51220321985128HAJ00 122/032 8 May 1985
LANDSAT 5/TM LT51220321986147HAJ00 122/032 27 May 1986
LANDSAT 5/TM LT51220321987166BJC00 122/032 15 June 1987
LANDSAT 5/TM LT51230321988128BJC00 123/032 7 May 1988
LANDSAT 5/TM LT51220321989139HAJ00 122/032 19 May 1989
LANDSAT 5/TM LT51220321990142HAJ00 122/032 22 May 1990
LANDSAT 5/TM LT51230321991136HAJ00 123/032 16 May 1991
LANDSAT 5/TM LT51230321992139BJC00 123/032 18 May 1992
LANDSAT 5/TM LT51220321993134HAJ00 122/032 14 May 1993
LANDSAT 5/TM LT51220321994137HAJ00 122/032 17 May 1994
LANDSAT 5/TM LT51220321995124BJC00 122/032 4 May 1995
LANDSAT 5/TM LT51230321996134CLT00 123/032 13 May 1996
LANDSAT 5/TM LT51230321997136BJC00 123/032 16 May 1997
LANDSAT 5/TM LT51220321998132HAJ00 122/032 12 May 1998
LANDSAT 5/TM LT51230321999126BJC01 123/032 6 May 1999
LANDSAT 5/TM LT51230322000129BJC00 123/032 8 May 2000
LANDSAT 5/TM LT51230322001131HAJ00 123/032 11 May 2001
LANDSAT 5/TM LT51220322002143BJC00 122/032 23 May 2002
LANDSAT 5/TM LT51230322003137BJC00 123/032 17 May 2003
LANDSAT 5/TM LT51230322004140BJC00 123/032 19 May 2004
LANDSAT 5/TM LT51230322005126BJC00 123/032 6 May 2005
LANDSAT 5/TM LT51220322006122BJC00 122/032 2 May 2006
LANDSAT 5/TM LT51230322007148IKR00 123/032 28 May 2007
LANDSAT 5/TM LT51230322008215BJC00 123/032 2 August 2008
LANDSAT 5/TM LT51230322009137IKR01 123/032 17 May 2009
LANDSAT 5/TM LT51220322010133IKR01 122/032 13 May 2010
LANDSAT 5/TM LT51220322011136IKR01 122/032 16 May 2011
LANDSAT 8/OLI LC81230322013132LGN03 123/032 12 May 2013
LANDSAT 8/OLI LC81230322014135LGN01 123/032 15 May 2014
LANDSAT 8/OLI LC81230322015138LGN01 123/032 18 May 2015
LANDSAT 8/OLI LC81220322016134LGN00 122/032 13 May 2016
LANDSAT 8/OLI LC81230322017143LGN00 123/032 23 May 2017

Total 33
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