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Abstract: Human assets in Alpine regions are prone to gravitational natural hazards such as rock
fall, shallow landslides and avalanches. Forests make up a substantial share in that landscape
and can mitigate those hazards. Management of avalanche protection forests must cope with
avalanches potentially released in forest gaps, which can damage downslope forests. The Swiss
guidelines “Sustainability and success monitoring in protection forests” prescribe forest-gap extents
in slope-line direction critical to the release of avalanches in forested areas. This article proposes a
topography-informed morphology approach (TIMA) to automate the detection of critical gaps based
on a digital terrain model and a canopy height model (CHM) derived from airborne LiDAR-data.
TIMA uses complementary information about topography to probe forest gaps computed from
the CHM with templates meeting critical-gap extents adjusted to local topography. The method
was applied to a test site in Klosters-Serneus (Switzerland). The comparison of a critical-gap
map with the results of a field assessment at 19 sample locations resulted in 84% overall accuracy.
Moreover, plausibility of gap detection could be improved by including linear features forest roads
and torrent channels in TIMA to account for decoupled snow layer resulting from abrupt breaks on
the hillslope. If the TIMA concept can be successfully applied to the case of avalanches, this would
encourage its use in assessing other gravitational natural hazard processes.
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1. Introduction

1.1. Context and Problem

Densely populated Alpine regions as encountered in Austria, France, Italy and Switzerland are
prone to gravitational natural hazard processes such as rockfall, shallow landslides and avalanches as
the consequence of the steep topographical relief. Often forming a substantial share in these landscapes,
forests play an important role in making these regions habitable. Forests interact with these processes
and mitigate their occurrence, magnitude or reach [1]. Around 5860 km2 of the Swiss forest (or 49% of
the Swiss forest cover) have been identified as protection forests, i.e., forests mitigating processes on
sites where human assets are at risk [2]. One-fifth (or, 1230 km2) of all protection forests mitigate the
occurrence of snow avalanches. The release of avalanches usually occurs on steep hillslopes ranging
from 25 to 55◦ [3] because shear stress is too low for avalanches to occur on shallower hillslopes, and the
snow layer constantly skids down on steeper hillslopes. Forests can effectively reduce the release of
avalanches on these hillslopes when site conditions allow for growth of a sufficient forest canopy [3,4].
Forest-snow interactions are manifold: interception with tree crowns reduces the amount of snow
deposed on forest floors, snow falling from the branches disturbs the formation of homogenous snow
layers prone to releasement, and tree stems support the fixation of the snowpack [5].
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Protection forests are a cheap and effective measure to protect against avalanches [6] and
are managed to create and maintain a forest pattern which sustainably prevents the release of
avalanches. Management guidelines have been developed in various countries to manage forests in
potential avalanche release areas. Guidelines developed in Europe focus on the forest’s protection
service [5,7–10] whereas a Canadian guideline focuses on reducing negative effects from clearcuts in
forests used for wood production [11]. Gravity being the driving force behind avalanche hazard, all the
guidelines put emphasis on the assessment of forest gaps in the slope-line, often relating critical-gap
lengths to hillslope steepness [5,8–11]. These gaps can become release areas of avalanches, which can
destroy the downslope forest. Moreover, the guidelines make specifications about forest structure
(e.g., tree size, canopy coverage, basal area) presumed to be effective against the release of avalanches.
The guidelines “Sustainability and success monitoring in protection forests” [5] are the Swiss quality
standard for the management of forests protecting communities from gravity-driven natural hazards.
Table 1 depicts critical-gap lengths in slope-line direction for the release of avalanches as proposed
by the guidelines. The critical-gap length shrinks with increasing steepness. The critical-gap width
(measured from tree crown to tree crown) depends on the predominant avalanche type occurring
in a vegetation zone. Gap width should be smaller than 15 m in subalpine and upper montane
coniferous forests where slab avalanches predominate. Gap width shrinks to 5 m in upper and lower
montane mixed forests where wet snow avalanches predominate. This corresponds to results of earlier
analyses where gap widths wider than 10–15 m were observed to be release areas of avalanches [4].
Although friction is not explicitly accounted for in the guidelines, results of tests with an analytical
model confirmed a reasonable implicitly assumed friction value [12].

Table 1. Critical-gap lengths for avalanche release proposed by the Swiss guidelines (applies to all
forest types).

Steepness [◦] Critical-Gap Length in
Slope-Line Direction [m]

≥30 60
≥35 50
≥40 40
≥45 30

The gap-identification requires the prior identification of forest structures presumed to be effective
against the release of avalanches. The guidelines foresee the concurrent assessment of effectiveness
for (1) single trees and (2) the tree collective. Trees must meet a minimum diameter at breast height
(DBH) of 8 cm to be termed effective [5]. Other guidelines for assessment of forest effectiveness against
the release of avalanches propose effective trees to be at least twice the extreme snow height [7–9].
The latter represents a height linked to a long recurrence period because forests should provide
long-term protection for the future. This is analogous to the dimensioning of avalanche protection
barriers, where the extreme snow height of a 100-year recurrence period is a dimensioning value to
specify barrier height [13]. Moreover, the tree collective must result in a canopy coverage >50% in
evergreen coniferous forests to be effective according to the guidelines.

The current implementation of the Swiss guidelines is to manually (1) assess forest structure to
identify gaps, (2) to measure hillslope steepness and gap extent in slope-line direction and (3) to apply
the guideline-rules to decide on criticality. Carrying out measurements and ocular estimations in the
field is a laborious task, and applying the guideline-rules can lead to biased results. The increasing
availability of high-resolution digital terrain- and canopy height models (DTM, CHM), such as those
processed from airborne LiDAR data, facilitates the digital characterization of topography and forest
structure. This allows for the automation of the critical-gap identification-task. Topographical
parameters such as slope and aspect characterize the hillslope steepness and slope-line direction.
Standard operations exist to compute them from the DTM (see e.g., Moore et al. [14]). Properties of
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forest structure can be computed from a CHM, being a 3-D representation of canopy height above the
terrain surface (see e.g., Maltamo et al. [15]). Geodata has been used before to identify potential
release zones situated mainly above the treeline [16–18] based on aggregation of raster cells of
similar geomorphic and land cover properties, occasionally using flow direction information [16].
Flow direction indicates the direction to the neighbor of steepest descent for each cell on a raster [19].
Those studies focused on the aggregation of distinct potential avalanche release zones on sites prone to
avalanches in general. However, identifying critical forest gaps is about detecting shapes of minimum
extent rather than aggregation into distinct release areas. To our knowledge, no approach tailored to
this problem exists.

In this article, we propose a mathematical morphology approach to automate the detection
of critical gaps in an avalanche protection forest based on a high-resolution DTM and CHM.
Mathematical morphology is a theory that aims at analyzing the shape and form of objects in spatial
structures. Here, the basic idea is to probe forest gaps (=spatial structure) with a template at the
minimum extent of a critical gap (=shape) to map critical gaps. This template must change its length
and orientation depending on local topography to produce plausible results. Mathematical morphology
provides directional filters that rotate templates [20], which are used to characterize textured structures.
Here, we are interested to orient the template into a plausible direction subject to local topography
rather than just rotating it. This requires complementary information about local topography in
addition to the forest gaps to select locally adjusted templates. This makes the morphology approach a
topography-informed one. We will use the term topography-informed morphology approach (TIMA)
from now on to characterize that linkage between mathematical morphology and complementary
information. The approach presented here is mainly tailored to the specifications for (1) critical-gap
extents in function of hillslope steepness and (2) effective forest structure prescribed in the Swiss
guidelines [5]. To be in line with other guidelines [7,9,10], some of these specifications would be subject
to change. We will put particular emphasis on the computation of forest gaps. Therefore, the guideline
prescriptions for effective forests are applied to single tree crowns detected on the CHM. Contrary to
setting an arbitrary height threshold to identify forest canopy (see e.g., [21,22]), this is a more plausible
alternative to identify the share of forest canopy effective against the release of avalanches. As opposed
to the directly measured terrain via the DTM, we assume the indirectly measured forest structure being
the major source of sensitivities in the detection of critical gaps. Since the application of TIMA requires
a fair generalization of topography, abrupt breaks on the hillslope decoupling the snow layer may not
be adequately represented. Therefore, TIMA is expanded to include linear features indicating abrupt
breaks such as forest roads and torrent channels. Gaps on decoupled hillslopes may then become
too short to be critical. The application of TIMA to a test area in Klosters-Serneus (Switzerland) aims
at (1) exploring the sensitivity of detected critical gaps on the parameters that specify forest gaps,
(2) assessing the critical-gap map accuracy based on a sample set of locations assessed in the field
according to the Swiss guidelines, and (3) exploring the plausibility of critical-gap maps after adding
linear features decoupling snow layers on hillslopes. We will provide background information on the
use of airborne LiDAR-data to represent forests and basics of mathematical morphology to understand
the notation and techniques used in the subsequent model development section. The application
section documents the results obtained in Klosters-Serneus for the objectives mentioned above. Finally,
we will discuss the results and present our conclusions in the corresponding sections.

1.2. Airborne LiDAR-Based Forest Characterization

Light detection and ranging or airborne LiDAR is a remote sensing technology that produces
a georeferenced 3-D point cloud from the sensed surface [23]. These points must be classified
into ground and non-ground points prior to the extraction of canopy information. A canopy
height model (CHM) or a normalized point cloud (NPC) can then be computed from those
classified points. The CHM is a raster-representation of canopy height above the terrain surface
which commonly results from subtracting the digital terrain model (DTM) from the digital surface
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model (DSM). The DTM-raster is computed based on the ground points whereas the highest
points serve to compute the DSM-raster. However, more sophisticated methods to create CHMs
optimized for forestry purposes have recently become available [24,25]. The normalized point cloud
(NPC) is an alternative representation of the canopy where the points represent absolute object
heights [26]. Maltamo et al. [15] provide a comprehensive overview on forest applications of these two
3-D canopy representations. The prediction of forest parameters such as timber volume and object
recognition such as single trees were focal aspects studied in the past. We subsequently focus on
parameters and objects relevant for the method. These are the parameters canopy coverage and tree
height, and the single tree object.

Canopy coverage can be predicted using airborne LiDAR, as comparisons with results from
field measurements [27] or manual interpretation based on remote sensing data [28] have shown.
Moreover, the results of airborne LiDAR-based tree height measurements compared with precise
measurements using the total station are promising [29,30], whereas treetops missed by the laser beams
and imprecisions in the mapping of terrain have been identified as potential sources of errors [29].

A single tree identification can either be applied to a NPC or CHM. Recent research focuses
on the use of the NPC (e.g., [26,31,32]) among others because it preserves information about the
canopy understory. The identification of the canopy effective against the release of avalanches bases
on the characterization of the overstory which can be sufficiently represented with a CHM. In any
case, the identification method requires some sort of seed to start the tree delineation process. Local
maxima (LM) are the seeds commonly used to start a single tree identification on a CHM. The LM is
an indicator for a form (i.e., a 3-D object) that corresponds to a treetop. LMs are maximum heights
within a specified neighborhood, e.g., a 3 × 3 raster ([33–35] to mention some early applications). The
CHM is smoothed prior to detection, to avoid over-detection resulting from artificial spikes on the
CHM. A Gaussian filter [34,36] is a convenient smoothing-operator whereas standard deviation σ

controls smoothing-intensity. Despite its simplicity, the LM-method has been proved well-performing
in comparison to more sophisticated approaches, and it is assumed to outperform manual delineation
based on remote sensing data [37]. Forest properties such as stem density (trees per ha) and clustering
degree (Clark-Evans index) have been identified to impact detection performance [38]. The LM-method
can be combined with the watershed algorithm to identify tree crowns. The watershed algorithm
is used for greyscale image segmentation [39]. Its concept stems from hydrology where upslope
contributing areas (=watersheds) draining through pour points of interest are computed based on
the flow paths extracted from a digital terrain model (=greyscale image). When applied to the tree
crown detection problem on a CHM, the LM-locations represent the pour points and crown areas their
contributing areas. The algorithm has been expanded with rules such as a lower cutoff vegetation
height [40] or a maximum distance from the LM-cell [36,41] to produce plausible tree crown extents
and -shapes.

1.3. Mathematical Morphology and Its Basic Operations

Mathematical morphology is a theory on the analysis of spatial patterns which evolved in the last
50 years from the initial works of Matheron and Serra [20]. Basically, it is about the characterization
of how a structuring element (SE) fits into an image [42]. A SE is a shape in the 2-D space or a form
in the 3-D space which is tailored to a specific problem. Given a simple 2-D binary image where set
X represents polygon-objects and a discoidal SE, one can then analyze how SE fits into the objects
when applying the basic operations erosion ε and its dual dilation δ. The erosion operation removes
those locations r in X where the SE does not fit (Equation (1)), i.e., objects smaller than SE will be
absent in the eroded image εSE(X). The dilation operation adds locations r to X if SE intersects with
X (Equation (2)), i.e., nearby objects will be merged in the resulting dilated image δSE(X). The two
operations are very powerful when applied in a series. Morphological opening (Equation (3)) is an
erosion followed by a dilation. It is used to remove objects not meeting the extent of SE (=erosion)
and to reconstruct the remaining objects (=dilation). The elimination of salt-and-pepper noise on an
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image is an application example for morphological opening ωSE(X) [42]. The order of the operations
is switched when applying a morphological closing γSE(X) (Equation (4)). It aims at closing holes in
an image (=dilation) and reconstructing the remaining objects (=erosion).

εSE(X) = {r|SEr ⊆ X} (1)

δSE(X) = {r| [SEr ∩ X] 6= ∅} (2)

ωSE(X) = δSE [εSE(X)] (3)

γSE(X) = εSE [δSE(X)] (4)

The computation of erosion and dilation on a raster image X is implemented as minimum and
maximum filters applied to the set of cells SEr being the neighbors of raster cell r (Equations (5) and (6),
see [20]). These formulas also apply to greyscale images.

εSE(X) = min
r∈SEr

X(r) (5)

εSE(X) = max
r∈SEr

X(r) (6)

The applications of mathematical morphology to geodata are manifold. For example, it has
been applied to improve drainage network extraction when filling erroneous small depressions on a
DTM [43], or to identify houses on a DSM [44]. Forestry applications to airborne LiDAR-data aimed at
(1) producing a canopy map [27], (2) probing the data with tree crown-shaped SEs of varying extent to
delineate tree crown contours [26], (3) identifying single trees on a CHM using the tophat algorithm to
identify forms associated with treetops [45], or (4) identifying forest gaps when comparing the CHM
with a generalized CHM where holes corresponding to gaps were filled [46].

2. Model Development

The identification of forest gaps critical to the release of avalanches compares forest-gap extents
with critical-gap extents prescribed by the Swiss guidelines [5]. This comparison can be automated
with a morphological opening operation (ω) where a binary raster indicating forest gaps (=1) and
forests effective against the release of avalanches (=0) is probed with a structuring element scaled
to the critical-gap extent. From now on, we will use the more visual term “critical-gap template”
instead of structuring element. The opening operation starts with a morphological erosion (ε) that
discards gaps which do not meet the critical-gap extent, and ends with a morphological dilation (δ)
that reconstructs the gaps at locations meeting the critical-gap extent. The slope-line direction and
the length of a critical gap depend on local topography, i.e., the critical-gap template must change
its extent and direction according to topography to produce plausible results. The representation of
topography as a set of topographic classes with corresponding critical-gap templates makes it possible
to include topography in the detection process. Figure 1 assembles these basic ideas into a workflow
which we will subsequently explain.

The topography is represented as a set of topographical classes (topoclasses) tcij. A topoclass
maps locations within a specified range of hillslope steepness and slope-line directions. It results
from intersecting the areas of predefined aspect classes i and slope classes j. In total, mxn topoclasses
result when computing m aspect- and n slope classes on a DTM. Forest gaps FGPhp characterize the
area complementary to the one sufficiently forested to be effective against the release of avalanches.
The height factor h and the minimum forest coverage p define the extent of effective forests. The height
factor stems from the requirement trees to be twice (i.e., h = 2) the extreme snow height, as stated in
other guidelines [7–9]. On the contrary to DBH ≥8 cm proposed by the Swiss guidelines [5], this tree
parameter is directly measurable from a CHM. Moreover, trees meeting the expected tree height
threshold values in subalpine forests are very likely to also meet the DBH-threshold. The parameters h
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and p control the computation of forest gaps on a CHM. Height factor h controls the selection of the
tree crowns which constitute the effective forest canopy. This information is then used to calculate
forest coverage. Finally, minimum forest coverage p restricts the effective forest areas to the sufficiently
covered portion. The forest gaps (i.e., the complement of the effective forest area) are then intersected
with each topoclass ij, and probed with the corresponding critical-gap template cgtij. Probing is
formulated as a morphological opening as stated in Equation (7). The resulting critical gaps cgphp,ij in
all topoclasses are finally unioned to create the critical-gap map CGPhp (Equation (8)). Equation (9)
describes how the set notation is transferred into a binary raster where values “1” at locations r indicate
critical-gap areas.

cgphp,ij = δcgtij

[
εcgtij(FGPhp ∩ tcij)

]
= ωcgtij(FGPhp ∩ tcij) (7)

CGPhp =
⋃
ij

cgphp,ij (8)

CGPhp(r) =

{
1 r ∈ CGPhp

0 else
(9)
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Figure 1. Workflow for the automatic detection of critical forest gaps (CGPhp) based on a series of
morphological opening operations applied to forest gaps (FGPhp) for various topoclasses (tcij) and
their corresponding critical-gap templates (cgtij). Topoclasses are computed from the digital terrain
model (DTM) and forest gaps from the canopy height model (CHM).

The following sub-sections explain (1) the workflows to compute topoclasses and forest gaps,
(2) the approach to validate the model and (3) the model implementation.

2.1. Computation of Topographic Classes

The discretization of the topography into topoclasses creates many artificial boundaries between
different topoclass-patches. This may result in an underdetection of critical gaps along those
boundaries. The creation of overlapping topographical classes at the appropriate scale of a critical-gap
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template is a means to overcome those likely limitations resulting from artificial boundaries. Figure 2C
illustrates the basic principle. First, a generalized slope class j (GSCj) is intersected with a generalized
aspect class i (GACi). The gap-template gti aligned with GACi is then applied to the intersection to
create the enlarged topoclass tcij, which is a morphological dilation operation (Equation (10)). We will
subsequently explain the detailed workflows to create GAC and GSC.

tcij = δgti (GSCj ∩ GACi) (10)
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generalize (sieve)

calculate slope
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Figure 2. Workflow for the computation of topoclasses (tcij) based on generalized slope- and aspect
classes (GSC, GAC). Part (A) depicts the steps to calculate GACs, part (B) the ones to calculate GSCs.
Part (C) explains the computation of overlapping topoclasses to overcome likely limitations resulting
from artificial boundaries. Therefore, the intersections of GSCj and GACi are morphologically dilated
with the gap-template (gti) corresponding to aspect class i.

The generalized aspect class (GAC) raster is merely the product of classification- and
generalization operations (see Figure 2B). In order to obtain contiguous aspect-class patches of
sufficient extent, the aspect raster is calculated on a DTM generalized using a discoidal mean filter
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to obtain aspect values gradually changing in space. The raster is then classified into m aspect
classes according a scheme whereby each aspect class is a merger of two ranges of 180/m degrees in
opposite direction. For example, the same critical-gap template applies to North- and South-facing
hillslopes. Aspect class-patches not meeting the gap template size may still exist after these operations.
Therefore, those patches are finally divided-up to sufficiently large adjacent patches when applying
the sieve method. The sieve method (1) identifies patches not meeting an area threshold and (2)
replaces their raster values with those of the nearest raster cells belonging to valid patches.

The field evaluation of slope in a forest gap happens at the scale of a critical gap.
Consequently, a slope raster must reflect the slope conditions at a similar extent. The workflow
to compute generalized slope classes (GSC, Figure 2A) adopts this conception when applying a mean
filter at gap template extent (gti) to the slope raster computed from the DTM. The maximum slope
value obtained when calculating mean slope in all aspect class-directions i becomes the slope at gap
extent. The values suggested by the guidelines (i.e., Table 1) serve to classify n slope classes. Finally,
the sieve method is applied to divide-up patches not meeting the gap-template size.

2.2. Computation of Forest Gaps

Identification of forest gaps starts with the characterization of its complement, the forests effective
against the release of avalanches. Those “effective forests” (EF) consist of sufficiently high trees
which sufficiently cover the ground. The parameters height factor h and minimum forest coverage p
specify the minimum properties of effective forests EFhp, whereas multiplying h with extreme snow
height Hext gives the minimum tree height. Given set A representing the project perimeter area,
the complementary set of forest gaps FGPhp of EFhp is computed as follows:

FGPhp = A\ EFhp (11)

Figure 3 depicts the workflow to compute forest gaps using a canopy height model (CHM).
Its principal steps are (A) the detection and characterization of single trees using the CHM, (B) the
identification of effective forests using the single tree-information and (C) the identification of forest
gaps as the complement of effective forests. Single trees are detected by applying a local maxima
method to identify treetops and the watershed algorithm to delineate the corresponding tree crown
extents on the CHM (Figure 3A). Therefore, the CHM is smoothed using a Gaussian filter (3 × 3, σ = 1)
to prevent the local maxima method from overdetection, and applying a 2 m-lower height cutoff
prevents the watershed algorithm from delineation of implausibly large tree crowns. The tree height
htree [m] and the corresponding crown extent finally characterize each single tree. Effective forests are
identified when selecting sufficiently high single trees, computing forest coverage for that selection
and discarding effective forest patches too small to be termed “effective” (Figure 3B). Only trees equal
or higher than the product of extreme snow height Hext and height factor h are selected (Equation (12)).
Here, the extreme snow height equation applied for dimensioning avalanche protection barriers
(Equation (13), [13]) is adopted, which calculates Hext [m] as a function of a region parameter cregion
[scalar] and altitude Z [m a.s.l.].

htree ≥ h · Hext(Z)[m] (12)

Hext(Z) =
cregion · (0.15 · Z− 20)

100
[m] (13)

A binary raster capturing the crown extents of effective trees (=1) then serves to calculate forest
coverage and to identify effective forests. Forest coverage is calculated as the share covered by effective
trees within a discoidal moving window at the scale of critical-gap width. The binary effective forest
raster then results from classifying forest coverage into effective forests (=1) for values ≥p and into
ineffective ones for values <p. Patches not meeting a minimum extent are treated as ineffective and
are discarded in the final effective forest raster by applying the sieve method. Finally, the forest gap
raster FGPhp results from inverting the effective forest raster EFhp (Figure 3C).
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Figure 3. Workflow for the identification of forest gaps (FGPhp). It is based on (A) the delineation and
characterization of trees based on a CHM, (B) the identification of effective forests EFhp subject to height
factor h and minimum forest coverage p, and (C) the inversion of EFhp to obtain forest gaps FGPhp.

2.3. Model Validation

The TIMA-based detection of critical gaps will produce a critical-gap map. That map is interpreted
as a binary classification of critical-gap presence, either being YES or NO. This enables the validation
via a map accuracy assessment as proposed by Congalton and Green [47], given a set of locations
where gap criticality has been assessed in the field. Here, we explain the set-up of the field survey.
It aims at (1) randomly drawing sample locations supporting the explanatory power of the assessment
and (2) allowing for an analytic and fast manual field assessment.

Critical gaps are assumed sparsely distributed in space because site properties are often not
suited to the occurrence of critical gaps at all when hillslopes are too shallow or forests are stocked too
densely. I.e., the area where critical-gap presence will be classified NO will outnumber the YES-area
by far. For example, given that critical gaps make up 5% of the overall area, the chance of picking
at least 5 critical-gap locations out of 50 samples is 10%, assuming a Bernoulli process. That sample
dataset would support the accuracy assessment for the absence rather than for the presence of critical
gaps. Instead, the principles of the Poisson sampling method [48] are adopted to produce a better
balanced sample set. The method assigns potential samples an inclusion probability. That probability
characterizes the sample’s suitability to support a global prediction and is scaled with the expected
number n of samples to be drawn from a set N. In the context of this study, inclusion probability π(r)
characterizes a location r’s suitability for critical gaps s(r) scaled with the expected number of samples
n (Equation (14)). Therefore, the test area is discretized into a 25 × 25 m raster to create the set of
potential sample locations N. Suitability s(r) is assessed to the same extent based on the weighting
functions sslo and scov that capture the suitability of local mean slope and forest coverage to encounter
critical gaps. Suitability is specified by expert’s opinion on the range [0, 1] for both suitability functions
(Figure 4).

The function formulation aims at obtaining a balanced sample set consisting of sample locations
both with and without critical gaps. Since suitability is the product of steep slopes and sparse
forest coverage, the logical AND-operation used in Fuzzy Logic [49] is adopted to compute s(r)
(Equation (15)).

π(r) =
n · s(r)

∑k∈N s(k)
(14)

s(r) = arg min[sslo(r), scov(r)] (15)
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Figure 4. Suitability functions for slope sslo(r) and forest coverage scov(r). The minimum of the
two indicates overall suitability s(r), as indicated for the example location characterized by 30◦slope
steepness and 60% forest coverage.

The field assessment is set up as a questionnaire consisting a sequence of dichotomous questions
(Table 2). The assessment stops when a response to a question is negative. I.e., all responses must be
positive at a sample location to become a critical gap. A differential GPS (TopCon HiPer Pro) serves to
navigate to sample locations, and gap-slopes and -extents are measured using the Haglöf Vertex IV.

Table 2. Questionnaire used for the field assessment.

Step Question Action

1 Is there is a gap close to the center of the 25 × 25 m cell? Visual inspection
2 Is the local slope equal or steeper than 30◦? Measure the slope in slope-line direction

within a distance of 10 m around the center
3 Is the gap long and steep enough to be classified

“critical” according to the guidelines (Table 1)?
Measure the slant distance and the slope
of the gap

4 Is the gap wide enough (i.e., ≥10 m)? Measure gap width
5 Is the presence of trees in the gap neglectable? Visual inspection whether trees are grouped

2.4. Model Implementation

The model was implemented using ArcGIS and MATLAB whereas the latter served to tackle
processing steps for which no standard tools in ArcGIS existed. Single trees were delineated in
MATLAB and topoclasses were computed in ArcGIS (ESRI, version 10.4.1), using the sieve method
provided in the Geomorphometry & Gradient Metrics Toolbox [50]. The detection of critical gaps
was finally implemented using the morphology operators provided in MATLAB’s Image Processing
ToolboxTM(The Mathworks Inc., Release 2014b).

3. Application to a Subalpine Study Area

The topography-informed morphology approach (TIMA) was tested for a subalpine study area in
Klosters-Serneus (Switzerland) at the extent of 30 hectares. The forest predominantly composed of
Norway spruce (Picea abies) stretches on a North-Eastern facing hillslope at elevations ranging from
1500–1700 m a.s.l.. Consequently, the specification of TIMA followed the Swiss guideline-specifications
for evergreen subalpine coniferous forests. The study area was part of an airborne LiDAR acquisition
in 2010 (see Table 3 for specifications). TopoSys used its own software TopPit to compute the DSM and
DTM at 0.5 × 0.5 m raster resolution. The CHM resulted when subtracting the DTM from the DSM.
The following sub-sections (1) explain the set-up of topography in TIMA, (2) explain the set-up of
forest gaps in TIMA and investigate the sensitivity of critical-gap detection on the parameters defining
effective forests, (3) investigate critical-gap map accuracy when comparing with a sample set assessed
in the field, and (4) document the effect of adding linear features (i.e., forest roads and river channels)
decoupling the snow layer to TIMA.
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Table 3. Specification of the airborne LiDAR-data acquisition.

Attribute Unit Value

Instrument Riegl LMS Q 560
Beam deflection Rotating mirror

Time of acquisition 11–15 September 2010
Pulse Repetition Frequency kHz 70

Flight altitude m 700
Max. scan angle ◦ ±15

Wavelength nm 1550
Beam divergence mrad ≤0.5
Avg. echo density m−2 27.4

3.1. Set-Up of Topography in TIMA

32 topoclasses captured the topography in the study area, four slope- and eight aspect classes
(Figure 5). Hillslope directions were discretized using aspect classes covering 22.5◦-ranges of directions
to produce plausibly facing critical gaps. The aspect classes were calculated on a generalized DTM
(discoidal mean filter, radius: 20 m) whereas patches not meeting an area of a representative critical
gap (400 m2) were modified using the sieve method explained above. The slope classification adopted
the slope thresholds prescribed in the Swiss guidelines (Table 1, [5]) and restricted the steepest slope
class to 55◦. Slopes outside the slope class-ranges were either considered too flat or too steep for
avalanche release (Figure 5). A gap template (gt) of 10 × 30 m extent served to calculate slopes at
gap extent from the slope raster that was computed on the DTM. Again, the sieve method was then
applied to update patches not meeting 400 m2. The resulting generalized aspect- and slope rasters
(GAC, GSC) were then intersected, and dilated using gt. The creation of the 32 critical-gap templates
(CGT) corresponding to the topoclasses required the specification of gap direction, critical length and
critical width. The aspect class center-values defined the direction, the critical length corresponded to
the planar length of the gap length in slope line-direction (Table 1), and the gap width was set to 10 m.
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Figure 5. Classification schemes for the four slope classes and eight aspect classes constituting the
32 topoclasses subject to investigation. The slope classification corresponds to the values in Table 1.

3.2. Sensitivity of Critical-Gap Detection on Effective-Forest Specification

The forest gaps were first computed based on the specifications for height factor h = 2 and
minimum forest coverage p = 50% as prescribed by the Swiss guidelines [5,8]. The computation
followed the workflow depicted in Figure 1. This resulted in effective tree heights ranging from 6.8
to 7.8 m when parametrizing Equation (13) for Klosters-Serneus (cregion = 1.65). Effective trees were
selected according to Equation (12) from the single trees delineated on the CHM. The corresponding
effective tree crowns were used to estimate forest coverage at the extent of a 15 m-diameter disc
(area = 180 m2). The effective forest raster resulting for p = 50% was finally generalized when
discarding forest compartments ≤100 m2. This value corresponds to the extent of 2–3 mature trees
which was assumed ineffective to prevent avalanche releases. That effective forest raster was termed
the BASE raster, which was used as the starting point for the following sensitivity analysis.
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The sensitivity analysis focused on how the area (1) of effective forests and (2) critical gaps
changed as a result of varying tree height factor h and forest coverage p by ±20%. For example an
increase of minimum forest coverage (p = 50%) by 20% resulted in p = 60%. Figure 6 shows the
percental change in effective forest area related to the BASE raster (marked with a “*”). It shows that
the delineation of effective forests was much more sensitive to changes in forest coverage (∼15%)
than to those in the height factor (∼3%). A change in forest coverage affected the entire area whereas
changes in the height factor only affected areas at the thicket stage. The latter usually forms a small
portion in Swiss subalpine forests, which are managed according to long rotation periods. A maximum
change of 18% resulted when both parameters were varied simultaneously.
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Figure 6. Sensitivity of the delineated area of effective forest on the parameters forest coverage and tree
height factor. Area change is expressed as the percent change in relation to the BASE parametrization
of effective forests, h = 2 and p = 50% (*).

Figure 7 shows the percental change in critical-gap area related to the BASE raster (*). It indicates
that the detection of critical gaps was much more sensitive to changes in forest coverage than to
changes in the tree height factor. For example, the critical-gap area increased by 143% when increasing
p by 20%, whereas increasing h by 20% resulted only in a 16% increment. The simultaneous variation
of both parameters resulted in area changes ranging from −56% up to +228%.
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Figure 7. Sensitivity of the delineated area of effective forest on the parameters forest coverage and tree
height factor. Area change is expressed as the percent change in relation to the BASE parametrization
of effective forests, h = 2 and p = 50% (*).

The high sensitivity of critical-gap detection on the parameters specifying effective forests has led
us to the conclusion that mapping of critical gaps must also communicate their sensitivity to effective
forest-specification. A “gap detection rate” was identified a convenient metric to map both the location
and sensitivity of critical gaps. It explains which share of alternative effective forest-specifications
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resulted in a critical gap on each raster cell. Detection rates close to 1 characterize gaps insensitive to
the parametrization whereas detection rates close to 0 indicate the opposite. Given parameter sets H
and P for the tree height factor and forest coverage used for the sensitivity analysis, the detection rate
raster GAPRATE was specified as follows:

GAPRATE(r) =
1

|H| · |P| · ∑
h∈H

∑
p∈P

GAPhp(r) (16)

This required us to compute the binary critical-gap rasters GAPhp for all hp-combinations where
1 indicates critical and 0 not critical in the resulting rasters. The gap detection rates were computed for
the sets H = {1.6, 2.0, 2.4} and P = {40, 50, 60}. Figure 8 depicts the resulting critical-gap map which
was subject to the following investigations. It displays the critical gaps overlaid with a topographic
map, which allowed for a visual plausibility check.

3.3. Map Validation

The critical-gap map in Figure 8 was subject to validation using a sample set assessed in the
field. The field survey was set-up according to the method explained in Section 2.3 for n = 40 sample
locations. Therefore, the Poisson sampling was set-up for n = 40 locations. The application to the test
area resulted in 39 samples of which a subsample of 19 in the eastern part of the study area was finally
selected because of their proximity. These sample locations were visited in the field to manually assess
the criticality of gaps (either being YES or NO) when applying the questionnaire (Table 2). Table A1
in the appendix shows the decision on criticality as well as the step in the questionnaire determining
non-criticality for each sample.

The map in Figure 8 shows the results of the field assessment and the automatic detection
(critical-gap map). Table 4 puts the comparison of the two results into an error-matrix and provides
the corresponding accuracy metrics. Overall, the accuracy of detecting the presence or absence of a
critical gap was 84%. The user’s accuracies, i.e., the accuracy of encountering the map prediction in
the field, were 75% for the presence and 91% for the absence of critical gaps. Finally, a Kappa-value
K̂ = 0.67 indicated a substantial agreement between field observation and detection according to Landis
and Koch [51]. Three out of the 19 samples were misclassified, namely samples 2, 6 and 17. The reasons
were manifold. The gap length and slope values in sample 2 only marginally fulfilled the criteria for a
critical gap in the field. Sample 6 was not termed a critical gap in the field because of the presence of a
dense forest at the thicket stage. Finally, sample 17 was not termed a critical gap because the break
in the hillslope created by a wooden hillslope stabilization structure was assumed to decouple the
snow layer.

Table 4. Error matrix and accuracy metrics for the comparison of critical gaps manually assessed in the
field (references) with automatically detected ones (classification).

Classification References Producer’s Accuracy[%] User’s Accuracy[%]
Yes No Total

Yes 6 2 8 86% 75%
No 1 10 11 83% 91%

Total 7 12 19 Overall accuracy: 84%; Cohen’s Kappa K̂: 0.67
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Figure 8. Results of the critical-gap classification based on the automatic detection and the results of
the field assessment. Topographic map: Uebersichtsplan (UP), Canton of Grisons, 17 January 2017.

3.4. Linear Features Decoupling the Snow Layer

TIMA currently represented the topography at critical-gap scale, i.e., TIMA interpreted it as
inclined planes at the 10 × 30 m-extent. This representation could not capture abrupt breaks on
the hillslope, which can decouple the snow layer. Linear features such as torrent channels or forest
roads can indicate such abrupt breaks. Earth works required when constructing forest roads result
in considerable breaks on the hillslope. Moreover, a torrent channel on steep sites even indicates the
conjunction of two hillslopes facing into different directions. Thus, TIMA must include those linear
features to reduce overprediction resulting from generalization of topography. Features indicating
abrupt breaks on the hillslope B were implemented in TIMA when added to the set of effective forests
EFhp (Equation (17)). This made it impossible to detect critical gaps across these features.

FGPhp = P\(EFhp ∪ B) (17)

An extent containing a forest road and a torrent channel was selected in the study area to test
the modified model. Both, the 3.50 m wide forest road and the deep channel of the Drosbach torrent,
were previously identified as abrupt breaks on the hillslope in the field, i.e., critical gaps crossing
those features were implausible. The forest roads and the torrent channels were available in vector
format. The cantonal forest agency of Grisons provided the forest road layer. For the sake of simplicity,
the torrent channel was digitized from the topographical map in Figure 9 for the extent displayed.
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They were transferred into rasters to perform the computation. To perform this task, the line features
were previously transferred to polygons of 3 m width. Figure 9 illustrates the resulting maps when (A)
excluding and (B) including these line features. Critical gaps disappeared where the hillslopes became
too short to fit a critical-gap template after adding the line features. Implausible critical gaps such as
the ones at locations 1 and 2 could be erased.
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Figure 9. Comparison of detected critical gaps when (A) excluding and (B) including linear features
that decouple hillslopes. The channel was digitized from the topographic map: Uebersichtsplan (UP),
Canton of Grisons, 17 January 2017.

4. Discussion

We have learned the following when applying the topography-informed morphology approach
(TIMA) to the 30 hectare study area in Klosters-Serneus (Switzerland):

1. Single trees delineated on the CHM are a convenient means to identify forests effective against
the release of snow avalanches based on forest parameter thresholds. The detection of critical
gaps turned out to be very sensitive to the thresholds for forest parameters that specify effective
forests. For example, raising the minimum required forest coverage from 50 to 60% resulted in
a 130%-increment of critical-gap area. Therefore, mapping critical gaps using detection rates
appropriately communicates both the locations of critical gaps and their sensitivity to effective
forest parametrization.

2. The critical-gap map identifies areas with and without critical gaps at an 84% overall accuracy
when compared with the results of a field assessment (n = 19). The Kappa value K̂ = 0.67 indicates
substantial agreement between detection and field observation.

3. TIMA can include linear features (forest roads and torrent channels) that decouple the
snow layer when updating the forest gap raster with their locations. Thus, the generalized
topography-characterization based on topoclasses can be improved with local topography
information decisive to critical-gap detection.

These findings have important implications not only for future research but also for practitioners.
Based on our experience gained from the application of TIMA to the Kloster-Serneus study area, we
also identified aspects in forest- and topography characterization for an elaborate discussion. We will
subsequently address these items in detail.
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4.1. Implications for Practitioners and Research

A practitioner can make use of a critical-gap map colored by detection rate to identify potential
critical gaps as well as their sensitivity. The latter information particularly supports the prioritization of
field surveys and eventually the application of measures. However, this prioritization should also take
into account other factors triggering the release of avalanches besides gap sizes and -shapes, such as
hillslope aspect, surface roughness and the redistribution of snow by wind [3]. Moreover, applications
to deciduous forests would require the modification of critical-gap extents and parametrization of
effective forests in the context of the Swiss guidelines [5]. A potential large-scale application would
require the division into sub-areas to facilitate computation. Watersheds would be suitable sub-areas
because their boundaries also apply to snow processes. Moreover, a large-scale application would
require automated assessment of linear features indicating abrupt breaks on the hillslope.

The main implication for research is that a topography-informed morphology approach (TIMA)
has proved to plausibly detect objects (i.e., critical forest gaps) in the landscape that change their extent
and orientation with local topography. The inclusion of landscape features inhibiting those objects
(i.e., effective forests and line features) restricts the detection to plausible locations. In the context of
forest management in potential avalanche release zones, TIMA can be adapted to the specifications
of guidelines outside Switzerland [7,9,10] because all of them base their assessment on specifications
for effective forests and critical-gap extents. Moreover, the method could be of use to evaluate small
avalanche release areas above the treeline where critical extent matters. The minor implication for
research is that the sampling scheme inspired by Poisson sampling has been proven to select suitable
samples for a binary classification when the occurrence of the classes greatly differs (i.e., locations with
or without critical gaps).

In general, TIMA could be a valuable tool to identify objects where topography matters.
There are three aspects to consider when setting up TIMA. First, a raster is required that allows
adequate representation of the template subject to probing. As morphological operations are a
time-consuming task one should prefer the satisfying raster resolution to the best available one.
Second, potential underdetection should be reduced via specification of sufficient large overlapping
topoclasses. Eliminating topoclass-areas not meeting the template extent and morphologically
dilating topoclasses at the template-extent are means to reduce potential underdection resulting from
artificial boundaries created by topoclass-patches. Third, potential overdetection introduced with the
generalization of topography in the previous step must be compensated with features at the sub-scale
of the template that inhibit detection. Finally, the workflow for topoclass computation (Figure 2) may
be adapted for other applications depending on DTM-resolution and template size.

Concrete further applications of TIMA could address other gravitational processes such as
rockfall and erosion. For example, the Swiss guidelines [5] also foresee the identification of critical
objects in forests protecting against rockfall. Again, one should avoid long forest gaps in slope-line
direction to reduce the acceleration of rocks due to the absence of obstacles, i.e., trees. In that case,
stem locations rather than crown extents matter for characterizing the forest’s effectiveness against
rockfall. Finally, the Universal Soil Loss Equation (USLE, [52]) could be a starting point to identify
hillslopes critical to soil conservation goals. Slope steepness and slope length are variables of that
equation, which could support the determination of critical hillslope extents.

4.2. Aspects of Forest Characterization

The assignment of the parameter value for effective forest coverage has demonstrated a strong
impact on the detection of critical gaps. Traditionally, practitioners have visually assessed forest
coverage at the scale of forest stands, i.e., areas of homogeneous forest structure. Since critical gaps are
objects at the sub-scale of stands, forest coverage assessed at the stand-scale would have lacked the
necessary spatial detail. Instead, a 180 m2 discoidal moving window served to compute a continuous
forest coverage information from CHM-derived single trees. This also facilitated capturing the gradual
changes in space of subalpine forest structure. However, the aggregation via a moving window may
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not reflect what we encounter at a specific location. For example, a forest gap-location on the single tree
map may still have a high forest coverage because of dense forest covering half of the window. Given
the highly detailed CHM-based single tree characterization, one should consider identifying effective
forests directly on the tree-network resulting when linking trees to their next neighbors. For example
favorable tree-to-tree distances derived from stem density (in stems per hectare) requirements [4] could
be a starting point for network analysis.

There is a chance that dense forests in the late thicket stage are treated as “ineffective” when many
trees do not meet the tree height requirement (as we encountered at sample site 6, see Figure 8). This
requirement may be sufficient for a practitioner who may skip the rule when appropriate. Providing a
map indicating single trees’ sensitivity to being termed “effective” could support the interpretation of
critical gaps located in forests at the thicket stage.

4.3. Aspects of Topography Characterization

The application to the test area focused on forest characterization and the comparison of detected
gaps with results from field assessment. The results provide a qualitative indication of how well
32 overlapping topoclasses represented topography. The high map accuracy indicates that topoclasses
plausibly mapped slope-line directions and hillslope steepness. Moreover, the accuracy metrics also
indicate that critical gaps were not systematically underpredicted, which may be the result of using
overlapping topoclasses. While slope classes were prescribed by the guidelines, tuning the number of
aspect classes was about identifying a good trade-off between accurateness of slope-line directions
and computational time. However, future research should analytically explore how well topoclasses
represent real topography and how topoclass specification impacts critical-gap detection.

TIMA also accounts for features at the sub-scale of topoclasses. Besides digitally available features
used in this study (i.e., forest roads and torrent channels), more features relevant to critical-gap
detection could be delineated on the DTM directly. For example, methods based on steepest ascent [53]
or maximum plan curvature [54] exist to identify ridgelines. The consideration of any line feature
requires prior assessment of whether it results into an abrupt break on the hillslope. Here, we visually
assessed the relevant linear features in the field. Future investigations should target automation of
the assessment.

5. Conclusions

The article presented a topography-informed morphology approach (TIMA) for automatic
identification of forest gaps critical to the release of snow avalanches using airborne LiDAR-data.
TIMA uses morphological opening to probe forest gaps with a template (i.e., structuring element)
representing a critical-gap extent. Since this template must adapt to the local topography to produce
plausible results, space was discretized into a set of topography classes (topoclasses) and corresponding
critical-gap templates. These topoclasses covered slope- and aspect-ranges to account both for
critical-gap length thresholds provided by the Swiss guidelines [5] and the gap’s orientation in
slope-line direction. Topoclasses were computed on a DTM (0.5× 0.5 m) and they spatially overlapped
to facilitate seamless detection of critical gaps. Forest gaps were defined as the complement of forests
effective against the release of avalanches. Effective forest-areas were computed based on single
trees delineated on a CHM (0.5 × 0.5 m). Therefore, thresholds for effective tree height (being the
product of extreme snow height and a height factor [8]) and forest coverage were applied to the single
trees to identify effective forested areas. The critical-gap map resulted from union of all critical gaps
detected on the single topoclasses. Moreover, including linear features (forest road and torrent channel)
decoupling the snow layer on the hillslope in TIMA enhanced map plausibility near those features.

The approach presented here is an example of automation of rules and information acquisition
originally designed for manual assessment by experts. Its application to a study area in Switzerland
revealed the sensitivity of critical gap detection to the parameters specifying effective forests.
Contrary to the hidden ambiguity tied to an expert’s judgement on criticality, automation facilitates
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mapping of sensitivities as the result of model runs based on varying specifications. The promising
classification accuracy of the critical-gap map indicates TIMA’s ability to capture relevant landscape
features at the critical-gap scale. This encourages its use in assessing other gravitational natural
hazard processes. However, future work must further investigate topoclasses’ suitability to capture
the relevant topographic properties. Moreover, linear features limiting detection of critical extents
such as gaps should be included whenever available to compensate for the generalization induced
by topoclasses. To perform large-scale applications, future work should also address automatic
delineation and assessment of those features.
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Appendix A

Table A1. Characterization of the 19 field samples including the steps determining non-criticality
according to Table 2.

ID Step Determining Non-Criticality Critical Gap: Field Critical Gap: Map

1 none yes yes
2 none yes no
3 step 3: gap too short no no
4 step 2: not steep enough no no
5 step 1: no gap no no
6 step 1: no gap no yes
7 none, trees in gap neglectable yes yes
8 none yes yes
9 none, trees in gap neglectable yes yes

10 step 2: not steep enough no no
11 none, trees in gap neglectable yes yes
12 step 1: no gap no no
13 step 2: not steep enough no no
14 none, trees in gap neglectable yes yes
15 step 3: gap too short no no
16 step 2: not steep enough no no
17 step 3: gap too short, wooden hillslope stabilization structure no yes
18 step 2: not steep enough no no
19 step 3: gap too short no no
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