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Abstract: Land surface temperature (LST) is one of the sources of input data for modeling land surface
processes. The Landsat satellite series is the only operational mission with more than 30 years of
archived thermal infrared imagery from which we can retrieve LST. Unfortunately, stray light artifacts
were observed in Landsat-8 TIRS data, mostly affecting Band 11, currently making the split-window
technique impractical for retrieving surface temperature without requiring atmospheric data. In this
study, a single-channel methodology to retrieve surface temperature from Landsat TM and ETM+
was improved to retrieve LST from Landsat-8 TIRS Band 10 using near-surface air temperature (Ta)
and integrated atmospheric column water vapor (w) as input data. This improved methodology was
parameterized and successfully evaluated with simulated data from a global and robust radiosonde
database and validated with in situ data from four flux tower sites under different types of vegetation
and snow cover in 44 Landsat-8 scenes. Evaluation results using simulated data showed that the
inclusion of Ta together with w within a single-channel scheme improves LST retrieval, yielding lower
errors and less bias than models based only on w. The new proposed LST retrieval model, developed
with both w and Ta, yielded overall errors on the order of 1 K and a bias of −0.5 K validated against
in situ data, providing a better performance than other models parameterized using w and Ta or only
w models that yielded higher error and bias.
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1. Introduction

Land surface temperature (LST) is one of the sources of input data for modelling land surface
processes, such as actual and potential evapotranspiration or net radiation, that are a critical component
of many ecological studies [1–3]. Historically, the first operational satellite to acquire low-resolution
thermal remote sensing imagery was NOAA TIROS II in 1960. In 1984, NASA launched Landsat-4
Thematic Mapper, the first operational satellite mission with a thermal camera covering the thermal
infrared (TIR) spectrum from 10.5 to 12.5 µm with a spatial resolution ranging from 60 to 120 m.
Although years later Terra ASTER or the CBERS program included one or more TIR bands in their
satellite missions, Landsat is still the only mission with more than 30 years of archived imagery
including thermal infrared. In 2013, Landsat-8 was launched, including an enhanced TIRS camera
with two bands (Band 10 and Band 11) covering the thermal spectrum within 10.6 to 12.51 µm and
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intended to improve the atmospheric correction by means of a split-window technique [4] as NOAA
AVHRR or Terra/Aqua MODIS have historically implemented [5].

Since the first Landsat-8 image acquisition, several methodologies to retrieve surface temperature
regionally based on a split-window method [6–8], a single-channel method [8–10], or a mono-window
algorithm [11], among others, have been developed (see [3] for a comprehensive overview on
atmospheric correction methods for thermal infrared satellite imagery). Unfortunately, stray light
artifacts were observed in TIRS data which include banding and absolute calibration discrepancies
that violate requirements in some scenes [12]. The source of these artifacts was determined to be
out-of-field radiance that scatters onto the detectors, thereby adding a nonuniform signal across the
field-of-view, which is generally twice as large in Band 11 as it is in Band 10 [12,13]. There have been
some attempts to correct this problem [14]. However, according to the USGS, additional work is
underway to assess whether this correction is adequate for use with the split-window atmospheric
correction technique (https://landsat.usgs.gov/april-25-2017-tirs-stray-light-correction-implemented-
collection-1-processing), making the application of methods based on Band 10 the most appropriate.

When split-window techniques are inadequate to retrieve LST, techniques based on a direct
single-channel inversion of the radiative transfer equation are applied, although these are more
sensitive to uncertainties in the input parameters, making it more difficult to perform atmospheric
corrections. In this case, surface temperature can be retrieved through the radiative transfer equation in
the thermal spectrum using radiosonde information. If radiosonde data is unavailable at satellite pass
then users can use a freely available online tool (https://atmcorr.gsfc.nasa.gov/), that is updated for
Landat-8 TIRS, to generate interpolated vertical profiles by means of National Center for Environmental
Prediction (NCEP) reanalysis data [15,16]. Radiosonde data can then be input into a radiative transfer
code, such as MODTRAN, to retrieve the main atmospheric parameters to solve the radiative transfer
equation. However, in both cases, it should be taken into account that a single atmospheric radiosonde
might not be representative of the atmospheric conditions across the entire Landsat image (about 180
by 185 km), especially in areas with highly variable relief [9,10,17].

To retrieve surface temperature regionally, thus avoiding dependence on radiosonde data,
two methodologies based on the radiative transfer equation for Landsat-8 TIRS Band 10 were
implemented by [8,11]. The single-channel method developed by [8] is only water vapor (w) dependent,
which minimizes the input data required and provides an operational methodology to retrieve surface
temperature from the Landsat-8 TIRS band. This methodology was designed to obtain surface
temperatures using the Global Atmospheric Profiles from Reanalysis Information (GAPRI) radiosonde
database [18] that includes 4714 atmospheric profiles and is representative of w conditions at a global
scale. Nonetheless, due to the fact that this method was minimized to only one atmospheric parameter,
w, an error in this source could increase the error in surface temperature retrieval, especially when
atmospheric water vapor content increases. In fact, for water vapor content higher than 3 g·cm−2,
algorithms based on a single band might not be sufficiently accurate due to the uncertainties introduced
when fitting atmospheric parameters only to w, which are then dramatically propagated to surface
temperature retrievals.

However, this problem can be also solved by adding the near-surface air temperature (Ta) to
the model, as proposed by [17,19], at the expense of requiring two atmospheric parameters as input
data. A mono-window algorithm for Landsat-5 TM was developed by [19] in which two atmospheric
parameters obtained through w and Ta are required: atmospheric transmittance and effective mean
atmospheric temperature. Atmospheric transmittance was derived from simulation of atmospheric
conditions with MODTRAN using four standard atmospheres (USA 1976, tropical, mid-latitude winter,
and mid-latitude summer). In the case of the estimation of the effective mean atmospheric temperature,
an approach from local meteorological observation or interpolated Ta layers using temperature
ranges was also proposed. Later, another study improved this algorithm for Landsat-8 land surface
temperature retrieval [11]. To avoid using temperature ranges or standard atmospheres which can
limit the study areas in which the model is applicable (for instance, in [11,19] models were not designed

https://landsat.usgs.gov/april-25-2017-tirs-stray-light-correction-implemented-collection-1-processing
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for sub-Arctic or Arctic/Antarctic conditions), a methodology for Landsat missions 4 to 7 including
Ta and w was developed [17]. In this methodology, surface temperature was successfully (yielding
errors around 1 K) retrieved at regional scale using the Terra MODIS w product and interpolated Ta as
input data.

In this paper, an improved algorithm to retrieve LST from the Landsat-8 TIRS Band 10 based on
the methodology proposed by [17] is presented by adding Ta together with w as an input variable for
LST retrieval. A global radiosonde database is used for model fitting and model validation is carried
out using 44 Landsat images from 2013 to 2016 and in situ surface temperature data for snow and
vegetation cover at four flux towers. In addition, model results are compared with results derived
using the method developed by [8] that uses only w to demonstrate further improvements achieved by
adding Ta as model input. Additionally, the model is also compared with an existing mono-window
algorithm developed by [11] that also uses Ta and w. Finally, Ta and w model inputs are also validated
using independent data to establish their performance.

2. Land Surface Temperature Algorithm Development

The present algorithm is based on [17,20], who used w and Ta as inputs to retrieve land surface
temperature (LST) for a single channel, as is the case for Landsat-8 TIRS Band 10 that spans the
wavelength range from 10.60 µm to 11.19 µm. To retrieve LST, the radiative transfer equation is applied
to a certain sensor channel (or wavelength interval) according to

Lsensor,λ = [ελ Bλ (Ts) + (1 − ελ) L↓atm,λ] τλ + L↑atm,λ (1)

where Lsensor is the at-sensor radiance (W·m−2·sr−1·µm−1), ε is the surface emissivity, λ is
the wavelength (µm), Ts is the LST (K), L↓atm is the downwelling atmospheric radiance
(W·m−2·sr−1·µm−1), L↑atm is the upwelling atmospheric radiance (W·m−2·sr−1·µm−1), and τ is the
atmospheric transmissivity. B is the thermal emission of a blackbody as expressed by Planck’s law:

Bλ(Ts) =
c1

λ5
[
exp

(
c2

λTs

)
− 1
] (2)

where c1 and c2 are Planck’s radiation constants, with values of 1.19104·108 W·µm4·m−2·sr−1 and
1.43877·104 µm·K, respectively. Note that the above-mentioned spectral magnitudes should be
integrated over a bandpass (filter response function) in the case of Landsat-8 TIRS Band 10.

According to [20], to retrieve surface temperature, Equation (2) can be rewritten as follows:

LST = γ [ε−1 (ψ1 Lsensor,λ + ψ2) + ψ3] + δ (3)

where

γ =

{
c2 Lsensor,λ

T2
sensor

[
λ4

c1
Lsensor,λ + λ−1

]}−1

(4)

and
δ = −γ Lsensor,λ + Tsensor (5)

In the equations above, Tsensor is the apparent brightness temperature in K, calculated as follows:

Tsensor =
K2

ln
(

K1
Lλ

+ 1
) (6)

where K1 (W·m−2·sr−1·µm−1) and K2 (K) for Landsat-8 TIRS Band 10 are 774.89 and 1321.08, respectively.
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In Equation (3), ψ1, ψ2, and ψ3 are the atmospheric functions (ψ1 is dimensionless and ψ2 and ψ3

have units of radiance, W·m−2·sr−1·µm); λeff is the effective wavelength defined as

λe f f =

∫
λ fλ dλ∫
fλ dλ

(7)

where fλ is obtained from the spectral responsivity of the Landsat-8 Band 10 (available at
http://landsat.gsfc.nasa.gov/preliminary-spectral-response-of-the-thermal-infrared-sensor/) and
has a value of 10.904.

In [8], ψ1, ψ2, and ψ3 for Landsat-8 TIRS Band 10 were obtained as a function of w integrated
over a vertical column of atmosphere (hereafter referred to as the LSTw model). However, in [17] it
was demonstrated that near-surface Ta was also important to retrieving LST accurately and, therefore,
in this study, ψ1, ψ2, and ψ3 were also obtained for Landsat-8 TIRS Band 10 as a function of both w
and Ta (hereafter referred to as LSTwT model) as follows:

ψ1(w,Ta) ≡
1

τ(w,Ta)
, (8)

ψ2(w,Ta) ≡ −L↓atm (w,Ta)
−

L↑atm (w,Ta)

τ(w,Ta)
, (9)

ψ3(w,Ta) ≡ L↓atm (w,Ta)
, (10)

where w is the water vapor in g·cm−2 and Ta is the near-surface air temperature in K. Although these
functions are also wavelength dependent, in order to obtain a better interpretation of the atmospheric
functions this parameter has not been included.

3. LST Algorithm Coefficients Fit and Evaluation Using Simulated Data

To statistically fit ψ1, ψ2, and ψ3, a source of atmospheric parameters (L↑, L↓, and τ) is needed at
a global scale to account for a wide range of w and Ta situations. In previous studies [17,21], several
Thermodynamic Initial Guess Retrieval (TIGR) data tank versions (TIGR61, TIGR1761 and TIGR2311 [22–24])
and STanDard atmospheres included in MODTRAN code (STD66) were used. However, a recently
developed atmospheric profile database, the Global Atmospheric Profiles from Reanalysis Information
(GAPRI [18]), that yielded optimal results when deriving atmospheric data for the LST retrieval
algorithm [8], was used. The GAPRI database consists of 4714 atmospheric profiles selected over
land (GAPRI4714) and covers tropical, mid-latitude, subarctic, and arctic atmospheric conditions
(Figure 1). Moreover, it is a comprehensive compilation of selected atmospheric profiles (geopotential
height, atmospheric pressure, air temperature, and relative humidity) at global scale derived from
ERA-Interim reanalysis data during 2011. Atmospheric profiles were extracted at 29 vertical levels with
a spatial resolution of around 0.75◦ covering several w and Ta situations ranging from 0 to 6 g·cm−2

and from 231 K to 314 K, respectively, and similar to the ranges found in TIGR61, TIGR1761, TIGR2311,
and STD66 databases.

Using the GAPRI4714 database, atmospheric parameters were obtained by a simulation procedure
using the MODTRAN 5.0 radiative transfer code and weighted depending on the Landsat-8 TIRS
Band 10 thermal band filter function. To predict the atmospheric parameters, MODTRAN 5.0 code
was executed in thermal radiance with multiple scattering mode for a view angle of nadir and for
clear-sky conditions.

http://landsat.gsfc.nasa.gov/preliminary-spectral-response-of-the-thermal-infrared-sensor/
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Figure 1. Spatial distribution of the Global Atmospheric Profiles from Reanalysis Information
(GAPRI4714) radiosonde database.

Once the atmospheric functions were computed, ψ1, ψ2, and ψ3 were statistically fitted with
a second-degree polynomial based on w and Ta (Equation (11)) using all 4714 radiosonde data
sources available:

ψn = i w2 + h Ta
2 + g w + f Ta + e Ta

2 w + d Ta w + c Ta w2 + b Ta
2 w2 + a (11)

where n = 1,2,3 and a, b, c, d, e, f, g, h, and i are the numerical coefficients of the statistical fit (Table 1).
Ta used to fit ψ1, ψ2, and ψ3 was extracted from the first level of the atmospheric radiosonde of the
GAPRI4714 database; taking this near-surface temperature to be Ta, w was modelled using MODTRAN 5.0.

Table 1. Numerical coefficients for ψ1, ψ2, and ψ3 modeled with w and Ta from GAPRI4714.

Coefficients ψ1 ψ2 ψ3

a 4.4729730361 −30.3702785256 −3.7618398628
b −0.0000748260 0.0009118768 −0.0001417749
c 0.0466282124 −0.5731956714 0.0911362208
d 0.0231691781 −0.7844419527 0.5453487543
e −0.0000496173 0.0014080695 −0.0009095018
f −0.0262745276 0.2157797227 0.0418090158
g −2.4523205637 106.5509303783 −79.9583806096
h 0.0000492124 −0.0003760208 −0.0001047275
i −7.2121979375 89.6156888857 −14.6595491055

In order to evaluate the improvement when adding Ta as an input for LST retrieval, LSTwT

and LSTw, models were fit and evaluated using GAPRI4714 simulated data that was split into fit
and evaluation subsets using 60% and 40% of the atmospheric profiles, respectively. For this reason,
LST was retrieved from Equation (3) using ψ1, ψ2, and ψ3 from the fit subset, and then evaluated
to the temperature at the first level (considered as the reference LST (LSTr) for evaluation purposes)
from the evaluation subset (see [21] for further details). Since emissivity is assumed to be known, a
value of 1.0 was considered for modelling purposes. The model evaluation with these simulated data
showed a clear improvement when Ta was included together with w as inputs to retrieve LST (Table 2
and Figure 2), yielding a total RMSE of 0.78 K and an R2 of 0.99 while the approach only including w
(LSTw) yielded RMSE of 1.56 K and an R2 of 0.98 for w ranging from 0 g·cm−2 to 6 g·cm−2. Moreover,
both yielded a low mean bias error (MBE) close to 0 K. Similar evaluation results for the LSTw model
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with simulated data have been reported [8], yielding the best agreement when w ranged from 0 g·cm−2

to 3 g·cm−2 and showing higher dispersion for higher w values. The LSTwT, however, showed a better
agreement and less dispersion even for high w values. These results are in agreement with those found
when a similar approach was used to retrieve LST from Landsat TM and ETM+ thermal band using
both w and Ta [17].

Table 2. Accuracy statistics for the LST retrieval model as function of both w and Ta (LSTwT) or only
w(LSTw) using the GAPRI4714 evaluation subset. RMSE is root mean square error, MBE is mean
bias error.

Water Vapor Samples LSTwT Model LSTw Model

w n RMSE MBE R2 RMSE MBE R2

0–3 1228 0.46 0.023 0.999 0.93 0.005 0.997
3–6 766 1.11 0.072 0.971 2.20 0.161 0.982

Total 1994 0.78 0.042 0.993 1.56 0.066 0.985
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atmospheric radiosonde database and w and Ta as input data. LSTw is the model developed using only
w, LSTwT is the new model developed using both w and Ta.

4. Sensitivity Analysis

In order to analyze the impact of the error on LST retrieval inputs, a sensitivity analysis over
w and Ta was also performed. A typical error reported in modelling at-satellite overpass Ta may
be around 1.7 K [25], while for w it may be around 0.5 g·cm−2 [26,27]. The sensitivity analysis was
performed using these values as a positive and negative range, i.e., from −1.7 K to 1.7 K and from
−0.5 g·cm−2 to 0.5 g·cm−2, in Equation (12) at steps of 0.1 K for Ta and 0.05 g·cm−2 for w.

LSTe = |LSTi(x + δx)− LSTi(x)| (12)

where LSTe is the LST error in K, LSTi is the input variable from which the sensitivity analysis is
performed, x is an LST value, and δx is the constant value that is added or subtracted from x.

Sensitivity analysis results showed that LST estimation error increases remarkably with w error
(Figure 3). When a w error of ±0.5 g·cm−2 was used, the LST error was around 0.6 K. However,
for moderate errors in Ta, maximum LST errors were around 0.4 K from a temperature error range
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of ±1.5 K. In previous studies, emissivity and effective wavelength error analysis were developed
by [20,28] and, according to these authors, an error in emissivity of 1% led to an error of 0.6 K in LST
retrieval, while in the case of effective wavelength, an error of 3% resulted in an error of 0.5 K in
LST retrieval.
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5. LST Validation with In Situ Data: Study Area and Material

For model validation, 44 Landsat-8 images from 2013 to 2016 (Appendix A) and four flux towers
along a 900 km ecological and climatic gradient in Alaska including coastal tundra, black spruce, and
paper birch forest were used (Figure 4). Landsat scenes were selected trying to capture both vegetation
cover and snow dynamics. The black spruce (Picea mariana) forest site is located at the University of
Alaska Fairbanks (UAF) north campus and the second site, a deciduous forest mainly composed of
paper birch (Betula neoalaskana), is located at the Caribou-Poker Creeks Research Watershed (CPCRW)
(see http://www.et.alaska.edu/ for further information). The black spruce site has a Hukseflux
four-component net radiometer (NR01) and the paper birch site has a four-component net radiometer
Kipp & Zonen (CNR4), both placed in approximately 24 m tall towers and collecting data at 1 min
timesteps. The coastal tundra sites belong to the U.S. Department of Energy Atmospheric Radiation
Measurement (ARM) project and are located in Barrow and Oliktok (more information at http://www.
arm.gov/sites/nsa/). These sites each have an Eppley Laboratory Inc. Precision Infrared Radiometer
(pyrgeometer) placed on a 10 m tall mast collecting data at 1 min timesteps. All pyrgeometers have
an estimated measurement uncertainty between 2 and 8 W·m−2 and an annual recalibration highest
uncertainty of 3 W·m−2 (less than 0.1 K). Air temperature data was also available for all the validation
sites at 1 min timesteps.

In situ surface temperature measurements at the flux towers were derived from pyrgeometer
data following [29] methodology that was successfully applied for Landsat-5 TM and Landsat-7 ETM+
thermal data evaluation [30]. Before converting pyrgeometer data into surface temperature, data was
averaged over 5 min intervals for data stability.

In situ water vapor data used to evaluate the Terra/Aqua MODIS water vapor product in Barrow
and Fairbanks was retrieved from radiosondes launched at Fairbanks and Barrow airport sites (around
7 km from the study areas) at 24 Coordinated Universal Time(UTC). Barrow and Oliktok ARM sites
also have a CIMEL Sunphotometer close to the pyrgeometer sensors collecting water vapor data every
15 min (see Figure 4). Additionally, the CIMEL Sunphotometer at the LTER Bonanza Creek AERONET
site, about 30 km from the UAF site, was also used.

http://www.et.alaska.edu/
http://www.arm.gov/sites/nsa/
http://www.arm.gov/sites/nsa/
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Figure 4. Location of the validation sites in the study area. Panel A is the Barrow coastal tundra
Atmospheric Radiation Measurement (ARM) site; Panel B is the Oliktok coastal tundra ARM site;
Panel C is the flux tower site at University of Alaska Fairbanks (UAF); and Panel D is the flux tower
site at Caribou-Poker Creeks Research Watershed (CPCRW).

6. Surface Emissivity, Air Temperature, and Water Vapor Inputs

Landsat-8 images were downloaded from the GLOVIS server at processing level L1TP. A full
radiometric correction (atmospheric and topographic) was then performed for the optical bands
(following [31]) prior to emissivity computation. Coefficients from digital numbers to radiances were
extracted from image metadata and the USGS website was also checked to ensure that the most recent
updated coefficients were used.

Soil and vegetation surface emissivity was computed through the threshold method proposed
by [32] adapted for Landsat-8 Band 10. Because of the lack of current operational methodologies for
retrieving surface emissivity for snow and ice, the emissivity was assumed to be constant with a value
of 0.985. This value was derived from the integration of the snow/ice emissivity spectra included in
the ASTER spectral library (https://speclib.jpl.nasa.gov/).

Terra/Aqua MODIS Level 2 Water Vapor images (MOD05_L2) were downloaded from the Level
1 and Atmosphere Archive and Distribution System (data available at http://ladsweb.nascom.nasa.
gov/) and corrected geometrically using the MODIS Reprojection Tool Swath.

https://speclib.jpl.nasa.gov/
http://ladsweb.nascom.nasa.gov/
http://ladsweb.nascom.nasa.gov/
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In previous studies, at-satellite Ta was interpolated using data from meteorological stations [17,25].
However, the meteorological network in the study area is sparse and insufficient for accurately
interpolating Ta. Alternatively, Daymet [33] offers daily minimum and maximum Ta layers for the
study area from which at-satellite Ta can be estimated using the method proposed by [11] with an
error range similar to that reported by [25].

7. Results and Discussion

7.1. Air Temperature and Water Vapor Validation

Validation of at-satellite Ta against in situ Ta data for each site yielded an RMSE of 1.7 K and
an R2 of 0.98 (Figure 5). These results are comparable to those found in [25] when modelling Ta and
have an error similar to other studies that used at-satellite Ta for surface temperature and surface
energy flux retrieval [17,34]. Results also suggest that the methodology presented by [11] could be
applied successfully when in situ Ta measurements are sparse. As shown by the sensitivity analysis,
this error could be as high as ~0.4 K in the final surface temperature retrieval which is still well under
the acceptable LST retrieval error of less than 1 K. Therefore, the methodology described in [11] to
retrieve at-satellite-pass air temperature was used to retrieve LST regionally.
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Figure 5. Comparison of modelled vs observed w (top panel) and Ta (bottom panel). The 1:1 line
represents perfect agreement with observations.

Terra and Aqua MODIS w product validated against in situ water vapor data yielded RMSE of
0.34 g·cm−2 and 0.30 g·cm−2, respectively, MBE of 0.24 g·cm−2 and 0.19 g·cm−2, respectively, and R2 of
0.99 for both cases. These results are similar to those reported by [17] when modeling LST and to those
reported by [26] for Terra MODIS w product (MODISw) with an error of 0.5 g·cm−2. Unfortunately,
due to the stray light artifacts, methodologies for w retrieval using Landsat-8 thermal bands are not
yet accurate, yielding errors around 1 g·cm−2 [35] that could lead up to more than 1 K if used [28].
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Even though the Terra MODIS w product yielded slightly higher error than did Aqua, both of them
were within an acceptable w error, in which an error of around 0.3 g·cm−2 could lead up around 0.4 K
in LST retrieval (Figure 3), and were used to retrieve LST regionally.

7.2. Land Surface Temperature Validation

LST retrieved using the LSTwT model was validated against in situ data. Additionally, the LSTw

model developed using w by [8] and the LSTWang model developed using Ta and w by [11] were also
validated in situ and compared with the LSTwT model. In general, the LSTwT model yielded the best
results followed by LSTWang and LSTw (Table 3 and Figure 6). These results are also in agreement
with [17,19] that found an LST retrieval model improvement when both Ta and w were included
as model inputs. The LSTwT model yielded an overall RMSE and MBE of around 1 K and −0.5 K,
respectively, while LSTWang yielded higher RMSE and MBE of 1.35 K and 0.7 K, respectively. Due to
LSTWang model limitations, it was not applied to two images due to lower Ta values than those set
in this method. Model performance was also similar to that reported in [17] when comparing LST
retrieval methodologies for Landsat-5 TM using both Ta and w as model inputs, yielding better results
than [19], the model on which LSTWang is based. LSTw yielded slightly higher RMSE than LSTWang

but with higher MBE. Besides improving model accuracy, models based also on Ta further decreased
model bias. These findings are also in agreement with the simulated data results in which both the
RMSE and the MBE are lower when using Ta as a model input (Table 2 and Figure 2). It is also worth
noting that regionalized layers of w and Ta, from the MODISw product and at-satellite Ta modelled
from Daymet data provided robust inputs that helped accurate retrieval of LST at regional scales, as
also reported by [17], being particularly important in areas with a sparse network of meteorological
and flux observations, such as the Arctic.

Table 3. Accuracy and error statistics from the comparison of modelled vs observed surface temperature.
RMSE and MBE are in K. Asterisk is numbers of samples for LSTWang model.

LSTwT LSTw LSTWang

Cover n RMSE MBE R2 RMSE MBE R2 RMSE MBE R2

Snow 17 1.19 −0.97 0.990 1.83 −1.72 0.992 1.55 −1.38 0.989
Vegetation 27/25 * 1.00 −0.15 0.984 1.34 −0.64 0.984 1.19 −0.29 0.975

Total 44/42 * 1.07 −0.47 0.996 1.55 −1.05 0.996 1.34 −0.71 0.992
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developed using both w and Ta, and LSTWang is the model developed by [11].
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In the w range between 0 g·cm−2 and 3.5 g·cm−2, the difference between LSTr and LSTwT that
remains mainly between -1 K and 1 K was around 60% (Figure 6), while for LSTw and LSTWang was
around 30%. These results are in line with the sensitivity analysis (Figure 3) in which for LSTw (based
on w) the error tends to exceed the −1 K and 1 K interval as w steadily increases, while for LSTwT

(based on w and Ta) the model tends to be within this range. However, LSTWang performed more like
LSTw than like LST wT.

All models yielded better results for vegetation rather than for snow, with LSTwT showing the
best accuracy, yielding a lower RMSE of around 0.5 K and being less biased compared to LSTw or
LSTWang. The different performance in snow and vegetation covers might be due to the use of a
constant surface emissivity for snow. Because of the current lack of an operative method to compute
surface emissivity in snow and ice, this was then set to 0.985, and it might be increasing the error
in LST retrieval. Unfortunately, there is limited information of LST evaluation for this cover using
Landsat-8 TIRS data. However, bias errors for LSTwT found in this study are in agreement with those
found by [36], of around 0.6 ± 2 ◦C when validating Terra and Aqua LST in Barrow, Alaska, in a
tundra snow site using Thermocron data. Validation over vegetation showed a behavior similar to
snow but with lower RMSE and MBE, yielding the best results for LSTwT, followed by LSTWang and
LSTw. Furthermore, compared with other studies using Band 10, the LSTwT method also yielded better
results. An RMSE and an MBE of 1.11 K and −0.93 K, respectively, using pyrgeometer data from four
SURFRAD experimental sites in USA and a total of four Landsat images were reported [37] when
applying the LSTw method. Using the same method and SURFRAD experimental sites in USA and
44 Landsat-8 images for model validation, an RMSE and an MBE of 1.56 K and −0.73 K, respectively,
were reported [38]. Finally, an RMSE and an MBE for the LSTWang model of 0.67 K and 0.43 K using
11 simulated situations with 3 and 8 different w and Ta values, for mid-latitude winter, summer, and
tropical standard atmospheres, respectively, were found in [11]. LSTwT evaluation with simulated
data (Table 2) yielded slightly higher RMSE but lower MBE; however, in the present study evaluation
a larger radiosonde dataset (a total of 1994 radiosondes) covering a wider range of w and Ta were
used. Moreover, it is important to note that when in situ data was used for model validation, LSTwT

showed superior performance. When evaluating both LSTWang and LSTw with simulated data [11],
LSTw yielded an RMSE of 1.05 K and an MBE of −2.86 K. However, the RMSE found in this study for
LSTw was around 0.7 K higher than for models using both w and Ta, for either in situ or simulated
data, but MBE never exceeded 1 K—far from what [11] reported.

8. Conclusions

An improved single-channel method to retrieve LST from Landsat-8 TIRS Band 10 using Ta and
w as input data, based on a previous single-channel model applied to atmospherically correct Landsat
TM and ETM+ thermal data, was successfully parameterized and evaluated with simulated data from
a global and robust radiosonde database, the GAPRI4714, and validated with in situ data from four
flux tower sites that included different types of vegetation and snow cover in 44 Landsat-8 scenes.
Evaluation results using simulated data showed that the inclusion of Ta together with w within a
single-channel scheme improves LST retrieval, yielding lower errors and less bias than models based
only on w. Similar results were found when validating the new model presented in this study and three
other LST retrieval models against in situ data. The new proposed LST retrieval model, developed
with both w and Ta, yielded overall errors on the order of 1 K and a bias of −0.5 K. When validated for
vegetation, the model provided lower errors and less bias of −1 K and −0.15 K, respectively; while
those for snow had an error of 1.19 K and a bias of −0.97 K, respectively. Despite this difference, which
might be caused by the use of a constant value of land surface emissivity for the snow cover, retrieval
of LST in vegetation and snow covers showed better performance than other models parameterized
using w and Ta or only w that yielded higher RMSE and more bias. However, it is worth noting than
when Ta is not available, LST retrieval using only w is still a robust choice when the atmospheric w is
low or intermediate.
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Finally, at-satellite Ta models and the Terra and Aqua MODIS w product have proven to be robust
inputs to retrieve LST regionally. This circumvents the need to rely on radiosonde data, which is
a significant achievement for studying the Arctic and other areas that have a sparse network of
meteorological observations.
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Appendix A

List of Landsat-8 images used for LST retrieval according to their path, row, date (dd/mm/yyyy),
and scene name.

Table A1. List of Lansat-8 images used in this study.

Path Row Date Landsat Scene Path Row Date Landsat Scene

68 14 29/07/2013 LC80680142013210LGN00 69 14 18/06/2013 LC80690142013169LGN00
68 14 15/09/2013 LC80680142013258LGN00 69 14 21/04/2015 LC80690142015111LGN00
68 14 26/03/2014 LC80680142014085LGN00 69 14 03/02/2016 LC80690142016034LGN00
68 14 11/04/2014 LC80680142014101LGN00 69 14 06/03/2016 LC80690142016066LGN00
68 14 13/05/2014 LC80680142014133LGN00 69 14 22/03/2016 LC80690142016082LGN00
68 14 29/05/2014 LC80680142014149LGN00 69 14 23/04/2016 LC80690142016114LGN00
68 14 05/11/2014 LC80680142014309LGN00 69 15 18/06/2013 LC80690152013169LGN00
68 14 16/05/2015 LC80680142015136LGN00 74 11 23/05/2014 LC80740112014143LGN00
68 14 17/06/2015 LC80680142015168LGN00 75 10 27/03/2014 LC80750102014086LGN00
68 14 05/09/2015 LC80680142015248LGN00 75 10 12/04/2014 LC80750102014102LGN00
68 14 08/11/2015 LC80680142015312LGN00 75 10 28/04/2014 LC80750102014118LGN00
68 14 12/02/2016 LC80680142016043LGN00 75 10 30/03/2015 LC80750102015089LGN00
68 15 26/05/2013 LC80680152013146LGN00 75 10 04/07/2015 LC80750102015185LGN00
68 15 27/06/2013 LC80680152013178LGN01 76 10 12/08/2015 LC80760102015224LGN00
68 15 13/07/2013 LC80680152013194LGN00 79 10 11/08/2013 LC80790102013223LGN00
68 15 15/09/2013 LC80680152013258LGN00 79 10 11/06/2014 LC80790102014162LGN00
68 15 21/11/2014 LC80680152014325LGN00 79 10 13/04/2016 LC80790102016104LGN00
68 15 03/07/2015 LC80680152015184LGN00 80 10 05/10/2013 LC80800102013278LGN00
68 15 05/09/2015 LC80680152015248LGN00 80 10 06/09/2014 LC80800102014249LGN00
68 15 23/10/2015 LC80680152015296LGN00 81 10 08/07/2013 LC80810102013189LGN00
68 15 12/02/2016 LC80680152016043LGN00 81 10 25/06/2014 LC80810102014176LGN00
68 15 16/04/2016 LC80680152016107LGN00 81 10 12/08/2014 LC80810102014224LGN00
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