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Abstract: The algorithm of synthetic aperture radar (SAR) for automatic target recognition consists
of two stages: feature extraction and classification. The quality of extracted features has significant
impacts on the final classification performance. This paper presents a SAR automatic target
classification method based on the wavelet-scattering convolution network. By introducing a deep
scattering convolution network with complex wavelet filters over spatial and angular variables,
robust feature representations can be extracted across various scales and angles without training
data. Conventional dimension reduction and a support vector machine classifier are followed to
complete the classification task. The proposed method is then tested on the moving and stationary
target acquisition and recognition (MSTAR) benchmark data set and achieves an average accuracy of
97.63% on the classification of ten-class targets without data augmentation.

Keywords: synthetic aperture radar; automatic target classification (ATR); wavelet transform;
scattering convolution network; roto-translation invariance

1. Introduction

SAR automatic target recognition (ATR) is defined as employing a computerized tool to predict
the class of a target in SAR images or to describe certain attributes of interest for the target, such as
the geometric and physical properties of the target in the absence of direct manual intervention.
A standard architecture of SAR ATR proposed by the MIT Lincoln Laboratory was described as three
stages: detection, discrimination, and classification [1,2]. Detection is to extract candidate targets from
SAR images using a false alarm rate (CFAR) detector. The output might include not only targets of
interests but also false alarm clutter. At the following discrimination stage, in order to eliminate false
alarms, several features are selected to train a discriminator to solve the two-class (target and clutter)
problem. Finally, the classifier is utilized to categorize each input as a specific target type. In this
paper, ‘recognition’ means the third stage, that is, classification of different types. In some applications,
there is a more advanced process called the identification process, which is not discussed in this paper.
Factors such as imaging angles, target configuration and background conditions have significant
impacts on the SAR image classification. Therefore, extracting good feature representations that are
insensitive to the above factors is particularly important to develop an effective SAR ATR system.

The basic development process of feature extraction can be divided into three stages: feature
definition, feature expression and feature learning. The underlying features are initially defined based
on researchers’ empirical knowledge or their own understanding of the obtained images. For example,
the image is usually described by color, texture, shape or pixel statistical distribution characteristics.
On the basis of the underlying features, better feature expression can be extracted by carrying out
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vector quantization, coding or kernel description. Dictionary learning and sparse coding are frequently
used algorithms. However, features extracted from these two stages are designed or selected according
to specific tasks, which requires a wealth of empirical knowledge and a deep understanding of the
image. It is also time consuming and has low generalization ability.

Extracted features are then used for target classification, which includes three mainstream
paradigms: template matching, a model-based method, and machine learning. In template matching,
the distance is measured between the target image and the template database. A semi-automated image
intelligence processing (SAIP) system is proposed [3], in which the mean square error classifier is used
to find the best match between the target data and the template database. The classification accuracy
of the SAIP is satisfactory if the target configuration is similar to those in the template database.
There are two main disadvantages in this method: one is low efficiency in distance calculation and
target searching, and the other is its performance degrades significantly when the target changes. For a
model-based method, target CAD (computer-aided design) model and electromagnetic simulation
software are utilized to predict SAR images of different categories and poses, which are produced
by the SAR image chip to be identified. Finally a set of predicted features are compared with those
extracted from the actual SAR image chips [4].

Manually designed features are also utilized in target classification. For example, Lance designed
an extended fractal (EF) feature [5], which is calculated at different scales of SAR images with an
ordered statistics filter for detection and a high accuracy achieved. Different from SAR detection
features that are more traditional and distinguish target pixels from the background only on the basis
of contrast, EF feature is sensitive to both the contrast and the size of objects.

With the rapid development of the machine learning, popular methods like support vector
machine (SVM) [6], AdaBoost [7] and convolutional neural networks (CNN) [8] are all adopted to SAR
ATR, which made great promotions in performance. In 2006, Hinton [9] proposed an effective training
method to classify the deep belief networks (DBN), which are stacked by several Restricted Boltzmann
Machines (RBM), and achieved an accuracy of 98.8% on the handwritten digital dataset. Since then,
the machine learning field has risen up a flood of studies on deep learning. Feature extraction has
also developed into the stage of feature learning, which is to first build different sizes of network
models, then use different learning methods to automatically learn the features from a large number
of target samples, and finally use the classifier for classification or identification without manual
intervention. Feature learning eliminates the process for task-specific feature extraction, and methods
are also versatile for different tasks.

However, deep learning techniques require a large amount of training data to achieve reliable
feature extraction. This is sometimes not feasible for SAR ATR where data resources are scarcem
in particular for some targets of interest [10]. There are researchers and scholars working on SAR
image data set development, such as the ship images of GF-3 satellite [11]. Hence, we have to seek
alternative non-data-intensive approaches. One way is to take good use of a priori knowledge while
designing the neural network, such as the designed feature filters, SDDLRC [12], and the shape
prior models [13]. For image classification, the ideal feature representation should be invariant
to translation, rotation, and scale transformation, and have stability to perturbations and minor
deformations. At the same time, the designed features should be quite similar between the same
categories of targets, and distinct among different categories. Fourier transform has invariance for
translation, but does not have Lipschitz continuity for deformation and especially has no stability
for local deformation of high frequency parts. Wavelet transform can overcome the instability of
Fourier transform, but it has covariance for translation. In order to extract features that are not only
invariant to translation, rotation and scale transformation but also insensitive to perturbations and
minor deformations, Mallat et al. [14] proposed a scattering operator based on wavelet transform in
2012. Features extracted by this operator are invariant to affine transformation and elastic deformation,
and insensitive to light. In 2013, they proposed a wavelet-scattering convolution network (WSCN)
based on wavelet transform scattering operator [15]. This network has a multilayer structure, which is
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similar to the deep convolutional neural network (CNN). Each layer has to perform both linear and
nonlinear operations. The convolutional linear operation of the predefined complex wavelet filters
with the input signal is first performed on each layer, and then the modulus nonlinearity on the
previous calculation result is applied. Finally, the local average is calculated by a low-pass filter.
The wavelet-scattering convolution network achieves very good classification results on handwritten
digits recognition and texture classification [15]. In 2015, they proposed a deep roto-translation
scattering network that has invariance for both local translation and rotation, and achieved comparable
classification results for complex object image databases Caltech and CIFAR [16].

The roto-translation scattering network employs Morlet wavelets as convolutional filters to detect
invariant features over spatial and angular variable to represent the images. The hierarchical Morlet
wavelets family cascades are computed with a filter bank of dilated and rotated with no orthogonally
property. Features vector extracted by them are stable and invertible when the rotated and scaled over
the frequency plane [10]. As mentioned above, good feature representations will greatly improve the
performance of SAR image classification. Features extracted by the deep roto-translation scattering
network are invariant to local translation and linearized variation along rotation angles, and have
stability for perturbations and minor deformations. Most importantly, the WSCN structure takes
advantage of a priori knowledge to reduce the unknown parameters of the network and thus reduce
its dependences on the volume and variety of training data.

In this paper, we report a study of applying the deep roto-translation WSCN algorithm to SAR
ATR with the MSTAR benchmark dataset. The major objective is to demonstrate the superiority of
WSCN as applied to SAR ATR through extensive experiments. It uses the roto-translation scattering
convolution network to extract the target scattering energy characteristics of the SAR image, and then
utilizes the extracted features to train Gaussian kernel support vector machine (SVM) for classification.
The major contribution of this paper is in three folds:

1. It adapts the roto-translational invariant WSCN, for the first time, for SAR ATR tasks and tested
its performance on the benchmark dataset;

2. It conducted extensive data experiments with the designed algorithm and evaluated the merits
of WSCN under both standard and extended operation conditions;

3. It reveals that employment of roto-translational invariant features can increase the robustness
of ATR and reduce its dependency on the number of training data, which is one of the major
hindrances in deep learning-based SAR ATR.

The remainder of this paper is organized as follows. Section 3 introduces the architecture of the
proposed ATR network. In Section 3, experimental results on the MSTAR dataset are presented and
discussed. Finally, Section 4 discusses the proposed methods by comparing with several state-of-art
methods. Section 5 concludes the paper.

2. Wavelet-Scattering Convolution Network for SAR ATR

2.1. Scattering Wavelet

Wavelet transform is a type of multiscale filter. A multiresolution wavelet function can be obtained
by applying scale and rotation on the band-pass filter Ψ:

Ψλ(u) = 2−2jΨ
(

2−jr−1u
)

(1)

where λ = 2jr ∈ 2z × G, j ∈ Z, r ∈ G (G is a finite rotation group). j characterizes the change in
scale, and r represents the change in direction. The operation of wavelet transform on signal x can be
expressed as:

Wλx = x× ψλ(u) (2)
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If the Fourier transform ψ̂(ω) is centered at a frequency η, then ψ̂2−jr(ω) = ψ̂
(
2jr−1ω

)
, which is

centered at 2−jrη with its bandwidth proportional to 2−j. The Fourier transform ψ̂(ω) is shown in
Figure 1.
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Figure 1. Fourier transform of Ψλ.

Wavelet transform is a mapping of local information, which represents the local features of the
image, but the convolution operation is covariant to translations. Therefore, these local features
are not translational invariant. To build a translational invariant representation, it is necessary to
introduce a nonlinearity M. After this nonlinear transformation,

∫
M(x×Ψλ)(u)du, should be stable

for deformation. At the same time, the nonlinear transformation operator M must be nonexpansive,
so as to ensure the stability to additive noise. While satisfying the above conditions, it is also necessary
to retain the energy information of the signal, resulting the translational invariant coefficients are then
L1(R2) norms:

‖x× ψλ‖1 =
∫
|x× ψλ(u)|du (3)

The L1(R2) norms {‖x×Ψλ‖1}λ are a rough signal representation, which show the sparsity of
wavelet coefficients. Although the process of performing a modulus will lose phase information of the
wavelet transform, but the loss of information is not from this process. It has been proved that x can be
reconstructed from the modulus of its wavelet coefficients {|x× ψλ(u)|}λ [17]. The loss of information
actually comes from the integration of |x× ψλ(u)|. This process removes all nonzero frequencies
and then recovered when calculating the wavelet coefficients

{∣∣x× ψλ1

∣∣× ψλ2(u)
}

λ2
of
∣∣x× ψλ1

∣∣.
The L1(R2) norms of λ1 and λ2 define a deeper representation of the translational invariance:

∥∥∣∣x× ψλ1

∣∣× ψλ2

∥∥
1 =

∫ ∣∣∣∣x× ψλ1(u)
∣∣× ψλ2

∣∣du (4)

By further iterating on the wavelet transform and modulus operators, more translational invariant
coefficients can be computed. Let U[λ]x = |x× ψλ|, along a path sequence p = (λ1, λ2, . . . , λm),
an ordered product of nonlinear and noncommuting operators is computed:

U[p]x = U[λm] · · ·U[λ2]U[λ1]x =
∣∣∣∣∣∣x× ψλ1

∣∣× λ2 · · ·
∣∣× ψλm

∣∣ (5)

with U[θ]x = x. The scattering transformation along path p is defined as follows:

Sx(p) = µ−1
p

∫
U[p]x(u)du, withµp =

∫
U[p]δ(u)du (6)

The scattering coefficient Sx(p) has translational invariance for x. It can be seen from Equation (6)
that the transform has many similarities with the Fourier transform modulus, but the wavelet
scattering coefficients have Lipschitz continuity for the deformation, as opposed to the Fourier
transform modulus.
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In terms of classification, the extracted local features are usually described as having translational
invariance when the scale is less than the predefined scale 2J, while maintaining a spatial variability
when the scale is greater than 2J. This requires a spatial window φ2J (u) = 2−2Jφ

(
2−Ju

)
to localize the

scattering integral, thus defining a windowed scattering transform:

S[p]x(u) = U[p]x× φ2J (u) =
∫

U[p]x(v)φ2J (u− v)dv (7)

And hence
S[p]x(u) =

∣∣∣∣∣∣x× ψλ1

∣∣× ψλ2 · · ·
∣∣× ψλm

∣∣× φ2J (u) (8)

with S[θ]x = x× φ2J . The convolution process with φ2J (u) is essentially an average down-sampling
process at a scale of 2J. The windowed scattering operator has local translational invariance and is
stable to deformation.

This paper uses Morlet wavelet as an example of complex wavelets, which is given by

ψ(u) = α
(

eiu·ξ − β
)

e−‖u‖
2/(2σ2) (9)

where β � 1 is adjusted so that
∫

ψ(u)du = 0. The averaging φ2J (u) filter is a scaled Gaussian.
Figure 2 shows the Morlet wavelet with σ = 0.85 and ξ = 3π/4.
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function, where scale changes are arranged in rows, 1 ≤ j ≤ 4, and rotation changes are arranged in
columns, L = 8.

2.2. Scattering Convolution Network

If p = (λ1, λ2, . . . , λm) is a path of length m, then S[p]x(u) is the m-order windowing scattering
coefficient, calculated at the m-th layer of the network. By further iterating on wavelet transform and
modulus operators, scattering transform can compute higher order coefficients. Images are real-valued
signals, so it is sufficient to consider “positive” rotations r ∈ G+ with angles in [0, π]:

Wx(u) = {x× φ2J (u), x× ψλ(u)}λ∈P (10)

with P =
{

λ = 2−jr : r ∈ G+, j ≤ J
}

. It should be noted that 2J and 2j are spatial scale variables,
while λ = 2−jr is a frequency index giving the location of the frequency support of ψ̂λ(ω). So that the
following wavelet modulus propagator can be obtained:

W̃x(u) = {x× φ2J (u), |x× ψλ(u)|}λ∈P (11)

A wavelet modulus propagator keeps the low-frequency averaging and computes the modulus
of complex wavelet coefficients. High frequency information is lost because of an average pooling,
but can be recovered at the next layer as the wavelet coefficients [9]. Therefore, it is important to
build a multilayer network structure. Iterating on W̃ can construct a multilayer wavelet-scattering
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convolution network. This process can be illustrated as applying W̃ to all propagated signals U[p]x of
the m-th layer Pm, and the network will output all scattering signals S[p]x and compute all propagated
signals U[p + λ] on the next layer Pm+1:

W̃U[p]x = {S[p]x, U[p + λ]x}λ∈P (12)

The wavelet-scattering convolution network is very different from the conventional convolution
network. Conventional convolution network outputs the results only on the last layer, and the
parameters of the filter banks need to be learned from a large number of data samples, while the
scattering coefficients of the wavelet-scattering convolution network are distributed at each layer,
and the parameters of the filter banks are pre-defined [18,19]. The wavelet-scattering convolution
network only needs to learn the parameters of the final supervised classifier. The related literature has
shown that the energy of the scattering convolution network is concentrated in a few paths, and will
approach zero as the path increases. In addition, first three layers of the scattering convolution network
concentrate most of the image energy [20]. When m = 3, the structure of the scattering convolution
network is shown in Figure 3. The downward arrow is the process of scattering propagation, and the
upward arrow outputs the extracted scattering coefficients.
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Figure 3. Scattering convolution network diagram.

Approximating the scattering process by a cosine basis along the scale and rotation variables,
paths can be parameterized by ((j1, θ1), . . . , (jm, θm)).

The following is an example of a texture image, which is used to explain the wavelet scattering
network. The input signal in the example is a 2-D texture picture, as shown in Figure 4a. On layer 0,
the scattering coefficients is S[θ]x = x× φ2J , as shown in Figure 4b. Scattering coefficients outputted
on layer 1 and layer 2 are also shown in Figures 5 and 6 respectively.

Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 16 

(a) (b) 

Figure 4. (a) Input of a 2-D texture image; (b) output scattering coefficients 
2J

x  on layer-0. 

Figure 5. Output scattering coefficients   
1 2J

x  on layer 1, where scale changes are arranged in 

rows, and the rotation changes are arranged in columns. 

Figure 6. Output scattering coefficients       
1 2 2J

x u  on layer 2, where scale changes are 

arranged in rows, and the rotation changes are arranged in columns. 

In this example, J = 5, L = 6. The scaling factor of the wavelet function ,
i ij  satisfies 11 j J ,

1 2 j j J , the rotation angle   1 / ,  1    i k L k L . 

The final output JS x  of the wavelet-scattering convolution network is useful for classification,
and can be expressed as: 

Figure 4. (a) Input of a 2-D texture image; (b) output scattering coefficients x× φ2J , on layer-0.



Remote Sens. 2018, 10, 501 7 of 16

Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 16 

(a) (b) 

Figure 4. (a) Input of a 2-D texture image; (b) output scattering coefficients 
2J

x  on layer-0. 

Figure 5. Output scattering coefficients   
1 2J

x  on layer 1, where scale changes are arranged in 

rows, and the rotation changes are arranged in columns. 

Figure 6. Output scattering coefficients       
1 2 2J

x u  on layer 2, where scale changes are 

arranged in rows, and the rotation changes are arranged in columns. 

In this example, J = 5, L = 6. The scaling factor of the wavelet function ,
i ij  satisfies 11 j J ,

1 2 j j J , the rotation angle   1 / ,  1    i k L k L . 

The final output JS x  of the wavelet-scattering convolution network is useful for classification,
and can be expressed as: 

Figure 5. Output scattering coefficients
∣∣x× ψλ1

∣∣× φ2J , on layer 1, where scale changes are arranged
in rows, and the rotation changes are arranged in columns.

Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 16 

(a) (b) 

Figure 4. (a) Input of a 2-D texture image; (b) output scattering coefficients 
2J

x  on layer-0. 

Figure 5. Output scattering coefficients   
1 2J

x  on layer 1, where scale changes are arranged in 

rows, and the rotation changes are arranged in columns. 

Figure 6. Output scattering coefficients       
1 2 2J

x u  on layer 2, where scale changes are 

arranged in rows, and the rotation changes are arranged in columns. 

In this example, J = 5, L = 6. The scaling factor of the wavelet function ,
i ij  satisfies 11 j J ,

1 2 j j J , the rotation angle   1 / ,  1    i k L k L . 

The final output JS x  of the wavelet-scattering convolution network is useful for classification,
and can be expressed as: 

Figure 6. Output scattering coefficients ‖x× ψλ1 (u)
∣∣× ψλ2

∣∣× φ2J on layer 2, where scale changes are
arranged in rows, and the rotation changes are arranged in columns.

In this example, J = 5, L = 6. The scaling factor of the wavelet function ψji ,θi satisfies 1 ≤ j1 ≤ J,
j1 < j2 ≤ J, the rotation angle θi = (k− 1)π/L, 1 ≤ k ≤ L.

The final output SJ x of the wavelet-scattering convolution network is useful for classification,
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Mallat et al. has shown in the literature [15] that the wavelet scattering coefficients have the
following properties:

• Preservation of energy: ‖SJ x‖2 = ‖x‖2;
• Stable to additive noise: ‖SJ x− SJy‖ ≤ ‖x− y‖;
• Translation covariance: the wavelet scattering coefficients will translate the same distance with

the signal: ∀c ∈ R, xτ=c(u) = x(u− c), SJ(xτ=c) =
(
SJ x
)

τ=c;
• Local translation invariance: |c| ≤ 2J , SJ(xτ=c) ≈ SJ x;
• Sensitive to rotation: SJ(rθ x) 6= SJ x;
• Stable to slight deformation: xτ(u) = x(u− τ(u)), ‖SJ xτ − SJ x‖ ≤ C‖∇τ‖;

The scattering coefficient SJ x is insensitive to local translation, noise, and slight deformation,
eliminating some of the factors that cause interference to the signal classification. In summary,
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the wavelet scattering coefficient SJ x is a good choice of feature representation, which requires no
training but preserve a hierarchical structure.

2.3. Deep Roto-Translation Scattering Network

The wavelet coefficients SJ x in the previous subsection only satisfy the local translation invariance,
but cannot reduce the interference caused by the rotation change on the signal classification.
The wavelet-scattering convolution network (WSCN) can flexibly set the wavelet basis function so that
the final output is insensitive to rotation changes. In 2015, Mallat proposed a deep roto-translation
scattering network [16], which was insensitive to both local translation and rotation changes. The main
idea is that for a two-layer wavelet scattering network, the first layer calculates a 2-D wavelet transform
along the spatial variable u = (x, y) to realize local translation invariance:

x(u)→ |W1| →
∣∣x× ψj,θ(u)

∣∣ = x1
j,θ(u)

→ |W2| →
∣∣∣x1

j,θ × ψj,θ(u)
∣∣∣ (14)

The second layer calculates a 3-D wavelet transform along both the spatial variable u = (x, y) and
the angle variable θ to realize local rotation invariance:

x(u)→ |W1| →
∣∣x× ψj,θ(u)

∣∣ = x1
j (u, θ)

→ |W2| →
∣∣∣x1

j1
× ψj,β,k(u, θ)

∣∣∣ (15)

The specific process is described in detail as follows:
For the first layer of the wavelet-scattering convolution network, the wavelet function is the

rotation and scale transform of band-pass filter Ψ:

ψj,θ(u) = 2−2jψ
(

2−jrθu
)

(16)

The Morlet wavelet is still chosen here. The original input signal is computed convolution and
modulus with ψj1,θ(u), and then subsampled at intervals of 2j1−1, where 0 ≤ j1 ≤ J.

The intermediate result for the first layer of the network is:

x1
j1(u, θ) =

∣∣∣x× ψj1,θ

(
2j1−1u

)∣∣∣ (17)

For the second layer of the wavelet-scattering convolution network, a 3-D wavelet function
is selected:

ψj,β,k(u, θ) = ψj,β(u)ψk(θ) (18)

where ψj,β(u) = 2−2jψ
(
2−2jrβu

)
, β is the rotation angle parameter, ψk(θ) = 2−kψ

(
2−kθ

)
is a 1-D

wavelet function with the variable θ, and its scale is 2k(1 ≤ k ≤ K < log2 L).
For any 0 ≤ j1 ≤ j ≤ J, the intermediate result x1

j1,θ(u) is computed convolution and modulus
with the 3-D wavelet function ψj,β,k(u, θ) along the spatial variable u and the rotation angle variable θ,
and then subsampled along both variables. The final intermediate result for the second layer is:

x2
j (u) =

∣∣∣x1
j1 × ψj,β,k

(
2−j1−1u, 2−k−1θ

)∣∣∣ (19)

The final output SJ x is achieved by averaging the input x, the first layer intermediate result x2
j ,

and the second intermediate result x2
j with a spatial convolution with φ2J (u) = 2−2Jφ

(
2−Ju

)
:

SJ x =
{

x× φ2J , x1
j × φ2J , x2

j × φ2J

}
1≤j≤J

(20)
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The wavelet scattering coefficients at this time have local translation and rotation invariance,
and are not sensitive to perturbations and slight deformations. SJ x reduces the adverse effects
of the rotation change on the signal classification, and helps to improve the accuracy of complex
signal classification.

This paper then trains the Gaussian kernel support vector machine using the wavelet scattering
coefficients SJ x to realize SAR image automatic target recognition. The overall architecture is depicted
in Figure 7.
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3. Experiments on the MSTAR benchmark dataset

The experimental data used in this paper were collected by Sandia National Laboratory (SNL) SAR
sensors. The data were collected under the moving and stationary target acquisition and recognition
(MSTAR) project [4], which was jointly sponsored by Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL). The project collected hundreds of thousands
of SAR images containing ground military targets, including different target classes, aspect and
depression angles, barrel steering, configuration changes and variants, but only a small portion of
which can be available on the website for the open access [21]. The released MSTAR data set contains
10 classes of ground military targets listed in Table 1. These images are collected by the X-band SAR
sensor in a 0.3 m resolution spotlight mode; full aspect coverage (range from 0◦ to 360◦), with a relative
flat grass or exposed soil background. It should be also noticed that the released data were all stationary
targets. Figure 8 shows the optical images of 10 classes of military targets and the corresponding SAR
images at the same aspect angle.

Table 1. Ten classes of ground military targets.

Targets Classes

Armored personnel carrier BMP-2, BRDM-2, BTR-60, BTR-70
Tank T-62, T-72

Rocket launcher 2S1
Air defense unit ZSU-234

Truck ZIL-131
Bulldozer D7
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The algorithm is tested under both standard operating conditions (SOC) and extended operating
conditions (EOC) in order to completely assess the robustness of the method. The standard operating
conditions refer to the configuration and serial number of the training and testing SAR images are
the same, but the depression and aspect angle for the images are different. The extended operating
conditions refer to the significant differences between the training and testing SAR images, which is
mainly due to the great change of the depression angle and configuration, as well as version variants.
Configuration changes mean the addition or removal of discrete components on the target, such as
auxiliary fuel barrel changes.

3.1. SOC Results

Under standard operating conditions, the method is tested for the classification of 10 classes.
The serial number of the training and test set, the depression angle, and the number of samples for
each class are shown in Table 2. The same target class has the same serial number in the training
set and the test set, but the depression and aspect angle are different. The training SAR images are
collected at 17◦ depression angle, while the test SAR images are collected at 15◦ depression angle.
No image preprocessing algorithm is applied to the SAR images. Table 3 shows the correct classification
coefficient and confusion matrix for the classification of 10 classes of targets under SOC. Each row in
the confusion matrix represents the actual target class, and each column denotes the class predicted by
the network. Percent Correctly Classified (Pcc) is used to assess the performance of the ATR, which
is defined as Pcc =

Ntp
N , where the Ntp is the number of correct classified positive samples, and the

N is the total number of samples. It can be seen that the proposed method can achieve state-of-the-art
performance for the classification of MSTAR 10 classes of targets under standard operating conditions.
The proposed method achieves an overall accuracy of 97.63% for the SOC dataset. The kappa coefficient
is 0.97, which indicates this method is stable for 10 classes of targets. Correct classification coefficients
are all over 96%, except target 2S1, a part of which was misclassified as T-62 and BTR-70. From the
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images shown in Figure 8, structure of T-62 and 2S1 is similar; further, barrel part is hardly seen in
SAR images, thus SAR images of 2S1 and BTR-70 are also similar.

Table 2. Statistical data for training and testing SAR images under SOC.

Class Serial No.
Train Test

Depression No. Images Depression No. Images

BMP-2 9563 17◦ 233 15◦ 195
BTR-70 c71 17◦ 233 15◦ 196

T-72 132 17◦ 232 15◦ 196
BTR-60 k10yt7532 17◦ 256 15◦ 195

2S1 b01 17◦ 299 15◦ 274
BRDM-2 E-71 17◦ 298 15◦ 274

D7 92v13015 17◦ 299 15◦ 274
T-62 A51 17◦ 299 15◦ 273

ZIL-131 E12 17◦ 299 15◦ 274
ZSU-234 d08 17◦ 299 15◦ 274

Table 3. Accuracy and confusion matrix under SOC.

BMP-2 BRDM-2 BTR-60 BTR-70 D7 2S1 T-62 T-72 ZIL-131 ZSU-234 Pcc (%)

BMP-2 190 2 0 1 0 1 0 1 0 0 97.4
BRDM-2 0 272 0 0 0 0 0 0 2 0 99.3
BTR-60 0 0 189 3 0 0 0 0 2 1 96.9
BTR-70 0 0 0 196 0 0 0 0 0 0 100

D-7 0 0 0 0 272 0 0 0 2 0 99.3
2S1 4 1 2 9 0 239 9 0 7 3 87.2
T-62 1 0 0 1 0 0 264 2 0 5 96.7
T-72 0 0 0 0 0 1 0 195 0 0 99.5

ZIL-131 0 0 0 0 0 0 0 0 274 0 100
ZSU-234 0 0 0 0 0 0 0 0 0 274 100

Total 97.63

3.2. EOC Results

A SAR image is quite sensitive to the change of depression angle, and even a slight change will
result in a very different image. As shown in Table 4, only four classes of targets in the MSTAR data set
contain SAR images at a 30◦ depression angle and they are 2S1, BRDM-2, T-72, and ZSU-234. Therefore,
SAR images with these four classes of targets at a 17◦ depression angle are used for training, and those
at 30◦ depression angle are used for testing. The correct classification coefficient and confusion matrix
for the significant change of depression angle denoted as EOC-1 are shown in Table 5. The overall
accuracy is 82.46% under EOC-1, and its kappa coefficient is 0.766. As we all know that SAR is sensitive
to incidence angle, which EOC-1 means significant variance of depression angle. Therefore, the feature
of SAR image changes, which leads to the degradation of correct classification coefficient.

Table 4. Statistical data for training and testing SAR images under EOC-1.

Class Serial No.
Train Test

Depression No. Images Depression No. Images

2S1 b01 17◦ 299 30◦ 288
BRDM-2 E-71 17◦ 298 30◦ 287

T-72 A64 17◦ 299 30◦ 288
ZSU-234 d08 17◦ 299 30◦ 288
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Table 5. Accuracy and confusion matrix under EOC-1 (significant change of depression angle).

2S1 BRDM-2 T-72 ZSU-234 Pcc (%)

2S1 205 50 33 0 71.18
BRDM-2 7 270 8 2 94.08

T-72 39 20 202 27 70.14
ZSU-234 3 4 9 272 94.44

Total 82.46

The extended operating conditions also include configuration variants and version variants.
Configuration variants mainly refer to whether both sides of the tank track have the installation
of protective plate, or whether the tank tail is installed with fuel barrels, as well as the rotation
of the turrets and the barrels, while version variants refer to different versions, denoted as EOC-2.
The algorithm is tested under this condition to evaluate the classification performance. SAR images of
the four classes of targets, namely BMP-2, BRDM-2, BTR-70, and T-72, at a 17◦ depression angle are
used as training set as shown in Table 2. Two version variants of BMP-2 and ten version variants of
T-72 collected at 17◦ and 15◦ depression angles are listed in Tables 6 and 7, respectively, as two groups
of test sets. It is worth mentioning that the training set does not include the serial number of the test set.
The correct classification coefficient and confusion matrix are listed in Tables 8 and 9. WSCN shows
its stable performance for the configuration variants of T-72 and BMP-2. The correct classification
coefficient is obtained at 94.14% for five version variants T-72, and 89.76% for five versions T-72 and
two version variants BMP-2.

Table 6. Statistical data for training and testing SAR images under EOC-2 (configuration variants).

Class Serial No. Depression No. Images

T-72

S7 15◦, 17◦ 419
A32 15◦, 17◦ 572
A62 15◦, 17◦ 573
A63 15◦, 17◦ 573
A64 15◦, 17◦ 573

Table 7. Statistical data for training and testing SAR images under EOC-2 (version variants).

Class Serial No. Depression No. Images

BMP-2
9566 15◦, 17◦ 428
c21 15◦, 17◦ 429

T-72

812 15◦, 17◦ 426
A04 15◦, 17◦ 573
A05 15◦, 17◦ 573
A07 15◦, 17◦ 573
A10 15◦, 17◦ 567

Table 8. Accuracy and confusion matrix under EOC-2 (configuration variants).

Serial No. BMP-2 BRDM-2 BTR-70 T-72 Pcc (%)

T-72

S7 8 0 8 403 96.18
A32 24 7 0 541 94.58
A62 10 14 1 548 95.63
A63 5 17 9 542 94.59
A64 5 48 6 514 89.70

Total 94.14
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Table 9. Accuracy and confusion matrix under EOC-2 (version variants).

Serial No. BMP-2 BRDM-2 BTR-70 T-72 Pcc (%)

BMP-2
9566 343 5 17 63 80.14
c21 331 11 22 65 77.16

T-72

812 16 4 15 391 91.78
A04 32 42 8 491 85.69
A05 2 8 0 563 98.25
A07 4 18 1 550 95.99
A10 0 3 1 563 99.29

Total 89.76

It can be seen that the significant change of depression angle has a great influence on the
classification result. Details of the EOC-1 data are shown in Table 10, and the correct classification
coefficient and confusion matrix using 10-class targets to train the network and 4-class to test are
shown in Table 11. Due to the large difference of the train and test data, the accuracy decreases to
74.37% from the 82.46% of the original EOC-1 experiment. As showing in the Table 11, some ZSU-234
are classified to D7 and leading to lower accuracy.

Table 10. Statistical data for training and testing SAR images under additional EOC-1.

Class Serial No.
Train Test

Depression No. Images Depression No. Images

BMP-2 9563 17◦ 233 - 0
BTR-70 c71 17◦ 233 - 0

T-72 A64 17◦ 299 30◦ 288
BTR-60 k10yt7532 17◦ 256 - 0

2S1 b01 17◦ 299 30◦ 288
BRDM-2 E-71 17◦ 298 30◦ 287

D7 92v13015 17◦ 299 - 0
T-62 A51 17◦ 299 - 0

ZIL-131 E12 17◦ 299 - 0
ZSU-234 d08 17◦ 299 30◦ 288

Table 11. Accuracy and confusion matrix under additional EOC-1 (significant change of depression angle).

BMP-2 BRDM-2 BTR-60 BTR-70 D7 2S1 T-62 ZIL-131 T-72 ZSU-234 Pcc (%)

2S1 1 28 0 0 6 229 1 0 23 0 79.51
BRDM-2 0 271 0 0 1 11 0 0 4 0 94.42
T-72 1 27 0 0 18 41 9 0 192 0 66.67

ZSU-234 0 24 0 0 63 15 1 0 21 164 56.94

Total 74.37

4. Discussion

The performance of WSCN is compared with several widely cited methods and recently proposed
methods, as well as our previous work [1] in Table 12. The methods include conditional Gaussian
model (Cond Gauss) [22], monogenic scale space (MSS) [23], and modified polar mapping classifier
(M-PMC) [24], and information-decoupled representation (IDR) [25]. Note that the testing samples
used in MSS and IDR under EOC-1 only contains three classes, but ours contains four classes. While the
testing samples used in M-MPC under EOC-2 contains the samples with the depression angle both
15 and 17 degrees. The classification performance of A-ConvNets [1] is slightly better. It is reasonable
because A-ConvNets is regarded a fully trainable network including the feature extraction part,
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while our approach employs a fixed feature extraction network. There are some inherent shortcomings
for fully-trainable approaches such as A-ConvNet. Firstly, a large number of training samples are
needed to avoid overfitting. Secondly, there are many hyper parameters needed to be optimized
through multiple times of manual trial. Finally, deep neural network as blackbox is known to be difficult
to understand and diagnose, as the parameters are often initialized randomly and then optimized only
depending on the train samples, the network’s procedure and final state is unknown and unpredictable.
While the proposed WSCN is fully based on rational design backed by mathematical theory. In these
regards, the proposed WSCN is preferable albeit it’s slightly worse performance. An additional
experiment of A-ConvNets is conducted on the same dataset of the WSCN, The results indicate that
WSCN can efficiently recognize the target with configuration changes, but sensitive to the angles.
As opposed to deep neural networks, filters of each layer in wavelet-scattering convolution network
are predefined except the final supervised classifier. Therefore, the parameters needed to be learned
from the training samples are greatly reduced, thus reducing the probability of overfitting and the
number of training samples. Moreover, the number of tests is reduced because the hyper parameters
that require manual adjustment are very limited. In addition, mathematical theory can prove that
by constructing a specific wavelet function, the output scattering coefficients of wavelet-scattering
convolution network can be invariant to local translation and rotation, as well as insensitive to
perturbation and slight deformation.

Table 12. Comparison with A-ConvNets.

Method SOC (%) EOC-1 (%) EOC-2 (%) Training Samples

A-ConvNets [1] 99.13 96.12 98.93 2700 per class
Cond Guass [22] 98.9 - 79.3 ~480 per class

MSS [23] 96.6 98.2 - ~381 per class
M-PMC [24] 98.8 - 97.3 ~370 per class

IDR [25] 94.9 99.0 - ~300 per class
A-ConvNets 92.04 89.40 89.74 ~230 per class
Our Method 97.63 82.46 94.14 ~230 per class

5. Conclusions

This paper presents a SAR automatic target classification method based on a wavelet-scattering
convolution network. By introducing a deep roto-translation scattering network with complex wavelet
filters over spatial and angular variables, robust feature representations can be extracted across multiple
scales and multiple angles. Parameters of WSCN are predefined rather than randomly initialized
parameters as deep neural network. It does not require any training samples. CNN is trained with the
back-propagation algorithm, which optimizes the parameters according to the train samples, thus the
parameters end up at an unknown and unpredictable state, and the optimization is uncontrollable
which only depends on the input samples for each train step. Unlike CNN, the design of the WSCN
is purely based on the priori knowledge and mathematical principles. The proposed algorithm was
verified on MSTAR benchmark dataset under both SOC and EOC cases. Experimental results show
that 97.63% accuracy was obtain in SOC, and 82.46% for significant change of depression angle from
17◦ to 30◦, and 94.14% for configuration variants of T-72 tank, and 89.76% for version variants of T-72
and BMP-2. The proposed method shows robustness on the variants of configuration, and acceptable
accuracy on significant variance of depression angle. Experimental results indicate the proposed
method can yield comparable results with state-of-the-art deep neural network method which, on the
other hand, requires a significant amount of training samples. In this paper, the training samples of
proposed WSCN are less than 1/10 of those in previous A-ConvNets.

The time consumption of proposed method mainly includes three parts: the features extraction,
the features dimension reduction and classification. The experiments are conducted by MATLAB
2015b in an Ubuntu 14.04 operation system. The computer has an Intel Core i7-5930K CPU and its
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memory is 128 G. The experiment under the SOC-1 can be finished in 23 min. The computing time is
0.062 s per image for scattering features extraction, and 0.207 s per image for dimension reduction.
The classification of whole 2425 test images only costs 0.172 s. It should be noticed the classifier
can be trained offline, which could significantly reduce the time cost. Furthermore, in this paper,
the roto-translation of SAR images and the feature dimension reduction are carried out by MATLAB
code, which could be further optimized by other high efficient program languages.
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