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Abstract: Landsat-like moderate resolution remote sensing images are widely used in land use
and land cover (LULC) classification. Limited by coarser resolutions, most of the traditional LULC
classifications that are based on moderate resolution remote sensing images focus on the spectral
features of a single pixel. Inspired by the spatial evaluation methods in landscape ecology, this
study proposed a new method to extract neighborhood characteristics around a pixel for moderate
resolution images. 3 landscape-metric-like indexes, i.e., mean index, standard deviation index, and
distance weighted value index, were defined as adjacent region features to include the surrounding
environmental characteristics. The effects of the adjacent region features and the different feature set
configurations on improving the LULC classification were evaluated by a series of well-controlled
LULC classification experiments using K nearest neighbor (KNN) and support vector machine
(SVM) classifiers on a Landsat 8 Operational Land Imager (OLI) image. When the adjacent region
features were added, the overall accuracies of both the classifiers were higher than when only spectral
features were used. For the KNN and SVM classifiers that used only spectral features, the overall
accuracies of the LULC classification were 85.45% and 88.87%, respectively, and the accuracies were
improved to 94.52% and 96.97%. The classification accuracies of all the LULC types improved.
Highly heterogeneous LULC types that are easily misclassified achieved greater improvements.
As comparisons, the grey-level co-occurrence matrix (GLCM) and convolutional neural network
(CNN) approaches were also implemented on the same dataset. The results revealed that the new
method outperformed GLCM and CNN approaches and can significantly improve the classification
performance that is based on moderate resolution data.

Keywords: land use and land cover; classification; scale; adjacent region feature; remote sensing;
landscape ecology

1. Introduction

Land use and land cover (LULC) information is one of the most essential inputs for environmental
monitoring tasks and numerous interdisciplinary studies, including research on climate change and
nature conservation, since LULC information is crucial to understanding the complex underlying
patterns and mechanisms among natural processes and human activities [1–5]. Remote sensing is
capable of providing large scale and long time series information of earth surface. LULC classification
based on remote sensing data, which is a basic issue in geographical information system (GIS) fields,
is playing an increasingly important role at present [1,4,6,7]. Landsat data are free on the United States
Geological Survey (USGS) website for downloading and relevant analysis. Landsat-like moderate
spatial resolution images are capable of providing global-scale information on the earth surface and
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have been the major data source of LULC classification, especially at large scales [4,7–9]. Furthermore,
Landsat data have a remarkable temporal range of over 40 years and have great potential for LULC
classification, change detection, and relevant analysis [7,10,11].

Numerous effective methods and advanced classifiers have been applied to improve the
performance of LULC classification that is based on moderate resolution data, and most of these
methods have been implemented in the feature generation step of LULC classification. Neighborhood
characteristics around a pixel provide spatial information that can potentially discriminate LULC types
with similar spectral characteristics. For high or very high resolution LULC classification, neighborhood
characteristics in different forms have been proven to be beneficial for improving the classification
performance. The most popular method is using a grey level occurrence matrix (GLCM) to obtain the
texture features such as the mean, contrast, homogeneity, and angular second moment [12–16]. In recent
years, numerous studies on high-resolution LULC classification have used powerful state-of-the-art
techniques of deep learning methods, such as convolutional neural network (CNN) for object-level
classification in a limited area [17–20]. The CNN approach uses convolutional windows and local
connections to effectively extract the spatial information. In regard to LULC classification that is based
on moderate or coarser resolution images, such as Landsat and MODIS, the CNN approach and texture
features may still be advantageous in some special cases, such as cropland classifications or in the
extraction of certain LULC types in special regions [21–23]. However, for moderate resolution LULC
classification with high thematic resolution, very few researches involved neighborhood characteristics
using methods like GLCM and CNN. The improvement of classification accuracy appears to be
dependent on the resolution level applied. Chen, Stow, and Gong [24] found that textural features
were more effective in improving the classification accuracy of land use classes at finer resolution
levels, and when the spatial resolution exceeded a certain level, adding texture did not lead to higher
classification accuracy. Thus these methods, which have been proved very effective in high or very
high resolution LULC classification, may face challenges at a much coarser resolution. In this situation,
most of efforts have concentrated on using multitemporal or multiseasonal data, i.e., more than one
remote sensing image is selected to obtain multitemporal features, or phenological characteristics are
extracted based on a series of fusion data generated from models [10,25–32]. However, multitemporal
methods are still based on the spectra information of a single pixel, i.e., the environment surrounding
the pixel, which may be crucial for LULC classification, is not evaluated.

Landscape ecology, which has been widely recognized as a highly interdisciplinary science of
spatial heterogeneity, is a newly developed and one of the most active disciplines that involves many
novel methods and concepts that differ from traditional ecology [33–36]. The core concepts of landscape
ecology consist of spatial pattern, heterogeneity, and scale. Unlike traditional ecology, landscape ecology
focuses on the global spatial patterns or the structure features of a region instead of those of a single site
to evaluate the conditions or ecological functions. Spatial heterogeneity and the relationships between
patterns and process, are popular research aspects in landscape ecology [35,37,38]. In landscape ecology,
landscape metrics are defined as quantitative indexes to describe the spatial structures and patterns of
a given region at a specific scale. Many landscape metrics in different forms, such as shape metrics,
diversity metrics, and area metrics, have been proposed by ecologists to measure the relevant features
of a region, and relevant research has demonstrated that scale changing influences the evaluation
of landscape metrics [39–46]. The Landscape metrics of a certain region are usually calculated from
categorical maps and serve for relevant ecological analysis [39,42,44,45]. Landscape-metric-like indexes
may have potential to capture useful neighborhood characteristics for improving the performance of
moderate resolution LULC classification.

The objective of this study is to include the neighborhood characteristics around a pixel from
a landscape ecology perspective to help improve the performance of LULC classification based
on moderate resolution remote sensing images, such as Landsat. The researchers used basic
landscape-metric-like indexes, i.e., mean index, standard deviation index, and distance weighted
value index to evaluate the surrounding environment. These indexes are in the same or similar forms
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with the mean and variation filters, which has been used for decades and proved to be effective for
different purposes in digital image processing [47–50]. In in this study, we redefined and understood
them from a novel perspective of landscape ecology for neighborhood characteristic extraction. As
comparisons, the grey-level co-occurrence matrix (GLCM) and convolutional neural network (CNN)
approaches were also implemented on the same dataset.

2. Methods

2.1. Study Area

An entire Landsat 8 OLI image (path/row: 123/32, date: 10 July 2017) was selected from the
USGS website, and the analysts have prior knowledge of the LULC in the coverage area of the image.
The image was utilized as the data source for the control experiments over different feature set
configurations. The selected Landsat OLI image was the latest Landsat image with a zero cloud cover
rate, i.e., the image is almost not affected by clouds. One single image consists of more than 6 × 106

pixels, which is already extensive data level for machine learning methods in LULC classification.
In addition to the simplification, a single image with information from all of the pixels collected under
the same atmospheric conditions at same time does not need further processing, such as atmosphere
correction, to make digital number (DN) values that are comparable among different remote sensing
images [51]. Then, the DN values can be directly used as the feature generation source since they are a
specific transformation of the real surface reflectance for all of the pixels in the image, and this method
will avoid any possible disturbance to the control experiments. As shown in Figure 1, the image covers
the majority of Beijing city, part of Hebei Province, and part of Tianjin city. The typical LULC types,
including forest, shrub, grassland, waterbody, cropland, bare land, and urban areas in a temperate
climate region make the coverage ideal for the LULC classification experiments.
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2.2. Dataset

The classification categories were built based on the previous knowledge of the distribution
of LULC types in the study area, including forest, grass, shrub, water, cropland, bare land, and
impervious. Sample polygons of each type were built according to the classification categories and
their presented visual characteristics in the remote sensing images with the help of experiential
knowledge of researchers, high-quality Google Earth images, and the ArcGIS environment. Google
Earth, which is a contemporary high-resolution archive, represents a significant, rapidly expanding,
cost-free, and largely unexploited resource for scientific inquiry. High-resolution Google Earth imagery
has been widely used for assessing moderate resolution remote sensing products [52,53]. All the
sample polygons of each type are shown in Figure 1.

Pixels from the same sample polygon tend to have similar large-scale features in adjacent regions,
not only because they are of the same classification category, but also because they are in the same
site with the same large-scale surroundings. Thus, the classification accuracy may be artificially
high if a sample polygon provides both training data and validation data. Thus, for each LULC
type, we divided the sample polygons into two groups, half for producing training data and half for
validation data. This process indeed generated a stricter validation standard for the generalization
capacities of the classifiers.

The cover percentages of each land cover type vary greatly. Some types, such as forest, water,
crops, and impervious surfaces are widely distributed in relatively larger patches, while other types
are rare and in smaller patches, such as grass and bare land. Thus, the total number of pixels of the
different LULC types vary considerably, as shown in Figure 1. To balance the amounts of training and
validation data of the different LULC types, 3000 pixels for each LULC type were randomly selected as
the training data for the supervised classifiers, and another 3000 pixels were selected as validation
data. There are seven LULC types, so there was a total of 42,000 pixels in the sample polygons and
21,000 were used as training data, and the other 21,000 were used for the accuracy assessment. The
training data and validation data for each LULC type are from different polygons, as mentioned above.
We used the same training data and validation data for all of the classifiers and methods to maintain a
strict and absolutely contrasting effect.

All the above processes, including sampling from different groups of polygons for training and
validation data, balancing the dataset, and using the same data for different classifiers, are conducive
for evaluating the performance of the classifiers with different feature set configurations. Thus,
the contributions of the newly included feature sets will be tested more reasonably.

2.3. Adjacent Region Feature Extraction

From a landscape ecology perspective, the attributes of a pixel are strongly related to the
surrounding environment. Thus, information on the spatial patterns and heterogeneity of adjacent
regions at different scales may be beneficial to the LULC classification of the central pixel. Inspired
by the use of landscape metrics/indexes to evaluate the attributes of spatial patterns or the spatial
heterogeneity in landscape ecology, we defined 3 basic adjacent region indexes—mean index, standard
deviation index, and distance weighted value index—to evaluate the environment surrounding a focus
pixel from a landscape perspective. Moving windows were used to extract the features of adjacent
regions, and the scale must be taken into consideration when evaluating a region. Relevant research
has found that scale may affect the evaluation of a region, i.e., moving windows of different sizes may
capture different attributes or potential spatial patterns, which may be useful to distinguish different
LULC types [43,45,46]. As an example, Figure 2 shows four adjacent region feature extraction windows
surrounding adjacent regions of incremental scales centred on the red focus pixel. Several definitions
will be given as follows for unequivocal description in this paper.
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Figure 2. An example of moving windows for the extraction of adjacent region feature at different
scales of the focus pixel. (Note that this is just a schematic, and not all the feature extraction windows
are shown here).

Definition 1. (Adjacent region): An adjacent region Z of a pixel is the area in the moving square feature
extraction window with a certain size. Note that the given pixel is the central pixel of the moving window.

Definition 2. (Scale): The scale S of the adjacent region is denoted by the length of the relative side of the square
feature extraction window, which is measured by the number of pixels on one side. S has to be an odd number to
ensure that the focus pixel is the geometric centre of the extraction window. The value range of scale S was set to
an odd number of the sequence (1, 2, 3, . . . , 2n − 1). Thus, when S = 1, the adjacent region is limited to the
central pixel itself.

For instance, as shown in Figure 2, we demonstrate four adjacent regions of the central pixel at
the scales of 1, 5, 9, and 13.

Definition 3. (Mean index): The mean index (MI) of an adjacent region z measures the mean reflectance level
in the square feature extraction window with the scale s.

MI(z) =
1
S2 ∑

pi∈z
vpi (1)

where pi is a pixel in an adjacent region z, and vpi is the DN value of pixel pi.

Definition 4. (Standard deviation index): The standard deviation index measures the variability of the DN
values of all pixels in a square feature extraction window. The standard deviation index is defined to evaluate the
degree of variation among the reflectance levels of the adjacent region of a focus pixel with a scale of s.

SDI(z) =

√
1
S2

(
vpi −MI(z)

)
(2)

Definition 5. (Distance weighted value index): The distance weighted value index (DWVI) of an extracted
adjacent region is defined based on the principle that the reference value of a pixel in an adjacent region to the
central pixel declines when the distance between the two pixels increases. DWVI is defined as follow:

DWVI(z) =
∑vi∈z d(pi, cz)vpi

∑vi∈z d(pi, cz)
(3)
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Similar to landscape metrics, the three basic adjacent region indexes are defined to capture the
component characteristics and spatial information of a region at a certain scale. Landscape metrics are
calculated with categorical maps of a certain region, while the three basic adjacent region features can
be extracted from the original remote sensing images of the adjacent region.

2.4. Feature Set Configuration and LULC Classification

Scale or moving window size selection is an issue that is worth considering [24,43,46,54]. Higher
scales may lead to higher accuracies as well as higher computation costs, so the selection of scale
depends on the tradeoffs in different situations. In this study, each Landsat OLI band was used for
each pixel in the image. Window sizes from 3 pixels × 3 pixels to 23 pixels × 23 pixels were used in
this study. With the resolution of 30 m, the length of the largest feature extraction window is 690 m.
The largest window covers a 47.61 ha region that is adjacent to the central pixel and is large enough
to capture the features of a region adjacent to a site. Moreover, the results that are presented in the
next section show that the performances of the classifiers change only slightly once such a high scale
is reached.

Among the Landsat OLI data bands, some are designed for special use. The coastal aerosol band
is mostly used for coastal water monitoring. The cirrus band is mainly used for cloud detection. These
bands are less useful for LULC classification tasks and can always be removed since they contain
limited land surface information. The thermal infrared bands are at a much lower resolution of 100 m.
Finally, bands 2, 3, 4, 5, 6, and 7 of the Landsat OLI data were selected as the data sources. All processes
will be repeated on each selected band for every pixel.

Six raw spectral features from the Landsat OLI bands were first selected as the feature set for
the LULC classification, and the performances of the classification were then contrasted with the
following classifiers that utilized the features from adjacent regions. As shown in Table 1, to evaluate
the effect of different types of adjacent region features at different scales, four experimental sequences
with different feature set configurations were designed. For the first sequence, each type of adjacent
region feature (MI, or SI, or DWVI) at a certain scale s (1, 2, 3, . . . , 23) were successively added to the
feature set. For the second experimental sequence, all of the adjacent region features of a certain type
with scales no larger than a given maximum were added to the feature set as a whole. For the third
experimental sequence, the three adjacent region features (MI, SI, and DWVI) at a certain scale s were
successively added to the feature set. Finally, for the fourth experimental sequence, the three features
of the adjacent region (MI, SI, and DWVI) with scales no higher than a given maximum were added to
the feature set as a whole. It is worth noting that all of the feature set configurations contain six basic
spectral features, since when S = 1, there are six spectral features in the feature set. Therefore, in any
configuration, the classification performance with S = 1 becomes the basic comparative references.

Table 1. Different feature set configurations used in this study.

Experimental Sequences Feature Dimensions Feature Set Configurations

Spectral features only 6 6 spectral features (S = 1)
Sequence 1 12 6 spectral + MI or SDI or DWVI features (S = s)
Sequence 2 6 + (s + 1) × 3 6 spectral + MI or SDI or DWVI features (S ≤ s)
Sequence 3 24 6 spectral + MI & SDI & DWVI features (S = s)
Sequence 4 6 + (0.5 × (s + 1) − 1) × 18 6 spectral + MI & SDI & DWVI features (S ≤ s)

A KNN classifier based on the K-nearest neighbour algorithm and a support vector machine (SVM)
classifier based on the support vector machine algorithm were selected for LULC classification. The
KNN classifier is one of the most fundamental but effective non-parametric classification methods [55].
SVM aims to find an optimal hyperplane between classes and addresses if the data are linearly
separable or not. An SVM classifier usually performs well and is one of the most widely used
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advanced discrimination models that has been used in numerous classification tasks containing LULC
classification [56,57].

2.5. Comparable Methods

To compare the new feature extraction method with other methods, GLCM and CNN approaches
were also implemented using the same data.

Specifically, for the GLCM approach, the mean, contrast, homogeneity, and angular second
moment were extracted from the GLCM. These texture features have proved to be effective in
classification. Additionally, mean, homogeneity, and angular second moment are least correlated with
each other [58]. GLCM texture features with different configurations on different scales were evaluated
in the similar way in Table 1 to find the best-performed configuration.

For CNN approach, we referenced the architecture of GoogLeNet Inception that achieves the
new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition
Challenge 2014 (ILSVRC14) [59]. The “Inception modules” combines multiscale convolution kernels
with a parallel pooling path in each such stage, which has an additional beneficial effect. It is worthy
to note that there two different type of moving window. One type is the same with GLCM texture
window and adjacent region defined above in this study. Another type is the convolution window
used in CNN architecture. We proposed a similar strategy with GoogLeNet Inception version 1. Two
“Inception modules” were stacked in the final CNN architecture which we designed for pixel based
LULC classification, as is shown in Figure 3. As the biggest convolution window is 5 × 5, the smallest
adjacent region scale we used in CNN approach will be 5 × 5 as well. Thus, to maintain a contrasting
effect, the scale range 5 to 23 is evaluated by CNN approach.
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2.6. Accuracy Assessment

The accuracies of the LULC classification were evaluated using a confusion matrix to calculate
the overall accuracy, kappa coefficient, producer’s accuracy, and user’s accuracy [60]. All of the
classifiers with different feature set configurations used the same training and testing datasets. Hence,
we implemented a series of standard control experiments to evaluate the effect of adjacent region
features. Furthermore, in order to access statistical differences between the accuracy measurements of
classification results using different approaches, a Z-test was performed to see if they were significantly
different [61].

3. Results

Figure 4 shows how the overall accuracy changed with different feature set configurations.
The results show that, in any cases, when adjacent region features were added, both classifiers
(KNN and SVM) achieve considerable performance improvements. In addition, when higher scale
adjacent region features were added, the improvement continued until a relative gently change range
was reached when the accuracy of the LULC classification was very high. For the KNN classifier,
the overall accuracy of the LULC classification with only spectral features was 85.45% and the highest
overall accuracy was 94.52%, which was achieved when all of the adjacent region features were
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introduced in an accumulated-scale with the largest scale of 19. At the same time, the kappa coefficient
improved from 0.83 to 0.94. For the SVM classifier, the improvement was from 88.87% to the highest
overall accuracy of 96.97% when the configuration was the combination of all there adjacent region
features at a scale of 17. The kappa coefficient improved from 0.87 to 0.96. Figure 4 also indicates that,
in general, when the three adjacent region metrics were evaluated, the DWVI and MI outperformed
the SDI.
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To show more details, the confusion matrixes of the classification results using only spectral
features and the best performing feature set configurations with both KNN and SVM classifiers were
shown in Tables 2 and 3. The large improvements indicated the effectiveness of utilizing adjacent
region features, especially for the LULC types that had lower accuracy when only spectral features
were used, such as crop land, forest, and shrub, as shown in Tables 2 and 3. For instance, with the KNN
and SVM classifiers, the user’s accuracy of crop land improved from 76.7% to 92.5% and from 72.4% to
84.6%, respectively; the producer’s accuracy improved from 79.7% to 91.4%, and from 77.6% to 92.6%,
respectively. The results indicated that these two types are quite challenging for even an advanced
classifier using only spectral features. These LULC types, such as crop land, are highly heterogeneous
since numerous crop species show quite different optical characteristics. But, as a whole, one LULC
type has global spatial pattern features that will not be captured when only one pixel is evaluated. As
clearly shown in the results, these features may be crucial for improving the performance of LULC
classification based on Landsat-like moderate resolution data.
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Table 2. Confusion matrixes of LULC Classification using K nearest neighbor (KNN) classifiers with
only spectral information and the configuration that achieved the highest overall accuracy (94.52%).
(Note: B: bare land, C: cropland, F: forest, G: grass, I: impervious, S: shrub, W: water, UA: user’s
accuracy, PA: producer’s accuracy).

Ground Truth (Pixels) UA (%) PA (%)

B C F G I S W Total

Mapped Classes (Pixels)

Using Only Spectral Features with KNN

B 2648 141 2 1 139 12 0 2943 90.0 88.3
C 151 2172 21 82 160 200 47 2833 76.7 72.4
F 34 49 2610 17 2 562 1 3275 79.7 87.0
G 2 80 34 2724 2 47 0 2889 94.3 90.8
I 126 63 0 0 2662 1 0 2852 93.3 88.7
S 39 419 331 176 16 2178 0 3159 69.0 72.6
W 0 76 2 0 19 0 2952 3049 96.8 98.4

Using All Adjacent Region Features (MI+SDI+DWVI) with KNN on Accumulated Scales (s ≤ 19)

B 2944 46 0 5 65 0 0 3060 96.2 98.1
C 11 2537 16 48 77 61 23 2773 92.5 84.6
F 0 82 2863 102 0 63 1 3111 92.0 95.4
G 0 95 98 2815 0 4 0 3012 93.5 93.8
I 35 18 0 0 2843 0 0 2896 98.2 94.5
S 10 212 23 30 0 2872 0 3147 91.3 95.7
W 0 10 0 0 15 0 2976 3001 99.2 99.2

Total 3000 3000 3000 3000 3000 3000 3000 21,000

Table 3. Confusion matrixes of LULC Classification using support vector machine (SVM) classifiers
with only spectral information and the configuration that achieved the highest overall accuracy (96.97%).
(Note: B: bare land, C: cropland, F: forest, G: grass, I: impervious, S: shrub, W: water, UA: user’s
accuracy, PA: producer’s accuracy).

Ground Truth (Pixels) UA (%) PA (%)

B C F G I S W Total

Mapped Classes (Pixels)

Using Only Spectral Features with SVM

B 2734 159 6 0 95 12 0 3006 91.0 91.1
C 149 2329 10 92 111 93 38 2822 79.7 77.6
F 13 25 2667 1 0 496 0 2914 91.5 88.9
G 1 57 1 2804 3 20 0 3202 87.6 93.5
I 88 50 0 1 2789 0 0 2928 95.3 93.0
S 15 336 496 102 2 2379 0 3122 76.2 79.3
W 0 44 0 0 0 0 2962 3006 98.5 98.7

Using All Adjacent Region Features (MI+SDI+DWVI) with SVM on Certain Scale (s = 17)

B 2973 91 0 14 49 0 0 3127 95.1 99.1
C 20 2779 13 37 15 159 18 3041 91.4 92.6
F 0 22 2955 2 0 30 0 3009 98.2 98.5
G 0 61 15 2941 0 11 0 3028 97.1 98.0
I 7 2 0 2 2936 0 2 2949 99.6 97.9
S 0 45 17 4 0 2800 0 2866 97.7 93.3
W 0 0 0 0 0 0 2980 2980 100 99.3

Total 3000 3000 3000 3000 3000 3000 3000 21,000

Regarding the performances of the different classifiers that were applied in this study, Figure 5
compares the overall accuracies of the LULC classifications using KNN and SVM classifiers. With
different feature set configurations, the advanced SVM classifier outperformed KNN classifier in all
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cases. Generally, the overall improvements of the different feature set configurations were similar as
the scale increased.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 16 
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The LULC classification results of both the KNN and SVM classifiers using only spectral features
and using the best performing feature set configurations containing adjacent region features are shown
in Figure 6. All of the results reflect the distribution of different LULC types in the Landsat image
coverage area based on experts’ knowledge. In the northwest mountainous areas, forests, shrubs,
and grasses account for a large proportion. Cropland and impervious surfaces are primarily distributed
in the southeast rural and urban areas.
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Figure 6. LULC classification maps. (Note: B: bare land, C: cropland, F: forest, G: grass, I: impervious,
S: shrub, W: water; (a) KNN + spectral features only; (b) KNN + spectral features + all adjacent region
features (S ≤ 19); (c) SVM + spectral features only; and, (d) SVM + spectral features + all adjacent
region features (S = 17)).
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To demonstrate the effect of adjacent region features in a more visible way, the classification
results of a representative region are shown in Figure 7 as a typical example. The maps show that
when adjacent region features are included, the classifier tended to yield more aggregated class objects,
and fragmentized patches were reduced. The reason may be that the classifier captured neighborhood
characteristics and became more tolerant to the variance within classes. Thus, the classifier was
less likely to misclassify and split a single-class region, especially for those LULC classes with high
degree of heterogeneity, such as shrub and crop land. The overall accuracy of LULC classification
obtained substantial improvements, and more importantly, the spatial distribution and the pattern of
the classification results are more similar to the sample polygons that are based on expert knowledge,
which is a more reasonable result that is desired by the LULC classification task.
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Figure 8 shows the overall accuracy curves with the best performed configurations using different
feature extraction methods (GLCM, CNN, and adjacent region features). For the GLCM approach,
the highest overall accuracy was 92.03%, which was achieved on SVM classifier when angular second
moment features were introduced at a scale of 17. For the CNN approach, the highest overall accuracy
was 94.58%, which was achieved at a scale of 19. As previously stated, for the newly proposed method
using adjacent region features, the highest overall accuracy was 96.97%, which was achieved on SVM
classifier when the configuration was the combination of all three adjacent region features at a scale
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of 17. The result indicated that when it comes to moderate resolution LULC classification, the newly
proposed method outperformed GLCM and CNN approaches in all cases that we have evaluated.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 16 
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To determine whether the classification accuracies of different approaches were significantly
different, the Z-test was used to compare the confusion matrixes. Z > 1.96 or Z < 1.96 would indicate
the difference of the two confusion matrixes being significant at the 5% significance level [61]. As
shown in Table 4, the Z-test value for comparison between the confusion matrices of classification result
using the best performed configurations using different feature extraction methods (GLCM, CNN
and adjacent region features) are all larger than 1.96. The results indicate that GLCM, CNN, and the
proposed method could significantly improve the land cover classification accuracy of using spectral
features only. These findings also indicate that the classification accuracy improvement achieved by
adding adjacent region features is greater than that of GLCM and CNN, and the performances were
significantly different.

Table 4. Z-test values for comparison between confusion matrixes of LULC classification using different
approaches with the best performed configurations.

Classification Methods Spectral
Features Only GLCM CNN With Adjacent

Region Features

Spectral features only -
GLCM 7.76 -
CNN 12.94 5.52 -

With adjacent region features 13.77 8.32 4.37 -

4. Discussion

Neighbourhood characteristics around a pixel are important for LULC classification using remote
sensing data [12,14–18,20,22–24]. However, neighbourhood characteristics extraction methods, which
have proved very effective in high resolution classification, have not been commonly used in moderate
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resolution LULC classification. This study proposed a novel method to evaluate the adjacent region
around a pixel inspired by the landscape metrics.

In the extraction of neighbourhood characteristics, moving window size, which is defined as
scale in this study, is an important factor influencing classification accuracy. How to select the optical
window size or scale is a notable issue. A number of studied have been conducted to discuss this
problem in both image classification area and landscape ecology [24,43,46,54]. A bigger window may
include more useful features for classification, but it also may include more redundant information
that are not beneficial or even have negative effect. As is shown in Figure 8, the performances of all the
approaches that were used in this study were affected by changing window size. For GLCM, CNN
and our new proposed methods, the window sizes or the scales, where the highest accuracies were
achieved, were 17, 9 and 17, respectively.

The results that were obtained using different classifiers applied in this study reveal that the
advanced non-parametric classifier SVM could achieve a more satisfactory classification result than
the basic KNN classifier. Regarding different approaches applied in this study for neighbourhood
characteristic extraction, the adjacent region features performed better than the GLCM and CNN
approaches. How can these basic statistical indices outperform more complicated texture feature
methods and powerful state-of-the-art techniques of CNN? The author’s viewpoint is that at moderate
or coarser resolution, the spectral features of a much bigger pixel may be the mixture of different
reflection levels. The object-level texture features, which can be effectively captured by GLCM and
CNN, tend to be smoothed and the higher scale texture features often reflect the topographical change,
which has little reference value to the classification of a single pixel. However, Neighbourhood
characteristics in other forms may be still beneficial. In landscape ecology, patch level and regional
level statistical features are crucial to describe a landscape type.

In general, the DWVI and MI outperformed the SDI when the three adjacent region indexes
were evaluated. The MI and DWVI are more like component indexes for measuring the component
characteristics of an adjacent region or the surrounding environment, whereas the SDI is more
like a texture feature for evaluating the variation pattern. The results also indicated that at a
much coarser resolution, texture-like features may not lead to satisfactory improvements on LULC
classification accuracy.

This study is designed to investigate the effects of adjacent region features, which are extracted
from multiscale regions around a pixel from a landscape ecology perspective, on improving LULC
classification using moderate resolution remote sensing data such as Landsat. Three newly defined
basic adjacent region features were evaluated and compared with GLCM and CNN approaches.
However, as there are numerous landscape metrics, more forms of adjacent region features will be
evaluated on other advanced classifiers in future research.

5. Conclusions

At a much coarser resolution, LULC classification based on moderate resolution remote
sensing data like Landsat images has limitations in terms of using neighborhood characteristics
for accuracy improvements when compared to similar methods that were designed for very high
or very high resolution remote sensing images, such as the GLCM and deep CNN approaches.
Inspired by the concepts and methods in landscape ecology, three landscape-metric-like indexes
were defined to include adjacent region features into the moderate resolution LULC classification.
This study implemented a series of well-controlled experiments of LULC classification with different
configurations to investigate the efficacy of adjacent region features to improve the LULC classification
performances of Landsat-like moderate resolution remote sensing data. The study indicated that
adjacent region features that contain environmental information around pixels greatly improved the
LULC classification accuracy with different classifiers. For KNN and SVM classifiers, the best overall
classification accuracies that were achieved were 94.52% and 96.97%, and the improvement were over
9% and 8%, respectively. Moreover, when compared to the GLCM and CNN approaches, the proposed
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method achieve much better improvements. The results reveal that adjacent region features are
beneficial for moderate resolution LULC classification and can significantly improve the classification
performance. The proposed methods have great potential for improving LULC classification based
on Landsat-like moderate resolution remote sensing data, especially for large temporal and spatial
scale analyses.
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