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Abstract: Remote sensing (RS) scene classification is important for RS imagery semantic interpretation.
Although tremendous strides have been made in RS scene classification, one of the remaining open
challenges is recognizing RS scenes in low quality variance (e.g., various scales and noises). This paper
proposes a deep salient feature based anti-noise transfer network (DSFATN) method that effectively
enhances and explores the high-level features for RS scene classification in different scales and
noise conditions. In DSFATN, a novel discriminative deep salient feature (DSF) is introduced by
saliency-guided DSF extraction, which conducts a patch-based visual saliency (PBVS) algorithm using
“visual attention” mechanisms to guide pre-trained CNNs for producing the discriminative high-level
features. Then, an anti-noise network is proposed to learn and enhance the robust and anti-noise
structure information of RS scene by directly propagating the label information to fully-connected
layers. A joint loss is used to minimize the anti-noise network by integrating anti-noise constraint and
a softmax classification loss. The proposed network architecture can be easily trained with a limited
amount of training data. The experiments conducted on three different scale RS scene datasets show
that the DSFATN method has achieved excellent performance and great robustness in different scales
and noise conditions. It obtains classification accuracy of 98.25%, 98.46%, and 98.80%, respectively,
on the UC Merced Land Use Dataset (UCM), the Google image dataset of SIRI-WHU, and the SAT-6
dataset, advancing the state-of-the-art substantially.

Keywords: scene classification; saliency detection; deep salient feature; anti-noise transfer network;
DSFATN

1. Introduction

Many RS images have been accumulated due to the rapid development of Remote Sensing
(RS) sensors and imaging techniques. The interpretation of such huge amount of RS imagery is a
challenging task of significant sense for disaster monitoring, urban planning, traffic controlling and
so on [1–5]. RS scene classification, which aims at automatically classifying extracted sub-regions
of the scenes into a set of semantic categories, is an effective method for RS image interpreting [6,7].
However, the complex spatial arrangement and the variety of surface objects in RS scenes make the
classification quite challenging, especially for scenes in low quality (e.g., various scales and noises),
since their within-class differences are more indistinct and between-class similarity are more distinct.
How to automatically recognize and represent the RS scene from these different scale and quality RS
image data effectively has become a critical task. To deal with such a challenge, this paper proposes a
deep salient feature based anti-noise transfer network (DSFATN) approach that effectively enhances
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and explores the high-layer features for RS scene classification in different scales and noise conditions
with great efficiency and robustness.

Many attempts have been made for RS scene classification. Among various previous approach, the
bag-of-visual-words (BoVW) based models have drawn much attention for their good performance [1,8–10].
The BoVW based models encode local invariant features of an image and represent the image as
a histogram of visual word occurrences. However, the BoVW based models utilize a collection of
local features, which may not fully exploit the spatial layouts information thus result in information
loss [11]. To solve the problem, the spatial pyramid matching kernel (SPMK) [12] introduced the
spatial layout to form improved local features. Even though SPMK shows inspiring results, it only
considers the absolute spatial arrangement of visual words. Thus, the improved version of SPMK,
spatial co-occurrence kernel (SCK) [1], and its pyramidal version spatial pyramid co-occurrence
kernel (SPCK) [13], were proposed to capture both absolute and relative spatial arrangements.
Other alternative models, e.g., latent Dirichlet allocation (LDA) model [14–16] and the probabilistic
latent semantic analysis (pLSA) model [17,18], represent the image scene as a finite random mixture
of topics and obtain competitive performance. In general, these approaches have made some
achievements in RS scene classification but demand prior knowledge in handcrafted feature extraction,
which is still opening challenging task in scene classification.

Recently, deep learning (DL) methods have achieved dramatic improvements and state-of–the-art
performance in many fields (e.g., image recognition [19], object detection [20,21], and image
synthesis [22]) due to automatic high-level feature representations from images and powerful ability
of abstraction. DL methods also draw much attention in RS image classification [23,24]. For example,
Lu et al. [25] proposed a discriminative representation for high spatial resolution remote sensing
image by utilizing a shallow weighted deconvolution network and spatial pyramid model (SPM), and
classified the representation vector by support vector machine (SVM). Chen et al. [26] utilized the
single-layer restricted Boltzmann machine (RBM) and multilayer deep belief network (DBN) based
model to learn the shallow and deep features of hyperspectral data, the learnt features can be used
in logistic regression to achieve the hyperspectral data classification. As one of the most popular
DL approaches, convolutional neural networks (CNNs) show incomparable superiority on several
benchmark datasets such as Imagenet [27], and have been widely used in the recognition, detection
tasks and obtained impressive results [28–30]. However, training a powerful CNN is complicated
since many labeled training samples and techniques are needed, while the available labeled RS scene
datasets are not comparable to any natural scene dataset. For example, compared with the dataset
ImageNet containing 15 million labeled images in 22,000 classes, the most famous and widely used
UC Merced Land Use (UCM) [1] RS scene dataset only contains 21 classes and 2100 label images.

To address the data limitation, an effective strategy is data augmentation. It generates more
training image samples by adding rotated, flipped versions and random cropped, stretched patches of
the training images [31,32], or patches sampled by some optimized strategy [11,33]. Another effective
strategy is transfer learning based on a pre-trained CNN model. Castelluccio et al. [34] fine-tuned
the pre-trained CNNs on the UCM dataset. The best result reached 97.10% when fine-tuning the
GoogLeNet [35] while training a GoogLeNet from scratch just reached 91.2%. Penatti et al. [36] and
Hu et al. [37] investigated the deep features extracted from different pre-trained CNNs for RS scene
representation and classification, and proved the effectiveness and superiority of the features from
the 1st full-connected layer of CNNs. The features extracted from pre-trained CNNs also have some
invariance to small-scale deformations, larger-scale and so on [38,39]. Compared with training a new
CNN, transfer learning methods are faster and the classification results are much promising without
large amount of training data. It is known that most of the pre-trained CNNs have been trained in
dataset with large number of natural images such as ImageNet. In natural image scenes, the objects are
almost centrally focused, and the center pixels have more influence on the image semantic labels [11],
while, in RS image scenes, the surface objects are usually distributed randomly, and the central parts
may not relate closely with the semantic label. Hence, due to the objects distributions difference
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between natural scenes and RS scenes, the pre-trained CNNs based on transfer learning method is
applicable for a limit amount of training date but lacks robustness to low quality variance (e.g., various
scales and noises) in RS scene classification.

To address the challenging task, we propose a deep salient feature based anti-noise transfer
network (DSFATN) for classification of RS scenes with different scales and various noises. Our method
aims at improving both feature representation of RS scene and classification accuracy. In DSFATN,
a novel deep salient feature (DSF) and an anti-noise transfer network are introduced to suppress the
influences of different scales and noise variances. The saliency-guided DSF extraction conducts
a patch-based visual saliency (PBVS) algorithm to guide pre-trained CNNs for producing the
discriminative high-level DSF. It compensates the affect caused by objects distribution difference
between natural scenes and RS scenes, thus makes the DSF extracted exactly from the most relevant,
informative and representative patches of the RS scene related to its category. The anti-noise transfer
network is trained to learn and enhance the robust and anti-noise structure information of RS scene by
minimizing a joint loss. DSFATN performs excellent with RS scenes in different scales and qualities,
even with noise.

The major contributions of this paper are as follows:

• We propose a novel DSF representation using “visual attention” mechanisms. DSF can achieve
discriminative high-level feature representation learnt from pre-trained CNN for the RS scenes.

• An anti-noise transfer network is improved to learn and enhance the robust and anti-noise
structure information of RS scene, where a joint loss is used to minimize the network by
considering anti-noise constraint and softmax classification loss. The simple architecture of
the anti-noise transfer network makes it easier to be trained with the limited availability of
training data.

• The proposed DSFATN is evaluated on several public RS scene classification benchmarks.
The significant performance demonstrated our method is of great robustness and efficiency
in various scales, occlusions, and noise conditions and advanced the state-of-the-arts methods.

This paper is organized as follows. In Section 2, we illustrate the proposed DSFATN method in
detail. In Section 3, we introduce the experimental data and protocol, provide the performance of the
proposed DSFATN and discuss the influence of serval factors. Section 4 concludes the paper with a
summary of our method.

2. The Proposed DSFATN Method

2.1. Framework of DSFATN

DSFATN consists of two main steps, as shown in Figure 1.

1. Saliency-guided DSF extraction: To achieve discriminative high-level feature representation
for RS scenes, we introduce saliency-guided DSF extraction. Instead of using the whole RS
scene for feature extraction, saliency-guided DSF extraction produces a novel DSF representation
based on saliency-guided RS scene patches using “visual attention” mechanisms. First, we
conduct an improved patch-based visual saliency (PBVS) method to detect salient region and
sample multi-scales salient patches in an image. Next, the multi-scales salient patches are fed
to a pre-trained CNN model to extract the DSF. The saliency-guided DSF extraction ensures the
most informative and representative parts are definitely centrally focused in the salient patches.
Compared with randomly or densely sampling methods, the saliency-guided sampling is also
more targeted and effective. The different scales of the salient patches also help to improve the
scale invariance of DSF in the anti-noise transfer network training process.

2. Anti-noise transfer network based classification: To suppress the influences of various scales
and noises of RS scenes, an anti-noise transfer network is trained as the classifier successively.
It introduces an anti-noise layer to tackle with DSFs extracted from RS scene patches in low quality
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even with various noises. Except for the anti-noise layer, the anti-noise transfer network only has
a fully-connected (FC) layer and a softmax layer, which is a simple CNN architecture and can be
trained easily. Different from the traditional CNN model, we optimize a new objective function
to train the anti-noise transfer network by imposing an anti-noise constraint, which enforces
the training samples before and after adding noises to share the similar features. Meanwhile,
for anti-noise transfer network learning, the input scenes contain origin scenes and scenes with
various noises, such as: (1) salt and pepper noise; (2) partial occlusions; and (3) their mixed
noise. The whole framework works perfectly on three different scale RS scene datasets and even
outperforms the state-of-the-art methods.
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Figure 1. The framework of deep salient feature based anti-noise transfer network (DSFATN) contains
two main steps: saliency-guided deep salient feature (DSF) extraction and anti-noise transfer network
based classification. The saliency-guided DSF extraction conducts a patch-based visual saliency (PBVS)
to guide pre-trained convolutional neural networks (CNNs) for producing the discriminative high-level
DSF for remote sensing (RS) scene with different scale and various noises. Then, the anti-noise transfer
network is trained to learn and enhance the robust and anti-noise structure information of RS scene by
minimizing a joint loss. For anti-noise learning, the input scenes include origin scenes and scenes with
various noises (e.g., salt and pepper, occlusions and mixtures).

2.2. Saliency-Guided DSF Extraction

The saliency-guided DSF extraction provides the effective and discriminative high-level features
from the most relevant scene patches using “visual attention” mechanisms. This extraction is inspired
by the human visual system which interprets complex scenes in real time to get most relevant features
of the scenes and reduce the complexity of scene analysis [40]. It also can be divided into two steps
(Figure 1): (1) salient patch extraction; and (2) DSF extraction. The first step provides the scene
patches sampled from the salient regions of input RS scenes. Inspired by graph-based visual saliency
(GBVS) [41,42] method, we introduce a patch-based visual saliency (PBVS) algorithm to support the
salient patch extractor. The second step is mainly accomplished by a pre-trained CNN, i.e., VGG-19 [19],
where the 4096-dimensional activations of the first FC layer are used as the final DSFs.

2.2.1. Salient Patch Extraction

We improved the PBVS method for salient patch extraction. Different from traditional GBVS
algorithm which can only detect the salient region from an image, our PBVS can provide multi-scales
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salient patches of the image. PBVS can be organized into the following procedures: (1) salient region
detection; and (2) salient patch extraction. Figure 2 shows the flowchart of the PBVS based salient
patch extraction. The details are described in the following section.
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(1) Salient region detection. Given a set of n scenes S = {s1, s2, · · · , sn}. For expository
simplicity, suppose arbitrarily RS scene s ∈ S is a square image of size n × n. At first step,
PBVS extracts feature vectors at locations over s to form the feature map of Ms

Fea : n× n → R ,
Ms

Fea(i, j)(1 ≤ i ≤ n, 1 ≤ j ≤ n) is the value of locations (i, j) in Ms
Fea. The dissimilarity between

Ms
Fea(i, j) and Ms

Fea(p, q) is defined as

d((i, j)||(p, q)) :=
∣∣∣∣log

Ms
Fea(i, j)

Ms
Fea(p, q)

∣∣∣∣ (1)

Then, the activation map Ms
Act of s needs to be formed. By connecting every node of the feature

map Ms
Fea, the fully connected directed graph graphAct is obtained. The directed edge from node (i, j)

to node (p, q) of graphAct is assigned a weight, as shown in Equation (2). σ is a free parameter that is
set to approximately 1/10 to 1/5 of the map width because it has been proven the results were not
very sensitive to perturbations around these values. Then, the graphAct is treated as a Markov chain to
compute the equilibrium distribution namely get the activation map Ms

Act. More details can be found
in [41].

wAct((i, j)||(p, q)) := d((i, j)||(p, q))· exp

(
− (i− p)2 + (j− q)2

2σ2

)
(2)

Then, activation map Ms
Act will be normalized to get the normalization map Ms

Nor. Similar
to the process of forming Ms

Act, another graph graphNor can be constructed based on activation
map Ms

Act, but the weight assigned to the edges is defined as Equation (3). Again, a Markov chain
on graphNor is obtained to help obtain the normalization map namely the final saliency map Ms

Sal.
If multiple activations were generated, these maps will be combined into one saliency map Ms

Sal
after normalization.
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wNor((i, j)||(p, q)) := MI
Act(p, q)· exp

(
− (i− p)2 + (j− q)2

2σ2

)
(3)

(2) Salient patch extraction. The Salient patch extraction provides multi-scales salient patches
from the salient region. As shown in Figure 2, if an object is salient in the image, the corresponding
location of its saliency map is high-lighted with bigger salient values. In an image, the salient values of
its saliency map range from [0, 1], where 1 indicates the current location in the corresponding RS scene
is the most salient, and 0 corresponds to the most non-salient. By finding the minimum bounding
rectangle (MBR) [43] of the nonzero salient values in the saliency map Ms

Sal, we primarily determine
a salient region rs of RS scene s. Then, α patches will be sampled from rs by an iterative sampling
procedure, where α is the threshold of patches’ number. The size of the patch can be scaled as the
random rate from 30% to 80% of the salient region. The iterative sampling procedure prefers to sample
the patches with bigger salient values in their central boxes, where the central box is defined as the
central rectangle region of the sampled patch with its half width and height. In this work, we regard
[0.8, 1] as the preferred salient value range γ to conduct the sampling process. Algorithm 1 shows the
iterative sampling procedure for RS image scene s. At each iteration, a patch is randomly sampled in
the salient region. If its salient values in the central box are all within the preferred salient value range
γ, this patch should be considered as the salient patch and be kept, otherwise it should be dropped.
The iteration will be continued until α patches with different scales are sampled. In our work, we set
α = 9, and the influence of α will be discussed in Section 3.5.4.

Algorithm 1. The iterative sampling procedure.

Input: Salient region rs of RS image scene s
Output: P = {p1, p2, . . . , pα}

1: Initialization:
2: set salient patch set P = {∅}
3: set salient patches’ number npatch = 0
4: Iterations:
5: while (n < α)
6: randomly sampled a patch ptmp in rs

7: if (each salient value v ∈ γ in central box)
8: put ptmp to P and note ptmp as pnpatch+1 in P

9: npatch = npatch + 1
10: Return P = {p1, p2, . . . , pα}

2.2.2. DSF Extraction

After selecting the training patches, we employed the VGG-19 architecture [19] (Figure 3)
pre-trained with the ImageNet dataset to derive DSF representation. Additionally, we have compared
different pre-trained CNN models in the Experimental Section and showed that VGG-19 performed
the best. VGG-19 is one of the very deep CNN models proposed by Simonyan et al. [19]. Hu et al. [37]
compared the performance of the activation vectors from different layers of the model, and found
the activation vectors from the 1st FC layer are more capable to represent the image feature. Hence,
the 4096-dimensional activation vector from the 1st FC layer of VGG-19 is adopted for deep salient
feature representation in the case.

The pre-trained VGG-19 model includes 16 convolutional layers, five maxpool layers and three
FC layers. When the multi-scales salient patches are fed to VGG-19 and preprocessed to the size of
224× 224, the DSF can be extracted on the 1st FC layer. Supposing a set of n scenes S = {s1, s2, · · · , sn},
the t-th DSF vector can be described as:

dt = f
(
hj(φk(st), α)

)
( k ∈ {0, 1, 2, 3}, j ≤ α ), (4)
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where φk(st) returns scene st added with the k-th kind of noises (see Figure 1) and k = 0 means none
noise is added. PBVS function hj(·) returns the j-th salient patch of the corresponding scene. α is the
threshold of sampled salient patches, as described in Section 2.2.1. f defines the deep feature extraction
from the 1-st FC layer from VGG-19.
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N is the category number of the dataset. FC2 transfers the output vector of FC1 into N-dimensional 
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2.3. Anti-Noise Transfer Network Based Classification

Different from the traditional CNN models, an anti-noise transfer network is introduced to deal
with the 4096-dimensional DSF vectors, as shown in Figure 4. The anti-noise transfer network is
designed with simple architecture that can be trained easily with limited availability of the training
data. It works well for DSFs of different RS scenes even with lower quality due to the anti-noise layer.
The anti-noise layer imposes an anti-noise constraint to enforce the training samples before and after
adding noises to share the similar output features. Thus, it can produce more robust and discriminative
scene features to make the classification easier. Combining the anti-noise constraint to the softmax
classification loss function, the anti-noise transfer network is learned by minimizing a joint loss, which
is very different from the training of the traditional CNN models. The architecture and loss function of
the anti-noise transfer network is described in detail below.
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2.3.1. DSF Based Anti-Noise Transfer Network Architecture

As Figure 4 demonstrates, the anti-noise transfer network consists of two FC layers named FC1
and FC2 and a softmax layer, where rectified linear units (ReLU) [44] function is adopted to activate the
output of FC1. FC1 and FC2 generate 4096-dimensional and N-dimensional vectors, respectively. N is
the category number of the dataset. FC2 transfers the output vector of FC1 into N-dimensional vector
thus it can be processed by softmax to produce the final classification results. The 4096-dimensional
input DSF vector dt will be fed to anti-noise layer FC1 and activated by ReLU as:

oFC1(dt) = σ(WFC1dt + bFC1), (5)
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where σ(x) = (0, x) is the ReLU function, bFC1 is the bias. Since the output of FC1 is 4096-dimensional,
the weights WFC1 ∈ R4096×4096. Analogously, oFC1(dt) will be processed by FC2 and the last softmax
layer as follows:

oFC2(dt) = ϕ(WFC2dt + bFC2), (6)

where ϕ(x) = ex/ ∑ ex is the softmax function, bFC2 is the bias. oFC2(dt) is N-dimensional, N equals
the category number of scene categories, thus the weights WFC2 ∈ R4096×N. oFC2(dt) is also the final
output of the transfer network Tnet. Setting yi = oFC2(dt, i), where oFC2(dt, i) is the i-th element of
oFC2(dt), the final prediction vector of dt can be represented as Tnet(dt) = {y1, y2, . . . , yN}, which
indicates the probabilities of the corresponding DSF dt belongs to each category. In the test phase, i-th
category is the prediction label of dt when yi is the maximum element of Tnet(dt).

2.3.2. Joint Loss Function Learning

To suppress the influence of noises, we propose a joint loss function to improve the anti-noise
capability of the transfer network, where an anti-noise constraint is imposed to enforce the training
samples before and after adding noise to share similar features. More specifically, for each training
RS scene st and its corresponding scene with the l-th noise φl(st)(l ∈ {1, 2, 3}), their DSFs d0

t and
dl

t are enforced to generate similar output features in the transfer network by the anti-noise layer
FC1. To achieve this goal, the novel joint loss function is proposed to learn parameters. Given the
training RS scene set Str={ st, φl(st)|st ∈S}, their DSF set can be obtained as Dtr =

{
dt

∣∣∣dt ∈ D0 ∪ Dl
}

,

where D0 is the DSF set of origin scenes (e.g., st) and Dl is the DSF set of corresponding scenes with
the l-th (l ∈ {1, 2, 3}) noise (e.g., φ2(st)). Ytr is the true label set of Dtr. The joint loss value L can be
computed by:

L = loss(Dtr, Ytr) + dis
(

D0, Dl
)

, (7)

where the first term loss(Dtr, Ytr) is the softmax classification loss function and the second term
dis
(

D0, Dl
)

is the anti-noise constraint. The joint loss L is feedback for backpropagation update.
Stochastic Gradient Descent (SGD) approach is employed here to solve the optimization problem,
which is a widely used method for neural work training. By minimizing the joint loss value L, both the
softmax classification loss and the distance between features extracted from training samples before
and after adding noises are minimized.

The softmax classification loss is defined by Equation (8), where ydt ∈ Ytr is the true label of dt,
the first term of Equation (8) is the cross-entropy loss of dt, the second term is the L2 regularization
to avoid over-fitting for better performance [45], Wi = {WFC1, WFC2} is the weights of the anti-noise
transfer network, and λ is the regularization coefficient, balance the weight between the two terms to
be added, which is determined by the product of the weights decay.

loss(Dtr, Ytr) = − ∑
dt∈Dtr

ydt log(oFC2(dt)) +
λ

2
‖Wi‖2, (8)

The anti-noise constraint is proposed to enforce the training DSFs before and after adding noises
to share the similar output features extracted by FC1, which introduced as the anti-noise layer in the
transfer network. We define the constraint term by measuring the distance between DSFs before and
after adding noises as:

dis
(

D0, Dl
)
=

1
M ∑

d0
t∈D0

‖oFC2

(
d0

t

)
− oFC2

(
dl

t

)
‖2, (9)

where d0
t ∈ D0 and dl

t ∈ Dl are extracted from one RS scene before and after adding the l-th
(l ∈ {1, 2, 3}) noises. M is the number of D0, namely half of the joint number of the training samples.
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By incorporating Equations (10) and (11) into Equation (9), the joint loss value L is defined as:

L = − ∑
dt∈Dtr

ydt log(oFC2(dt)) +
λ

2
‖Wi‖2 +

1
M ∑

d0
t∈D0

‖oFC2

(
d0

t

)
− oFC2

(
dl

t

)
‖2 (10)

3. Experiments and Analysis

3.1. Dataset and Experimental Protocol

Three different scale datasets are utilized; their specific categories are shown in Figure 5.

1. UC Merced Land Use Dataset [1] (UCM) is collected from the large aerial orthoimagery of
USGS National Map Urban Area Imagery collection. There are 100 images for each of 21 classes.
Each image measures 256 × 256 pixels, with a 1-ft spatial resolution.

2. The Google image dataset designed by RS_IDEA Group in Wuhan University (SIRI-WHU) [10] is
acquired from Google Earth (Google Inc., Mountain View, CA, USA) and mainly covers urban
areas in China. It contains 12 scene categories. Each class consists of 200 images with a size of
200 × 200 pixels and a spatial resolution of 2 m.

3. SAT-6 dataset [46] is extracted from the National Agriculture Imagery Program and consists of a
total of 405,000 image patches of size 28 × 28 and covering six classes. We choose 200 images
from each class for our experiments.
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dataset designed by RS_IDEA Group in Wuhan University (SIRI-WHU) and the SAT-6 dataset:
the numbers before the category names will be used to represent the corresponding categories in
the experiments.
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All experiments are implemented with a 4.0 GHz Intel Core i7-6700K CPU, and two 8 GB GeFore
GTX 1080 GPUs. We carried out experiments with five-fold cross-validation protocol on each RS scene
dataset. The training set contained 80% of the RS scenes for each class, and the remaining scenes were
used for testing. The numbers of training and test images of each RS scene dataset are listed in Table 1.
Moreover, in this paper, three kinds of noise-adding strategies are applied: (1) salt and pepper noise
with fixed noise density 0.1; (2) partial occlusion at random position that covers 20–30% of the image;
and (3) their mixed noise. In the mixed noise strategy, origin scenes, scenes with salt and pepper noise
and scenes with partial occlusion account 1/3 of the total scenes, respectively. Although much fewer
images are utilized in this work than benchmark datasets such as ImageNet, DSFATN performs in
different scales and noise conditions with great efficiency and robustness.

Table 1. Training and test images’ numbers of the three RS scene datasets.

UCM SIRI-WHU SAT-6

Training 1680 1920 960
Test 420 480 240
Total 2100 2400 1200

We mainly analyze the performance of DSFATN by the following aspects: (a) the effectiveness
and applicability of DSFATN on the three different datasets; (b) the representation ability of DSF;
(c) the robustness of the model by the anti-noise layer learning; and (d) the influence factors including
patches’ number and pre-training models. Comparisons with the state-of-the-arts also demonstrate
the superiority of our method.

3.2. Performance on Different Datasets

RS scenes from the three datasets employed in our experiments have a tremendous difference in
image resolution and size. The UCM and SIRI-WHU datasets can provide different high-resolution RS
scene images with proper image size, while the RS scenes from SAT-6 are really blurry with a quite
small size. The diversity of the datasets can test DSFATN to the utmost.

(1) UCM dataset. We compared DSFATN with the state-of-the-arts such as the second
extended spatial pyramid co-occurrence kernel (SPCK++) [13], pyramid-of-spatial-relations (PSR) [47],
saliency-guided unsupervised feature learning (SG+UFL) [33] on the UCM dataset as shown in Table 2.
Although most CNN methods can obtain results higher than 90%, especially the fine-tuning on
GoogLeNet [34] get the second highest accuracy in the table, it is still 1.15% lower than the result of
DSFATN. The CNN (including six convolutional layers and two FC layers) derived from [48] performs
badly with the limited amount of data, while DSFATN deals with it well and obtains the highest
accuracy, topping the accuracy of random forest (RF) [49] by almost 55%.

Table 2. Accuracy comparison of state-of-the-art methods and DSFATN on UCM dataset.

Rank Methods Accuracy (%)

1 RF [49] 44.77
2 CNN(6conv+2fc) 76.40
3 SPCK++ [13] 77.38
4 LDA [15] 81.92 ± 1.12
5 SG + UFL [33] 82.72 ± 1.18
6 PSR [47] 89.10
7 OverFeat [36] 90.91 ± 1.19
8 Caffe-Net [36] 93.42 ± 1.00
9 GoogLeNet [34] 97.10
10 DSFATN 2
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Figure 6 displays the confusion matrix of DSFATN on the UCM dataset. Most scenes can be
classified into the right category, especially, the 6th class chaparral whose accuracy equals 1. While
the 20th class storage tanks, as the lowest accuracy owner, are mistaken for several other classes,
particularly the 5th category buildings and 14th category mobile home park, which is reasonable since
some storage tanks are located on the roofs of buildings. The accuracy of storage tanks is higher than
96%, and the whole classification accuracy of DSFATN on the UCM dataset is quite satisfactory.
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Figure 6. Confusion matrix of DSFATN on the UCM dataset: the horizontal and vertical axes represent 
the predict labels and true labels respectively. All categories obtain accuracy higher than 0.96. 

(2) SIRI-WHU dataset. Table 3 shows the results of DSFATN and several compared methods 
such Spatial Pyramid Matching (SPM) [12] on the SIRI-WHU dataset. Similar to the results on the 
UCM dataset, DSFATN obtains a high classification result of over 98%. RF and CNN(6conv+2fc) 
obtain the higher results than the UCM dataset because the SIRI-WHU dataset has fewer categories 
and more images in each category. It is obvious that DSFATN outperforms the other methods. 
Moreover, Figure 7a is the confusion matrix of DSFATN on the SIRI-WHU dataset. The accuracy of 
each category is higher than 97%. The worst misclassification probability is resulted by the 3rd class 
harbor: 0.9% of the harbor scenes are mistaken for 12th class water. The reason is that these two 
classes both consist of ship and water. For the same reason, the majority of the confusion occurs 
among categories that have the same component parts. For example, both the 2nd class commercial 
and 10th class residential consist of buildings and roads, while both the 9th class pond and the 11th 
class river are mainly made up of water. All categories achieve accuracies of over 97%. 
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(2) SIRI-WHU dataset. Table 3 shows the results of DSFATN and several compared methods
such Spatial Pyramid Matching (SPM) [12] on the SIRI-WHU dataset. Similar to the results on the
UCM dataset, DSFATN obtains a high classification result of over 98%. RF and CNN(6conv+2fc) obtain
the higher results than the UCM dataset because the SIRI-WHU dataset has fewer categories and
more images in each category. It is obvious that DSFATN outperforms the other methods. Moreover,
Figure 7a is the confusion matrix of DSFATN on the SIRI-WHU dataset. The accuracy of each category
is higher than 97%. The worst misclassification probability is resulted by the 3rd class harbor: 0.9% of
the harbor scenes are mistaken for 12th class water. The reason is that these two classes both consist
of ship and water. For the same reason, the majority of the confusion occurs among categories that
have the same component parts. For example, both the 2nd class commercial and 10th class residential
consist of buildings and roads, while both the 9th class pond and the 11th class river are mainly made
up of water. All categories achieve accuracies of over 97%.
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Table 3. Classification results on the SIRI-WHU dataset.

Methods RF [49] LDA [15] CNN(6conv+2fc) SPM [12] DSFATN

Accuracy (%) 0 60.32 ± 1.20 78.20 77.69 ± 1.01 98.46
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(3) SAT-6 dataset. Note that the image scenes in the SAT-6 dataset are already salient patches 
with the dimension of 28 × 28 from RS imageries. Even though the image resolution and scale in the 
SAT-6 dataset are identically low, DSFATN obtains the average accuracy of 98.80%, as shown in Table 
4. The experiments show the impressive representation ability of DSFATN for small scale image 
scenes. Figure 7b is the confusion matrix of DSFATN on the SAT-6 dataset. Compared with results of 
the UCM and SIRI-WHU datasets, the misclassification probabilities of the SAT-6 dataset are much 
higher due to the high similarity between the scenes in smaller scale. The majority of the confusion 
occurs between the 1st class barren-land and the 3rd class grassland, and the 2nd class buildings and 
the 4th class roads, because these two pairs of categories have similar color and texture distribution, 
e.g., the former pair of categories both consist of green grass and brown earth. 

Table 4. Classification results on SIRI-WHU dataset. 

Methods RF [49] CNN(6conv+2fc) DeepSat [46] DSFATN 
Accuracy (%) 89.29 92.67 93.92 98.80 

3.3. Representative Ability Comparison of Different Features 

In this section, to demonstrate the discriminative ability of DSF, we compared the DSF with 
several different features including histogram of oriented gradients (HOG) [50], scale invariant 
feature transform (SIFT) [51], and local binary patterns (LBP) [52], as shown in Table 5. For 
CNN(6conv+2fc), we extract its activations from the 1st FC layer as the representation features. After 
obtaining these features, we simply implement scene classification by training a linear support vector 
machine (SVM) classifier with each kind of features. 
  

Figure 7. Confusion matrix of DSFATN on: (a) the SIRI-WHU dataset; and (b) the SAT-6 dataset. The
horizontal and vertical axes represent the predict labels and true labels respectively.

(3) SAT-6 dataset. Note that the image scenes in the SAT-6 dataset are already salient patches
with the dimension of 28× 28 from RS imageries. Even though the image resolution and scale in the
SAT-6 dataset are identically low, DSFATN obtains the average accuracy of 98.80%, as shown in Table 4.
The experiments show the impressive representation ability of DSFATN for small scale image scenes.
Figure 7b is the confusion matrix of DSFATN on the SAT-6 dataset. Compared with results of the UCM
and SIRI-WHU datasets, the misclassification probabilities of the SAT-6 dataset are much higher due to
the high similarity between the scenes in smaller scale. The majority of the confusion occurs between
the 1st class barren-land and the 3rd class grassland, and the 2nd class buildings and the 4th class
roads, because these two pairs of categories have similar color and texture distribution, e.g., the former
pair of categories both consist of green grass and brown earth.

Table 4. Classification results on SIRI-WHU dataset.

Methods RF [49] CNN(6conv+2fc) DeepSat [46] DSFATN

Accuracy (%) 89.29 92.67 93.92 91.96

3.3. Representative Ability Comparison of Different Features

In this section, to demonstrate the discriminative ability of DSF, we compared the DSF with
several different features including histogram of oriented gradients (HOG) [50], scale invariant feature
transform (SIFT) [51], and local binary patterns (LBP) [52], as shown in Table 5. For CNN(6conv+2fc),
we extract its activations from the 1st FC layer as the representation features. After obtaining these
features, we simply implement scene classification by training a linear support vector machine (SVM)
classifier with each kind of features.
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Table 5. Classification results on three datasets with different features.

Features
UCM SIRI-WHU SAT-6

Accuracy (%) Kappa Accuracy (%) Kappa Accuracy (%) Kappa

Raw image 33.10 0.3361 35.83 0.3469 87.08 0.8116
HOG [50] 52.14 0.4975 44.79 0.3977 57.92 0.4950
SIFT [51] 58.33 0.5625 53.96 0.4977 45.00 0.3400
LBP [52] 31.43 0.2800 46.25 0.4136 77.08 0.7250

CNN(6conv+2fc) 63.10 0.6424 60.42 0.5523 94.58 0.9188
DSF 98.07 0.9801 88.96 0.8766 96.25 0.9437

As Table 5 shows, no matter the accuracy or kappa coefficient, DSF obtained much higher results
than other features on the three datasets. The high kappa values indicate the almost perfect coherence
of DSF. On the UCM and SIRI-WHU datasets, the classification results of raw images are worse than
the classification results of low-level features (e.g., HOG and LBP), and as expected both are worse than
the classification results of high-level features extracted from CNNs including the CNN(6conv+2fc)
feature and DSF. The raw images of SAT-6 perform much better than those low-level features owing to
the characteristics of the SAT-6 dataset. The distinctive colors of the raw image in the SAT-6 dataset
help a lot in the raw image classification but does not help in the low-level features extraction. Instead,
the small image size and blurry image quality of SAT-6 image scenes make the low-level features
extracted from raw images more unrepresentative. However, the features extracted from CNNs are
discriminated, both the CNN(6conv+2fc) feature and DSF obtain accuracies over 90%. Especially the
CNN(6conv+2fc) feature, although it does not perform well on the more complex UCM and SIRI-WHU
datasets, it works quite well on the SAT-6 dataset due to the fewer categories and small RS scene
image size of the SAT-6 dataset. The DSF performs more efficient and robust than the others in all
three datasets.

Moreover, we embed the high-dimensional features to 2-D space by t-SNE [53], thus to visualize
and compare the features extracted from these datasets. As shown in Figure 8, subfigures from top
to bottom are the 2-D feature visualization images of HOG, LBP, SIFT, CNN(6conv+2fc) feature and
DSF in order, and from left to right are the 2-D feature visualization images of the UCM, SIRI-WHU
and SAT-6 datasets respectively. Each color in the images represents a category in the corresponding
dataset. Obviously, the 2-D features of HOG, SIFT, and LBP are distributed disordered and only
form very few clusters. In contrast, the 2-D features of DSF form clusters separated much clearly.
Moreover, the 2-D features of CNN(6conv+2fc) also form more clusters than HOG, SIFT and LBP since
the high-level features that contain more abstract semantic information than the low-level features.
Notice that CNN(6conv+2fc) feature performs very well in the SAT-6 dataset, obtaining a high result
of 94.58%, which very close to the result 96.25% obtained by DSF; this is also reflected in the 2-D
feature visualization images, both kinds of features can form the main six clusters. Barren-land class,
grassland class and trees class are very close to each other and have some overlap, since in the small
scale and resolution SAT-6 dataset, these three categories all consist of soils and vegetation with
different vegetation cover rate. The grassland has a middle vegetation plant cover rate; therefore,
its features locate between features of barrenland and trees. The buildings class and the roads class
have similar situations because the roof of the buildings and the roads are both mainly made up of
cement concrete. Particularly, the water class is not similar to the five other categories, and the overlap
between the grassland class and the water class in the CNN (6conv+2fc) situation turns out to be
unreasonable. While the DSFATN discriminates the difference since the pink area that represents the
water features locates far away from the five other categories. Moreover, compared with DSFATN,
the CNN(6conv+2fc) feature generates more points that do not locate in the clusters they belong to.
In general, DSF learns to be more discriminative.
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Figure 8. The comparison of different features on the three datasets by per-class two-dimensional
feature visualization. From left to right: the UCM dataset, the SIRI-WHU dataset and the SAT-6 dataset.
From top to bottom: histogram of oriented gradients (HOG), local binary patterns (LBP), scale invariant
feature transform (SIFT), CNN(6conv+2fc) feature, and DSF. It is obvious that DSF (the last row) has
more clearly separated clusters.
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3.4. Evaluation of Image Distortion

In this section, we validate the robustness of DSFATN for two kinds image distortion conditions:
(1) images with noises; and (2) images in different scales. In Section 3.2, we have already proven
DSFATN worked well on the SAT-6 dataset which contains RS scenes in small scale and low resolution,
thus, in this section, we perform the anti-noise tests on the UCM and SIRI-WHU datasets.

3.4.1. Evaluation of Noises

To validate the anti-noise ability of DSFATN, we compared DSFATN with several different
methods under three kinds of noise. Particularly, to prove the indispensability and effectiveness
of multi-scales salient patches and anti-noise layer, two variant models derived from DSFATN are
introduced. Table 6 lists their difference with the proposed DSFATN. TN-1 refers to DSFATN without
multi-scales salient patches sampling and anti-noise layer training. TN-2 refers to DSFATN without
multi-scales salient patches sampling but with anti-noise layer training. The absence of anti-noise layer
training is simply achieved by learning the joint loss without the anti-noise constraint.

Table 6. Difference between DSFATN and its variant compared models.

Model Multi-Scales Salient Patch Sampling Anti-Noise Layer Training

TN-1 × ×
TN-2 ×

√

DSFATN
√ √

Table 7 compares the models on the UCM dataset and the SIRI-WHU dataset. Obviously, RF and
CNN(6conv+2fc) have a very weak anti-noise property for obtaining accuracies less than 50% with
all three kinds of noises, while the classification results of DSFATN are all above 95%. In particular,
the result difference between TN-2 and DSFATN almost reaches 10%, which indicates the great
importance of saliency patches sampling. Analogously, TN-1 has much worse results compared
with TN-2, where the result difference even reaches 47.66% on the SIRI-WHU dataset with salt and
pepper noise. The averaged result difference between TN-1 and TN-2 on the UCM and SIRI-WHU
datasets with the three kinds of noises reaches 19.92%, which shows the effectiveness of anti-noise
layer. As expected, on both the UCM and SIRI-WHU datasets, the results with the three kinds of noises
rank in the order: TN-1 < TN-2 < DSFATN. This reflects the important role played by salient patches
and the anti-noise layer.

Table 7. Classification results on the UCM dataset and SIRI-WHU dataset with three kinds of noises.

Model

Classification Accuracy (%)

UCM SIRI-WHU

Salt and Pepper
Noise

Partial
Occlusion

Mixed
Noise

Salt and Pepper
Noise

Partial
Occlusion

Mixed
Noise

RF 0.0 0.0 0.0 0.0 0.0
CNN(6conv+2fc) 1.60 0.32.00 0.380 0.460 0.5520 0.66240

TN-1 -0.2 -0.04 -0.05 -0.06 -0.07 -0.08
TN-2 -0.4 88.76 88.33 83.83 52.1 84.79

DSFATN 0.0 0.0 0.0 0.0 0.0 0.0

Figure 9 shows the per-class accuracies of TN-1, TN-2, and DSFATN on the UCM and SIRI-WHU
datasets with the three kinds of noises. Similar to the trend of the whole results, in most cases,
the accuracies are in the following order: DSFATN > TN-2 > TN-1. It is interesting to find that TN-1 and
TN-2 perform well in several classes with accuracies over 90%, which even equal or exceed the results
of DSFATN, such as the 1st class agricultural, the 11th class harbor, the 16th class overpass, the 18th
class runway of the UCM dataset and the 12th class water of the SIRI-WHU dataset. These scenes
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including duplicate texture information (e.g., ships, water, roads, and roads) make saliency detection
confusing. Moreover, irrelevant objects (e.g., a ship in the water class scene) occasionally appearing
misled the saliency detection results. Nevertheless, TN-1 and TN-2 behave poor in the other categories,
and the corresponding accuracies dropped in different degrees. In general, on both the UCM and
SIRI-WHU datasets, TN-2 obtains mediocre performance, better than TN-1 and worse than DSFATN,
while TN-1 obtains quite uneven results—most of its results are below 80%. In sharp contrast to this is
the stable performance of the DSFATN, which ensures most results are higher than 90%.
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Figure 9. The per-class accuracy comparisons on: the UCM dataset with salt and pepper noise (top left);
the SIRI-WHU dataset with salt and pepper noise (top right); the UCM dataset with partial occlusion
(middle left); the SIRI-WHU dataset with partial occlusion (middle right); the UCM dataset with
mixed noise (bottom left); and the SIRI-WHU dataset with mixed noise (bottom right). In most cases,
the accuracies rank in the following order: DSFATN > TN-2 > TN-1.

To further confirm the ability of the anti-noise layer FC1 in the anti-noise transfer network,
we compare the FC1 layer’s output feature OFC1(DSF) with different features under the three kinds of
noises (see Table 8), similar to in Section 3.3. Compared with the accuracies in Table 5, the results of
corresponding features in Table 8 have declined in different degrees due to the influence of the noises.
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CNN(6con+2fc) feature and DSF show some superiority compared with the low-level features in this
anti-noise experiments, obtaining accuracies even higher than the results obtained by the low-level
features extracted from origin RS scene images without any noise (see Table 5). However, it is not
robust enough to represent the images with noises. The last row of Table 8 shows the accuracies
obtained by features extracted from the FC1 layer; most of them are higher than 0.90, and all the results
are significantly enhanced compared to the results classified by DSF. The great difference between
DSF and OFC1(DSF) indicates introducing the FC1 layer to the anti-noise transfer network is indeed
very important.

Table 8. Anti-noise analysis on the UCM and SIRI-WHU datasets with different features.

Features

Classification Accuracy (%)

UCM SIRI-WHU

Salt and Pepper
Noise

Partial
Occlusion

Mixed
Noise

Salt and Pepper
Noise

Partial
Occlusion

Mixed
Noise

HOG [50] 41.19 34.76 25.47 40.21 40.63 31.46
SIFT [51] 62.62 41.43 44.05 51.25 46.46 46.46
LBP [52] 25.00 18.10 10.48 37.92 39.38 25.42

CNN(6conv+2fc) 56.19 38.57 47.62 52.92 65.63 53.96
DSF 89.76 83.10 82.62 79.58 87.29 83.54

OFC1(DSF) 96.61 98.04 97.70 86.39 97.52 94.56

3.4.2. Evaluation of Multiple Scales

To evaluate the impact of image scale, we resized the RS scene images from the UCM and
SIRI-WHU datasets to five different scales, i.e., a quarter of original image size (height and width
dimensions), half of original image size, three quarters of original image size, original image size and
one and a quarter size.

We compared DSFATN with CNN(6conv+2fc) and the TN-2 model. As the results in Tables 9
and 10 show, DSFTAN performs the best on the UCM and SIRI-WHU datasets at all five scales. Almost
all the accuracies are over 98%, and the results of DSFATN are quite stable for obtaining the lowest STD
value. The results of CNN(6conv+2fc) are very unstable with the image scale variances. Particularly,
TN-2, which does not conduct multi-scales patches sampling, compared with DSTATN, also obtained
high accuracies around 90% on the two datasets. However, the STD values of TN-2 are much higher.
Moreover, the UCM, SIRI-WHU and SAT-6 datasets also have different scales and resolutions, especially
the SAT-6 dataset. Our method demonstrated robustness across the three datasets.

Table 9. Classification results on the UCM dataset with five kinds of scales.

Models 25% 50% 75% 100% 125% STD

CNN(6conv+2fc) 76.60 80.00 77.80 76.40 80.00 1.58
TN-2 92.20 91.40 91.60 92.60 91.20 0.52

DSFATN 97.87 98.53 98.46 98.25 98.22 0.23

Table 10. Classification results on the SIRI-WHU dataset with five kinds of scales.

Models 25% 50% 75% 100% 125% STD

CNN(6conv+2fc) 77.00 77.40 77.00 78.20 75.40 0.91
TN-2 87.60 89.20 89.60 90.00 90.60 1.01

DSFATN 98.30 98.39 98.73 98.46 98.92 0.23
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3.5. The Analysis of Influence Factors

In this section, we analyze several influence factors in DSFATN: (a) the threshold of salient patches’
number α; (b) the regularization coefficient λ; (c) the pre-trained CNN models; and (d) the noise level.
For simplicity and equity, all comparison experiments were conducted on the UCM dataset.

3.5.1. Influence of Salient Patches’ Number α

Figure 10 shows the influence of salient patches’ number α. Time consumption refers to the time
for obtaining all the DSF of the RS image scenes utilized in the corresponding experiments. α = 0
means salient regions are not detected thus the DSF are directly extracted from the origin image scenes.
As α increases from 0 to 9, the time consumption increases slowly while the accuracy rises sharply.
When α ∈ [9, 36], the accuracy keeps a flat level of growth while the time consumption steepens.
Only when α = 9, a high classification accuracy can be gained without much time consumption.
Hence, α = 9 is selected in our method.
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Figure 10. The influence of salient patches’ number α in DSFATN on UCM dataset.

3.5.2. Influence of the Regularization Coefficient λ

Figure 11 shows the classification results of DSFATN in different regularization coefficient λ.
When λ is very small (i.e., λ ∈

[
1× 10−7, 1× 10−1 ]), DSFATN performs quite good, and the accuracy

levels out at around 98%. When λ is assigned bigger values (i.e., λ > 1× 10−1), the accuracy declines
fast. When λ = 1× 10−4, DSFATN achieves the highest result.
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3.5.3. Influence of Pre-Trained CNNs

We changed the pre-trained CNN in DSFATN from VGG-19 to several other kinds of CNNs,
while keeping the rest of the structure of DSFATN unchanged. Table 11 presents the classification
results of different pre-trained CNNs. Note that, for the pre-trained CNN models which contain three
FC layers (Rows 1–7), we extracted the features from the 1st FC layer as the feature presentation.
For the other per-trained CNNs (Rows 8–15), we regarded the output of the layer that generate
one-dimensional vectors (e.g., logits layer in InceptionV3) as the representation. All extracted
representations have the same anti-noise transfer network architecture but are trained separately.
As shown in Table 11, compared with VGG-19, most pre-trained CNNs can achieve comparable results
over 96% (e.g., Rows 1–6 and 11–12). Although the inception models perform well too, they are
not so competitive with other models for deep feature extraction, since they are not deep enough
compared with Resnetv1_50 and Resnetv1_101. The fully connected layers, which appear in each
traditional CNNs (e.g., Rows 1–7), play a great role for deep feature extraction. Nevertheless, the results
of inceptions are still higher than 90%. One can see that our DSFATN with VGG-19 outperforms
the others.

Table 11. Result comparison with different pre-trained CNNs.

No. Pre-Trained CNNs Classification Accuracy (%)

1 Alexnet [48] 96.85
2 Caffenet [54] 97.35
3 VGG -F [55] 97.54
4 VGG -M [55] 97.57
5 VGG -S [55] 97.12
6 VGG-16 [19] 97.91
7 VGG-19 [19] 1.4
8 Inceptionv1 [35] 91.25
9 Inceptionv2 [56] 90.54
10 Inceptionv3 [57] 91.82
11 Resnetv1_50 [58] 97.89
12 Resnetv1_101 [58] 97.94

3.5.4. Influence of Noise Levels

We investigate the robustness sensitivity of DSFATN at five different levels of noises. Table 12
shows the parameters of the salt and pepper noise and partial occlusion at these five levels of noise
conditions; the mixed noise is still the mixture of the former two kinds noise and original image scenes
with the same proportion. Note that Level 2 noise condition has been adopted as the setting in the
preceding experiment part (see Section 3). Figure 12 demonstrates these five noise levels of an example
tennis court scene. Obviously, when the noise level becomes higher, the scenes with salt and pepper
noise are blurrier with more noise pixels, and the scenes with partial occlusion are covered with larger
black region. At Levels 3–5, the tennis court cannot be seen in the image scene.

Table 12. The parameters of the salt and pepper noise and partial occlusion at five levels.

Level Salt and Pepper Noise Density Partial Occlusion Covering Scale

1 0.05 10–20%
2 0.1 20–30%
3 0.15 30–40%
4 0.2 40–50%
5 0.25 50–60%
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Figure 12. The example scenes of an example tennis court scene at five levels of noise conditions.

The average accuracies of DSFATN at these five noise levels are shown in Figure 13. As expected,
the higher the noise level is, the lower the classification accuracy is. In salt and pepper noise condition,
the salt and pepper noise with higher noise level brings more noise pixels to the scene, which makes
the performance of saliency detection degenerate. In partial occlusion condition, the higher partial
occlusion level leads to the semantic information loss. When the noise level is higher than 2, the results
of salt and pepper noise and partial collusion conditions declines more sharply than the result of mixed
noise condition. The origin scenes in the mixed noise condition, which supplement the information
loss caused by the salt and pepper noise and partial occlusion to some extent. In general, although the
accuracies have a declining trend, all results are higher than 80%, even for partial occlusion covering
almost half scale of the scenes. The results are also higher than the accuracies obtained by some
traditional methods in the origin scenes without any noises (see Table 2).
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Figure 13. The results of DSFATN at five levels of noise conditions: the classification accuracies decrease
when the noise level increases.

4. Conclusions

This paper proposes a deep salient feature based anti-noise transfer network (DSFATN) method
for RS scene classification with different scales and various noises. In DSFATN, the saliency-guided
DSF extraction extracts the discriminative high-level DSF from the most relevant, informative and
representative patches of the RS scene sampled by the Patch-Based Visual Saliency (PBVS) method.
The VGG-19 is selected as the pre-trained CNN to extract DSF among various candidate CNNs for
its better performance. DSF achieves discriminative high-level feature representation learned from
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pre-trained VGG-19 for the RS scenes. Meanwhile, an anti-noise transfer network is introduced to
learn and enhance the robust and anti-noise structure information of RS scene by directly propagating
the label information to fully-connected layers. By minimizing the joint loss concerning anti-noise
constraint and softmax classification loss simultaneously, the anti-noise transfer network can be trained
easily with limited amount of data and without accuracy loss. DSFATN performs excellent with RS
scenes in different quality, even with noise.

The results on three different scale datasets with limited data are encouraging: the classification
results are all above 98%, which outperforms the results of state-of-the-art methods. DSFATN also
obtains satisfactory results under various noises. For example, the results on the widespread UCM with
noises are higher than 95%, which is even better than the best results of some state-of-the-art methods
on UCM without noise. The remarkable results indicate the effectiveness and wide applicability of
DSFATN and prove the robustness of DSFATN.

However, the strong anti-noise property of DSFATN is dependent on different datasets; for
example, under salt and pepper noise, the accuracy of DSFATN reaches 95.12% on the UCM dataset
while it dropped to 84.98% on the SIRI-WHU dataset. In the future, we will conduct an end-to-end
multi-scale and multi-channel network to jointly extract more adaptive representation for RS scene
with limited availability of training data for complex scene understanding.
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