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Abstract: This paper presents an analysis of the integration between interferometric and
intensity-offset tracking-based SAR remote sensing for landslide hazard mitigation in the Italian Alps.
Despite the advantages of Synthetic Aperture Radar Interferometry (InSAR) methods for quantifying
landslide deformation, some limitations remain. The temporal decorrelation, the 1-D Line Of Sight
(LOS) observation restriction, the high velocity rate and the multi-directional movement properties
make it difficult to monitor accurately complex landslides in areas covered by vegetation. Therefore,
complementary and integrated approaches, such as offset tracking-based techniques, are needed
to overcome these InSAR limitations for monitoring ground surface deformations. As sub-pixel
offset tracking is highly sensitive to data spatial resolution, the latest generations of SAR sensors,
such as TerraSAR-X and COSMO-SkyMed, open interesting perspective for a more accurate hazard
assessment. In this paper, we consider high-resolution X-band data acquired by the COSMO-SkyMed
(CSK) constellation for Permanent Scatterers Interferometry (PSI), Multi-Aperture Interferometry
(MAI) and offset tracking processing. We analyze the offset tracking techniques considering area
and feature-based matching algorithms to evaluate their applicability to CSK data by improving
sub-pixel offset estimations. To this end, PSI and MAI are used for extracting LOS and azimuthal
displacement components. Then, four well-known area-based and five feature-based matching
algorithms (taken from computer vision) are applied to 16 X-band corner reflectors. Results show
that offset estimation accuracy can be considerably improved up to less than 3% of the pixel size
using the combination of the different feature-based detectors and descriptors. A sensitivity analysis
of these techniques applied to CSK data to monitor complex landslides in the Italian Alps provides
indications on advantages and disadvantages of each of them.

Keywords: landslide; corner reflector; InSAR; PSI; MAI; offset tracking; computer vision; SAR;
remote sensing

1. Introduction

Mountainous areas are recurrently affected by active instability processes, such as debris flows
or landslides that can induce damages and casualties. To reduce the risks, a careful assessment
and monitoring of slope deformations is required. Over the past two decades, capabilities of
synthetic aperture radar interferometry (InSAR) have been demonstrated to detect and quantify
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land surface deformations with a precision in the order of millimeters [1]. However, some limitations
and challenges hinder InSAR techniques to extract surface displacements successfully. Spatio-temporal
decorrelation [2] (due to long perpendicular and temporal baselines between SAR acquisitions) and
atmospheric delay [3] are two main limiting factors. Permanent Scatterer Interferometry (PSI) [4],
Stanford Method for Persistent Scatterers (StaMPS) [5], Spatio-temporal Unwrapping Network
(STUN) [6], Small Baseline Subsets (SBAS) [7], and Enhanced Small BAseline Subset (ESBAS) [8]
have been proposed to overcome or mitigate those limitations in specific conditions.

Generally, the use of InSAR techniques in natural terrains encounters more challenges than in
urban areas. Low coherence (e.g., vegetated areas) and non-steady deformation processes (e.g., complex
landslide type [9]) are two main problems to retrieve accurate phase deformation using InSAR.
Spatio-temporal decorrelation problems could be mitigated by employing small temporal and
perpendicular baseline data set [7] and non-linearity of movements can be taken into account by
applying some filter-based approaches [5]. For enabling InSAR to retrieve phase information in areas
where the number of dominant scatterers is limited, several Distributed Scatterer (DS) algorithms have
been developed in DS interferometry. SqueeSAR [10], SBAS, CRLB [11], CAESAR [12], virtual [13] and
sequential estimator [14] are the most frequently used algorithms for DS interferometry.

One of the significant limitations of the InSAR-based technique is that the extraction
of displacement components is only limited to the LOS direction. Long-track Deformation
Extraction Methods (ADEM) are widely used to take into account the azimuth movement caused
by earthquakes [15], landslides [16] and glaciers [17]. ADEM are classified into two main
categories: (i) Split-bandwidth-based methods including Spectral Diversity (SD) and Multi-Aperture
Interferometry (MAI); and (ii) offset tracking–based methods. Spectral diversity was first proposed to
retrieve absolute phase [18] and then to co-register SAR pairs in the range and azimuth directions [19].

MAI technique, considered as a version of SD in azimuth, operates on the split-beam of InSAR
using band pass filters into the forward- and backward-looking interferograms. It was developed
for long-track deformation retrieval [20]. Since the forward- and backward-looking interferograms
are geometrically symmetric, the range and troposphere components will nearly appear the same.
As a result, the tropospheric phase contribution can be removed from the interferograms. In addition,
phase distortions from the earth-flat and topographic effects resulting from MAI can be successfully
removed [21].

Offset tracking-based methods (in the InSAR domain) are generally classified into (i) Coherent
Cross Correlation (CCC), known as coherent speckle tracking; and (ii) Incoherent Cross Correlation
(ICC), known as feature or pixel tracking. CCC relies on using the complex image patches and can be
applied to coherent data even without any tangible and traceable scatterer. It uses cross-correlation
operation as an optimum (maximum-likelihood) estimator (MLE) for offset determination of partially
correlated circular Gaussian signals and some systematic (non-noise) phase differences such as
topographic and flat-earth fringes [22]. CCC operates on the formation of small interferograms
involving some changes in range and azimuth, the offsets is specified by detecting the peak average
coherence [23]. Contrary to CCC, ICC only relies on amplitude information of image patches and
attempts to find offset between traceable features (e.g., lines and rocks). It uses cross-correlation of
intensity of SLC data and finds the peak location to estimate offset. If mean coherence values are high,
ICC (using complex cross-correlation) is preferred, whereas CCC should be preferred if the data has
low mean coherence values (using intensity cross-correlation).

Template matching algorithms are widely used for image registration and feature matching.
Generally, template matching algorithms can be classified into three groups [24]: (i) featured-based
algorithms that are well suited to extract the features using their spatial relations or descriptors;
(ii) patch or area-based algorithms that consider the intensity of the pixel values obtained after
cross-correlation-based similarity; and (iii) optical-flow or motion tracking algorithms. The first group
is mainly appropriate to match structural information (i.e., features), the second one fits for intensity
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information and the third one is based on the relation between photometric correspondence vectors
and spatiotemporal derivatives of luminance in an image sequence [25].

Feature matching enables finding correspondences between two images based on the local
interest points. It plays a key role in computer vision applications such as motion estimation, image
registration, object detection and tracking. Feature-based matching procedures rely on local feature
detection (mainly based on gradient or intensity variation) and corresponding feature descriptors
(local image gradient). The local features are usually blobs, corners or edge pixels that are extracted
by an appropriate feature detection algorithm. Efficiently matching features across images is the
core of feature-based algorithms in computer vison. Repeatability, distinctiveness and localization of
features are the three main characteristics of a good local feature under varying imaging condition
and in the presence of noise [26]. Localization refers to how well a detector can locate the exact
position of features. Binary Robust Invariant Scalable Keypoints (BRISK) [27], Minimum eigenvalue
algorithm (MEIGEN) [28], Harris [29], Features from Accelerated Segment Test (FAST) [30] and Fast
Retina Keypoint (FREAK) are often used as corner-based feature detection functions and descriptors.
Speeded Up Robust Features (SUR) [31] and Scale Invariant Feature Transform (SIFT) [32] are the most
significant blob-based features descriptors in computer vision field. The descriptors of the corner-based
features are mainly based on pairs of local intensity differences (e.g., BRISK) while the descriptors
of the blob-based features (e.g., SURF and SIFT) are based on local gradient. The use of computer
vision-based algorithms has not been widely investigated with SAR data except for the task of image
registration [33,34].

This research aims to improve the accuracy of offset estimation using computer vision techniques,
and integrate the PSI, MAI, and offset tracking results to monitor a complex and vegetated landslide
through X-band CRs. This allows us to overcome or mitigate the limitations of some methods.
PSI is limited only to 1D LOS displacement detection and an upper limit for velocity estimation.
Non-LOS displacements are not also retrievable by PSI, in such case; MAI could be considered as an
alternative technique to overcome this limitation. High movement rate leads to phase aliasing in the
CCC-based methods and dependency of offset estimation accuracy on data pixel size and changes
in the features (e.g., geometrical distortions) are the main constraints of the ICC-based methods.
Low coherence problem in vegetated areas, leading to phase unwrapping difficulty, can be tackled by
using artificial CR.

The paper initiates with a brief presentation of the test site, the equipment installed and the
datasets, as well as some metrics for quality assessment. The method section illustrates the techniques
used in the study and some data processing tasks. The results of InSAR and offset tracking techniques
applied to the CRs are presented in the following section. Finally, the performance assessment results,
downsides and advantages of each technique are addressed in the discussion and conclusion sections.

2. Case Study and Dataset

2.1. Corvara Landslide

The case study is the active Corvara landslide, located in the Autonomous Province of
Bolzano-South Tyrol, in the Italian Alps. It is described as a slow-moving complex earth slide-earth
flow with annual displacement rates of up to 20 m [35,36] (see Figure 1c,d). The ongoing slope
deformation is in the order of a few cm/year in the toe zone, and up to tens of meters per year in the
most active track and source zones. Since the Corvara is among the most popular tourist attractions
in the Italian Alps, the area has undergone an intense tourist development. The urban settlement
has progressively increased since the late 1960s, and a dense network of facilities now serves most
of the slopes. This development has significantly increased both the wealth of the area and risk to
slope failures [37]. This landslide frequently causes damages to the national road SS 244, the ski
infrastructures, and the nearby golf course.
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Figure 1. Corvara landslide monitoring system. (a) Periodic GPS measurements (monthly); (b) Permanent 
GPS station fed by solar panel; (c) Corvara landslide extent, its movement direction and CRs locations 
corresponding to the GPS network and (d) Active landslide depletion area (close to CR58). 
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In 2013, 16 Corner Reflectors (CR) specifically designed for X-band were installed on the 
landslide and used as reference points for InSAR and sub-pixel offset tracking. Each CR was equipped 
with an antenna stand with a GPS station to take monthly (Figure 1a) and hourly (Figure 2b) 3D 
measurements. From the CRs distribution perspective over the landslide, due to the limitation in the 
number of the available CRs, the priority was dedicated to the active and semi-active part of the 
landslide with the movement directions aligned to LOS. Thereby, it was avoided installing the CRs 
on a landslide part where was not regarded as an active area (according to the GPS observations) 
with a non-LOS movement (e.g., surrounding CR58). 

GPS measurements and SAR results show different motion behaviors in terms of direction and 
velocity rate. The PSI technique was not able to track the high velocity rate CRs and was not 
considered in past processing [36]. In this work, we analyze two different motion categories (i.e., high 
and low velocity rates) both in LOS and non-LOS directions. If the displacement of a CR is higher 
than 0.5 m (within the data time span), it is of “high velocity rate”, while CR displacements less than 
0.5 m are of “low velocity rate” (see Table 1). If the azimuth displacement of a CR derived by GPS locates 
within the ±25° of the Azimuth LOS (ALOS) of the satellite (i.e., 280°), it is placed into the sub-group of 
“LOS direction”; otherwise it is labeled as non-LOS direction category. Table 1 shows the GPS 
measurements of 16 CRs corresponding to the satellite images. The high velocity rate CRs are 
processed and analyzed using offset tracking-based methods, while the low velocity rate CRs with 
displacements in the LOS alignment are processed using InSAR-based method (i.e., PSI). Since the 
CR58 displacement is less than 0.5 m according to nearly the North-South direction, it is processed 
using the MAI. The GPS data used here as ground truth for validating the results are described in [36].  
  

Figure 1. Corvara landslide monitoring system. (a) Periodic GPS measurements (monthly);
(b) Permanent GPS station fed by solar panel; (c) Corvara landslide extent, its movement direction
and CRs locations corresponding to the GPS network and (d) Active landslide depletion area (close
to CR58).

The landslide behavior is characterized such as: retrogressive at the crown and flanks of the
source areas; slightly enlarging at the sides of the accumulation area; slightly advancing at the turn of
the landslide into the main valley; and potentially advancing at the toe [38]. The Corvara landslide
has been monitored for several years with different close and far range imagery techniques such as
Unmanned Aerial Vehicle (UAVs) [39], SAR data [36] and by multi-sensors data integration [40].

2.2. Artificial Corner Reflectors

In 2013, 16 Corner Reflectors (CR) specifically designed for X-band were installed on the landslide
and used as reference points for InSAR and sub-pixel offset tracking. Each CR was equipped with an
antenna stand with a GPS station to take monthly (Figure 1a) and hourly (Figure 2b) 3D measurements.
From the CRs distribution perspective over the landslide, due to the limitation in the number of the
available CRs, the priority was dedicated to the active and semi-active part of the landslide with
the movement directions aligned to LOS. Thereby, it was avoided installing the CRs on a landslide
part where was not regarded as an active area (according to the GPS observations) with a non-LOS
movement (e.g., surrounding CR58).

GPS measurements and SAR results show different motion behaviors in terms of direction and
velocity rate. The PSI technique was not able to track the high velocity rate CRs and was not considered
in past processing [36]. In this work, we analyze two different motion categories (i.e., high and low
velocity rates) both in LOS and non-LOS directions. If the displacement of a CR is higher than 0.5 m
(within the data time span), it is of “high velocity rate”, while CR displacements less than 0.5 m are of
“low velocity rate” (see Table 1). If the azimuth displacement of a CR derived by GPS locates within
the ±25◦ of the Azimuth LOS (ALOS) of the satellite (i.e., 280◦), it is placed into the sub-group of “LOS
direction”; otherwise it is labeled as non-LOS direction category. Table 1 shows the GPS measurements
of 16 CRs corresponding to the satellite images. The high velocity rate CRs are processed and analyzed
using offset tracking-based methods, while the low velocity rate CRs with displacements in the LOS
alignment are processed using InSAR-based method (i.e., PSI). Since the CR58 displacement is less
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than 0.5 m according to nearly the North-South direction, it is processed using the MAI. The GPS data
used here as ground truth for validating the results are described in [36].
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Figure 2. The SAR response to CR13 and IRF extraction. (a) Intensity of Single Look Complex (SLC)
data in SAR geometry with the location of CRs (green crosses) and the CR13 position (green square);
(b) Zoom view of the green box containing the CR13 footprint (red square) and its corresponding IRF
(the red line refers to −3 dB value) in the range/azimuth direction (dB unit), the clutter region (the
area between yellow and the red squares); (c) Intensity peak of the CR13 in 3D and (d) Ideal IRF with
the related parameters.

Table 1. High and low velocity rate CRs including both LOS and non-LOS directions.

Velocity Rate Type Displacement
Direction CR No. Magnitude of

Displacement
Azimuth of

Displacement

High velocity rate
CRs

LOS direction
CR53 1.69 m 272◦

CR54 3.41 m 284◦

Non-LOS direction
CR51 39.95 m 171◦

CR55 46.17 m 250◦

CR56 3.57 m 167◦

Low velocity rate
CRs

LOS direction

CR4 12.5 cm 305◦

CR6 13.3 cm 303◦

CR8 32 cm 283◦

CR11 20.7 cm 298◦

CR13 39.1 cm 270◦

CR23 22.7 cm 260◦

CR25 20.1 cm 260◦

CR57 18.3 cm 265◦

CR28 39.1 cm 260◦

CR49 20.3 cm 265◦

Non-LOS direction CR58 34 cm 177◦

The 27 COSMO-SkyMed StripMap (HIMAGE) data selected are characterized by a 1.56 m × 1.94 m
range-azimuth pixel spacing in the descending orbit and cover the period of 464 days (i.e., between
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5 April 2014 and 10 August 2015). Two DEMs were available for the Corvara area: (i) SRTM DEM
(30 m) in 2000; and (ii) laser airborne DEM (2.5 m) acquired in 2006 by the autonomous Province of
Bolzano. The airborne DEM was used in the InSAR processing, because it is more recent and has a
finer resolution than SRTM DEM.

3. Methods

To estimate the CRs displacements several considerations must be considered in the InSAR
processing. To have a reliable phase unwrapping, the unmolded phase such as atmospheric
contribution must be smaller than 0.6 rad, meaning that PS pixels density must be more than
3–4 per km2, for common atmospheric conditions [41]. To take into account this PS range constraint,
especially for vegetated landslides, artificial corner reflectors can be used as PSs to fill the gap between
the PSs network. In addition to the above-mentioned limitations, the deformation phase cannot be
retrieved unambiguously when the displacement phase between two successive acquisitions goes
beyond ±π [42], which refers to the Maximum Detectable LOS Displacement (MDLD) (Equation (1)).
The MDLD of each adjacent pixel in a wrapped interferogram and during the phase unwrapping cannot
exceed λ/2 and λ/4 (less than 0.5 interferometric fringes per pixel), respectively (Equation (2)) [43,44].
Therefore, the maximum range of displacement rate can be theoretically defined either in terms of
wavelength-revisit time or in terms of wavelength-pixel size of SAR data:

∆Dmax =
λ/4

∆T/365.25
(1)

Dmax =
λ

2r
(2)

where ∆T, λ and r indicate the time interval of two successive acquisitions, the sensor wavelength
and the pixel size of the SAR image, respectively. Based on Equation (1), the theoretical MDLD rates
for TerraSAR-x with revisit time of 11 days, COSMO-SkyMed with the nominal repeat cycle of 16
days and Sentinel-1A/B with revisit of 6 days are 25.7 cm/year, 17.6 cm/year and 85.2 cm/year,
respectively. According to Equation (2), the MDLD for TerraSAR-X (pixel size: 1 m × 1 m with 1 look),
COSMO-SkyMed (pixel size: 2 m × 2 m with 1 look) and Sentinel-1A/B (pixel size 13 m × 13 m with
1 × 4 looks) will be 1.55 × 10−2, 7.75 × 10−3 and 2.1 × 10−3, respectively. The MDLD upper limit does
not consider the noise caused by the various decorrelation sources.

3.1. Data Pre-Processing

Before starting data processing, we first performed a quality assessment analysis on the CR
footprints. In fact, knowing the quality and evolution of the CR signals over the time span is useful to
interpret InSAR results. Then, we prepared the data for offset tracking processing.

3.1.1. CR Response Quality Assessment

When a SAR system response to a CR is reliable and stable (intensity and phase) in the time series,
the CR orientation (i.e., azimuth and elevation angles) has been properly aligned toward the satellite.
The Impulse Response Function (IRF) characteristic of a received signal is a significant indicator for
data quality check. If a CR has been installed optimally, the footprint of a CR on a SAR image should
show a cross-like shape and its IRF should be similar to an ideal IRF (i.e., a Sinc function, see Figure 2d).
Several parameters can determine the quality of the SAR response to a CR including: (i) the Peak
Side Lobe Ratio (PSLR) refers to the ratio between the peak elevation of the side lobe (Is) and the
peak elevation of the main lobe (Im); and (ii) the Integrated Side Lobe Ratio (ISLR) indicates the ratio
between the power in the main lobe and the total power in all the side lobes. In Figure 2d, the area
below the 3 dB intensity points in the main lobe specifies Spatial Resolution (SR) of SAR data. Table 2
lists the PSLR in range and azimuth (i.e., RPLSR and APSLR) and the ISLR for each CR extracted.
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As an example, we show the IRF and intensity value of CR13 providing the highest backscattering
signal (see Figure 2a–c). This quality check procedure helps in understanding whether the CRs have
been tilted by the landslide movement or not. If so, the CR orientation changes could considerably
influence InSAR and offset tracking results.

Table 2. CRs impulse response changes from the first and the last acquisitions. The related IRF
parameters of all CRs derived from 5 April 2014 and 8 October 2015. Backscattering (Bsc) values of the
CRs were directly extracted from the center of CRs footprints on the SLC data.

CR No.
CSK-05 April 2014 CSK-08 October 2015

Bsc RPSLR
(dB)

APSLR
(dB)

ISLR
(dB) Bsc RPSLR

(dB)
APSLR

(dB)
ISLR
(dB)

CR4 502 −11 −11.1 0.72 743 −9.9 −10.6 1.67
CR6 473 −10.8 −9.9 0.54 654 −11.1 −10 1.55
CR8 574 −10.8 −10.2 1.4 677 −10.2 −9.9 1.52
CR11 462 −10.3 −10.8 0.39 475 −9.7 −10.7 1.51
CR13 453 −10.2 −12.2 0.47 821 −10.1 −12.1 1.44
CR23 435 −10.9 −10.2 0.46 668 −10.8 −10.1 1.57
CR25 518 −9.7 11.6 1.43 631 −10.4 −11.5 0.76
CR28 443 −9.8 −11 0.48 654 −9.7 −10.6 1.6
CR49 486 −11.2 −11.2 0.5 741 −10.2 −11.1 1.46
CR51 492 −11 −11 0.53 413 −12 −9.1 1.93
CR53 426 −10.4 −10.5 1.66 831 −10.3 −11.7 1.74
CR54 512 −10.8 −12.6 1.87 671 −11.9 −16.6 −0.52
CR55 464 −11.2 −11.5 0.51 635 −10.1 −10 1.69
CR56 499 −11.1 −10.1 1.44 580 −10.1 −11.1 1.18
CR57 525 −10.1 −11.2 1.35 600 −9.8 −10.1 1.6
CR58 476 −10.2 −11.1 0.37 746 −10.1 −10.6 1.67

3.1.2. Data Pre-Processing

The data pre-processing was performed in two steps to use the intensity information of CSK
data for offset tracking processing. First, the data were calibrated into the sigma naught (i.e.,
backscatter coefficients) and then georeferenced in the UTM coordinate system. To reduce the speckle,
the Anisotropic Non-Linear Diffusion (ANLD) filter was applied to both images considering Gaussian
blur kernel variance equal to 0.5, anisotropy equal to 5, and step size equal to 100. Attention was
paid to avoid truncating high intensity values of the image pixels to a fixed value in the calibration
step. Pixels with a high sigma naught are truncated to 5 in SARscape software [45]. If that happens,
the CR footprints will have several pixels with identical values (i.e., 5) that affect offset estimation at
the sub-pixel level.

3.2. Methodology

In this paper, the low velocity rate CRs corresponding to displacements in the MDLD range
were processed using the PSI and MAI (only CR58) techniques over the time series. The high velocity
rate CRs having displacements beyond the MDLD range were processed by offset tracking-based
techniques. To investigate the performance of different offset tracking techniques several matching
algorithms (i.e., area and feature-based matching methods) were applied to one CSK pair according to
the first and last acquisition dates. This aims to estimate the CRs offsets between these two SAR images.

The area-based matching algorithms investigated in this study are (1) the Phase Correlation
(PC); (2) the Modified PC (MPC) implemented by ImGRAFT [46] and COSI-Corr [47,48], respectively;
(3) the Orientation Correlation (OC) implemented by ImGRAFT and CIAS [49,50], concurrently;
and (4) the NCC and Statistical Correlation (SC) implemented by CIAS and COSI-Corr. In addition,
the feature-based matching algorithms taken from computer vision are as follows: (1) BRISK (FREAK
as descriptor); (2) HARRIS; (3) MEIGEN; (4) FAST; (5) SURF; (6) the combination of BRISK, HARRIS
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and MEIGEN detectors with SURF as a descriptor. All feature-based matching algorithms were
implemented in MATLAB [51]. Although OC is practically a feature-based algorithm, we put it in
the area-based matching category, because it uses a correlation operator for matching and a moving
window-based approach. The methodology flowchart is divided into two branches according to the
landslide velocity rate and the related methods for estimating it (Figure 3).Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 31 
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Figure 3. Methodological flowchart including InSAR-based and offset tracking-based techniques in
addition to the validation. Comb. refers to the combination of the corner-based feature detection
functions (i.e., BRISK, HARRIS and MEIGEN) with the SURF descriptor.

The principle of template matching-based methods of area-based algorithms relies on a predefined
template with a given window size that is moved within the search window area to find the highest
similarity to match a feature. The template matching-based estimator principle is illustrated in Figure 4.
In the following, the theory behind each method that used in this manuscript and some implementation
details related to the data processing are briefly described.

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 31 

 

 
Figure 3. Methodological flowchart including InSAR-based and offset tracking-based techniques in 
addition to the validation. Comb. refers to the combination of the corner-based feature detection 
functions (i.e., BRISK, HARRIS and MEIGEN) with the SURF descriptor. 

The principle of template matching-based methods of area-based algorithms relies on a 
predefined template with a given window size that is moved within the search window area to find 
the highest similarity to match a feature. The template matching-based estimator principle is 
illustrated in Figure 4. In the following, the theory behind each method that used in this manuscript 
and some implementation details related to the data processing are briefly described.  

 
Figure 4. Principle of a template matching-based estimator. (a) First acquisition of the geocoded CSK 
data; (b) a selected template including the distinctive CR footprint; (c) search within the moving 
window on the image with a given step and (d) a typical example of CC values using NCC (vertical 
axis represents the correlation coefficient values). 

3.3. InSAR Techniques (Phase-Based Estimation) 

3.3.1. Permanent Scatterers Interferometry (PSI) 

To overcome the decorrelation problem due to the vegetation observed on the Corvara landslide, 
the PSI technique has been applied to the installed CRs. The main goal of PSI processing is the 
extraction of the phase displacement component without any other residual phase components 
especially the noise. Figure 5 shows the SAR data pairs combination and connection graph with 27 
CSK images as well as the rainfall data taken from the Piz la Ila station. 

Figure 4. Principle of a template matching-based estimator. (a) First acquisition of the geocoded
CSK data; (b) a selected template including the distinctive CR footprint; (c) search within the moving
window on the image with a given step and (d) a typical example of CC values using NCC (vertical
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3.3. InSAR Techniques (Phase-Based Estimation)

3.3.1. Permanent Scatterers Interferometry (PSI)

To overcome the decorrelation problem due to the vegetation observed on the Corvara landslide,
the PSI technique has been applied to the installed CRs. The main goal of PSI processing is the extraction
of the phase displacement component without any other residual phase components especially the
noise. Figure 5 shows the SAR data pairs combination and connection graph with 27 CSK images as
well as the rainfall data taken from the Piz la Ila station.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 31 
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The master image is selected based on the highest stack coherence (γm) according to the following
equation [42] adopted for the CSK to maximizes the sum correlation of all the interferograms:

γm =
1
K

K

∑
K=0

g
(

Bk,m
⊥ , 5000

)
× g
(

Tk,m, 1.5
)
× g
(

f k,m
dc , 1260

)
(3)

where

g(x, c) =

{
1− |x|/c i f |x| < c
0 otherwise

(4)

with Bk, m
⊥ as perpendicular baseline between images m and k at the center of images, Tk,m temporal

baseline (in years), and f k,m
dc Doppler baseline. Since the time span of the dataset is nearly less than one

and a half years, we consider 1.5 years as an upper limit for the temporal baseline. The master and
slaves chosen according to Equation (3). The minimum and maximum perpendicular baselines are of
42 m and 976 m, respectively to the master image, which are smaller than the critical baseline.

The PSI processing [4] was run with the SARscape software following five steps: (1) single master
connection network creation; (2) images co-registration, interferogram generation and flattening;
(3) first inversion; (4) second inversion and (5) displacement geocoding. First, all slaves are co-registered
to the master image with an oversampling factor of 4 in range to avoid aliasing. None of Doppler
separation of each slave and master was beyond the critical fdc, hence, no Doppler filtering was applied.
Since the perpendicular baselines of all pairs are much lower than the critical baseline (45% of the
critical baseline), the spatial decorrelation is very limited. No spectral filtering is applied in order to
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keep the data at the highest resolution possible and increasing pixel probability to be dominated by
one scatterer [5]. Initial PS pixels selection was performed by using the ratio of the standard deviation
to its intensity average, known as the amplitude dispersion index (DA). In the first inversion step, the
residual height and displacement velocity were obtained by considering the reliability of phase history
of selected PS pixels using the linear model. The phase offset retrieved from the interferograms was
removed using the highest coherent pixel selected within a predefined area (5 sqkm) as a reference
point. The second inversion estimated the atmospheric phase components by using the previous model
and the second linear model to fit the final displacement after removing the atmospheric phase. Low
and high band pass filtering with window sizes of 1000 and 365 (days) were then applied to remove
the spatial and temporal distributions of the atmospheric variations.

In the validation step, the GPS measurements have been projected into the LOS direction to
be compared with PSI results. The sensitivity decomposition can be obtained using unit vector,
as a function of range and azimuth changes for LOS (cross-track) [52] and along-track deformation,
as follows:

UCross track(LOS) = [Uu, Un, Ue]
T [cos(θinc), sin(θinc). sin(αh), − sin(θinc). cos(αh)] (5)

UAlong track = [0, Un, Ue]
T [0, − cos(αh), − sin(αh)] (6)

The sensitivity decomposition of LOS deformation obtained by substituting θinc and αh in Equation
(5), is [0.697,−0.185, 0.692][Uu, Un, Ue]

T .

3.3.2. Multi-Aperture Interferometry (MAI)

MAI is an advanced InSAR technique based on the split-beam of InSAR processing using a
modification of the Doppler centroid into forward (ϕ f ) and backward (ϕb) looking interferograms [20].
The resultant phase difference between two SAR pairs can be used for estimating a long-track
displacement. The MAI phase (Equation (7)) and its accuracy (Equation (8)) are defined as:

ϕMAI = ϕ f − ϕb =
4πn

l
∆r (7)

σMAI =
4πn

l
σ∆r (8)

where l is the length of the antenna, n is a normalized squint (fraction of the full aperture width), σ∆r and
σMAI are the standard deviations of the phase and displacement measurements, respectively [20,21].
Since the movement direction of the CR58 is approximately aligned to the azimuthal direction (nearly
N–S) with a magnitude of about 34 cm, for reducing the computational load of the data processing,
MAI was applied to half of the SAR data over the full time series. Moreover, different multi-looking
factors (4 × 4, 16 × 16 and 64 × 64) and n parameters (i.e., 1/2 and 1/4) were tested.

3.4. Intensity-Based Estimation

3.4.1. Offset Tracking (Area-Based)-Frequency and Spatial Domains

Phase Correlation (PC)

Image matching can be performed in the frequency domain referring to phase correlation.
Let f 1(x,y) and f 2(x,y) be two signals with the corresponding matching window of the first and
second images at the time of t1 and t2. The offset presented (∆x and ∆y) in the second image (f 2) is
defined by

f2(x, y) = f1(x− ∆x, y− ∆y) (9)
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By taking the Fourier, the normalized phase correlation (known as the cross-power spectrum) is
as follows:

CC(u, v) =
F2(u, v)F1(u, v)∗∣∣F2(u, v)F1(u, v)∗

∣∣ = e−i(u∆x+v∆y) (10)

where F1 and F2 are FFT of f 1 and f 2, and * indicates the complex conjugate. Two PC versions were
applied to the intensity-based SAR images: (i) the standard PC; and (ii) a modified version of PC (MPC).
MPC minimizes the weighted residual matrix between the computed normalized cross-spectrum and
the theoretical one to both reach more flexibility on the frequency weighting and to solve the phase
wrapping ambiguity. It uses an iterative process (re-computing times of frequency mask adaptively)
to increase the robustness and accuracy, and frequency masking to obtain a bias-free correlation [47].
The robustness iteration and mask threshold parameters are firstly set to 2 and 0.9, respectively.
To investigate the role of the robustness iteration parameter in accuracy improvement of the offset
estimation, its value is then increased to 4 by a resampling process.

Orientation Correlation (OC)

OC is a template-matching algorithm in the featured-based matching category and relies on
orientation of image intensity gradients [53]. After indexing images using (x,y), where x and y are
integers, two images f1 and f2 are matched. The Orientation Intensity Of Gradient (OIOG) of the
images f1 and f2 are built up according to [53]:

f1(x, y) = sgn
(

∂ f1(x, y)
∂x

+ i
∂ f1(x, y)

∂y

)
(11)

f2(x, y) = sgn
(

∂ f2(x, y)
∂x

+ i
∂ f2(x, y)

∂y

)
(12)

sgn(x) =

{
0 i f |x| = 0
x
|x| otherwise (13)

sgn(x) and i indicate the sign function and complex imaginary unit, respectively. The orientation
images are then matched using inverse FFT-based correlation. Since OIOG on the images has no
gradient (i.e., 0 + 0i) for uniform regions and is equal to 1, hence, OC is invariant to offset illumination
changes [53].

Normalized Cross Correlation (NCC)

NCC is a robust and simple method to seek for a particular pattern that has probably been
shifted in two subsequent (in time) images to find the related offset. In cross-correlation-based offset
tracking, a template with the function f2(x,y) and size of Nx × Ny is moved across an image with the
function f1(x, y) and size of Mx ×My by u step in x-direction and v step in y-direction pixel by pixel.
All cross-correlation coefficients are stored in the correlation matrix as follows:

CC(u, v) =
∑x,y

(
f (x, y)− f u,v

)(
t(x− u, y− v)− t

)√
∑x,y

(
f (x, y)− f u,v

)2(
t(x− u, y− v)− t

)2
(14)

where u ∈ {0, 1, 2, . . . , Mx − Nx}, v ∈
{

0, 1, 2, . . . , My − Ny
}

, and f u,v and t indicate the average
value of the search f1(x, y) and f2(x, y) template windows shifting with (u,v) steps. Computation of
Equation (14), especially for a large image, is intensive and needs a calculation in order of (Nx × Ny

) × (Mx − Nx) × (My − Ny) [54]. For instance, the computational load for a NCC calculation with
a template and search windows size of 64 × 64 and 128 × 128 pixels, respectively, is more than 106

operations. NCC algorithm was applied to one SAR pair using CIAS and COSI-Corr. SC in COSI-Corr
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uses the statistical approach based on the cross correlation. To evaluate the effect of using different
templates and search windows on the accuracy of the offset estimation, several windows were defined
based on an initial guess of the CRs displacements (i.e., with 64 × 64, 32 × 32 and 16 × 16 search
windows, 16 × 16 and 8 × 8 template windows and according to 2, 4 and 8 pixels during the moving
window step). This procedure is used for each area-based estimator.

3.4.2. Offset Tracking (Feature-Based)—Spatial Domain

Generally, the BRISK algorithm includes three main parts: (i) sampling pattern; (ii) orientation
compensation; and (iii) sampling pairs [27]. The features in BRISK are extracted in octave layers
and layers in-between of the image pyramid, and then the location and the scale of each feature is
acquired in the continuous domain via quadratic function fitting [27]. The BRISK descriptor uses
Hamming distance instead of Euclidean distance to match features utilizing the sum of XOR operation
between two binary descriptors [27]. HARRIS operates on the second moment matrix (auto-correlation
matrix) to detect the features using the gradient distribution in a local vicinity of a point-like target [29].
MEIGEN is a feature detector that extracts the point feature using a measure of feature dissimilarity to
quantify the changes between two images [28]. FAST detector uses comparing of pixels where those
have only been located on a circle of fixed radius around the point (i.e., 16 pixels) to consider the
object as a corner candidate [30]. SURF detector considers integral images for image convolutions
and Fast-Hessian matrix. The SURF descriptor is based on dividing the neighborhood region of each
feature into sub-square regions (i.e., 4 × 4) and then calculating the response of a 2-dimenssions Haar
wavelet for each sub-region [31]. FREAK, as a binary descriptor, was also used by the BRISK detector
for describing the detected BRISK-based features. FREAK is a cascade of binary strings computed
by efficiently comparing image intensities over a retinal sampling pattern [55]. To utilize the high
capability of SURF in localization, four corner-based detectors (i.e., BRISK, HARRIS, MEIGEN FAST)
were combined with the SURF descriptor in the feature matching step. In this way, the improvement
potential of the offset estimation accuracy could be investigated and compared with the previous
status (i.e., the corner-based algorithms as either detector or descriptor). The set of parameters for the
feature detection function were presented in Table 3.

Table 3. Set of parameters used for the processing of the feature detection functions and descriptors.

Parameters BRISK HARRIS MEIGEN FAST SURF

Minimum intensity * 0.2 - - - 0.2
Minimum quality 0.1 0.01 0.01 0.1 -

Gaussian filter size 5 5 - -
Number of octaves 4 - - - 4
Number of scale ** - - - - 4

* Minimum intensity difference between corner and surrounding region. ** Number of scale levels per octave.

4. Results

4.1. InSAR Results

PSI and MAI Results

The PSI accumulative displacement is represented in Figure 6. In the plots, the GPS measurements
are projected to the LOS for the PSI results and to the satellite azimuth for the MAI results using
Equations (5) and (6), respectively. As GPS measurements were not acquired exactly at the same
time (i.e., there were few days of difference) that the CSK acquisitions, the GPS measurements were
approximated by a linear curve to make them comparable with the PSI results. The goodness of
fit parameter (i.e., the R-square) for each fitted line is reported in Table 4. Figure 6 shows that the
deviation of the PSI results from the GPS line varies for each CR. CR6, 23 and 57 present a variable
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agreement, CR4, 13, 28, 25 and 49 have a moderate agreement, and CR8 and 11 have a good agreement
with the GPS measurements.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 31 
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Table 4. InSAR results summary in terms of: Amplitude Dispersion index (DA = σ/µ), Multitemporal
coherence (Mc), Total Displacement of PSI and GPS measurements (TDPSI and TDGPS), Std of the
PSI measurements and Root Mean Square Error (RMSETD) values between GPS and PSI and MAI
measurements. VR refers to the percentage ratio of GPS and PSI velocities and R2 indicates R-squared
values of the linear curve fitting to the GPS measurements (in Figure 6).

CR
No. Da Mc Azimuth. TDPSI

(cm)
TDGPS

(cm)
StdPSI
(cm)

RMSEd
(cm)

VPSI
(cm/year)

VGPS
(cm/year)

R2

(GPS)

4 0.12 0.61 305◦ 12.4 12.5 3.87 1.04 9.20 9.58 0.98
6 0.06 0.62 303◦ 11.8 13.3 3.75 1.62 8.83 10.77 0.97
8 0.13 0.56 283◦ 31.7 32 2.15 0.85 23.55 23.89 0.99

11 0.08 0.62 298◦ 20 20.7 2.20 0.50 15.45 15.9 0.96
13 0.19 0.57 270◦ 37.5 39.1 4.00 4.07 27.84 29.97 0.98
28 0.12 0.53 260◦ 44.8 39.1 6.00 2.68 28 30.03 0.96
49 0.21 0.51 265◦ 21.2 20.3 6.68 1.83 16.46 15.67 0.97
25 0.12 0.56 265◦ 20.3 20.1 6.23 2.47 17.74 16.21 0.96
23 0.19 0.52 260◦ 20.9 22.7 6.66 4.28 19.14 17.45 0.96
57 0.11 0.58 265◦ 19.5 18.3 5.99 3.16 14.50 14.15 0.89

58 * 0.14 - 177◦ 29 34 4.1 3.2 19 23.1 -

* The displacement of CR58 is derived by MAI. The MAI and GPS measurements for CR58 are in the satellite
azimuth geometry.

The PSI and MAI results (including comparison of the velocity rates between PS, MAI and GPS,
and accuracy assessment) are presented in Table 4. The Multi-temporal coherence (Mc) parameter
shows how well a CR displacement trend fits with the linear model that was already selected for PSI
processing. More Mc is close to 1 value, more the related PSI results fit the linear model. According
to Table 4, CR8 and 11 presented the lowest Standard deviation (Std) and RMSE among the other
CRs, and CR28, 49, 25, 23 and 57 (which are in the most active part of the landslide with different
displacements in azimuth with respect to the LOS) presented the highest Std and RMS. The CR6 and
CR28 provided the minimum (8 cm/year) and maximum (28 cm/year) velocity rates, respectively.
The displacement of CR58 was the only one derived by MAI and the displacements of the high velocity
rate CRs cannot be estimated by MAI due to the MDLD restriction

4.2. Offset Tracking Results

4.2.1. Area-Based Matching Results

The displacements of the high velocity rate CRs were extracted by the offset tracking estimators.
The displacements maps and the corresponding SNR are shown in Figure 7. The CRs offsets extracted
by each estimator at the center of each CRs footprint (red points). The 2-dimension offset (dx and dy)
and SNR values for each CRs are provided in Table 5.

According to Table 5, the best-offset estimations are obtained by the PC (for CR53, 51 and 58) and
the OC (for CR54, 56 and 55) with respect to the GPS measurements. As OC results derived from CIAS
and ImGRAFT are similar, only OC result obtained by ImGRAFT are presented.

The accuracy assessment of the offset tracking results is given in Table 6. The error of the extracted
offsets in x (i.e., %Px = (dxGPS − dxestimator)/2 × 100) and y (i.e., %Py = (dyGPS − dyestimator)/2 × 100)
directions are given in terms of the percentage of the pixel size of the image (i.e., 2 m). For instance,
%Px of %0, %50 and %100 indicate a correct estimation, one and a half pixel and one pixel size. The
summation of x-y accuracy (i.e., SPxy = %Px + %Py) is an index that shows the performance of each
estimator with respect to its counterparts. A lower index (i.e., lower error) means that a higher accuracy
has been achieved by the related estimator in x and y directions.
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Figure 7. Displacement maps of the CRs. The offsets derived by the offset tracking estimators
are superimposed on the hill-shaded DEM of the Corvara. (a) SC displacements; (b) correlation
coefficients (SNR) of SC measurements; (c) NCC displacements; (d) correlation coefficients (SNR) of
NCC measurements; (e) PC displacements; (f) SNR of PC measurements; (g) MPC displacements; (h)
SNR of MPC measurements: (i) OC displacements; and (j) SNR of OC measurements.
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Table 5. Comparison of dx and dy offsets (in meter) with the related SNR for four area-based offset tracking and OC algorithms.

CR No.
GPS SC NCC MPC OC PC

dx dy dx dy SNR dx dy SNR dx dy SNR dx dy SNR dx dy SNR

53 1.6 0.3 0.3 0.2 0.89 0.2 0.3 0.96 0.5 0.06 0.99 0.5 1.2 0.79 2.06 0.16 0.47
54 3.2 1.1 2.4 1.3 0.87 1.2 2.7 0.92 2.4 0.6 0.99 2.2 1.2 0.77 3.02 2.8 0.41
56 0.7 3.4 2.2 3.7 0.92 2.2 3.7 0.98 2.1 3.7 0.98 2.2 3.7 0.96 1.9 4 0.7
51 6.1 39.4 7 39.3 0.78 - - - 6.8 39.5 0.78 7 39.2 7.9 6.12 39.9 0.5
55 40 14 40.7 14.8 0.8 40.7 14.7 0.85 40.7 14.4 0.97 40.2 14.2 0.81 39.7 15.8 0.41
58 0.016 0.35 0.45 0.12 0.9 0.5 0.25 0.98 0.43 0.06 0.99 0.25 0 0.9 0.09 0.19 0.8

Table 6. Accuracy of the extracted offsets (i.e., %Px and %Py) in terms of the pixel size percentage. SPxy is an indicator showing the total accuracy for each CR.

CR No.
SC NCC MPC OC PC

%Px %Py SPxy %Px %Py SPxy %Px %Py SPxy %Px %Px SPxy %Px %Px SPxy

53 50 5 55 70 0 70 55 12 67 55 45 100 23 7 30
54 40 95 135 95 80 175 40 25 65 50 5 55 10 85 95
56 75 15 90 75 15 90 70 15 85 65 12 77 60 30 90
51 45 5 50 - - - 35 5 40 45 10 55 1 31 32
55 35 40 75 35 35 70 35 20 55 10 10 20 14 90 104
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The accuracy obtained by the area-based matching (Table 6) shows that all estimators can extract
a sub-pixel accuracy in the estimation of displacement in the x and y directions in most cases. Based on
SPxy index, OC and PC presented the absolute highest accuracy among other estimators (i.e., OC for
CR54, CR56, CR55, and PC for CR53 and CR51). Although the PC showed the highest accuracy for
CR53 and CR51, MPC has generally better performance than PC for all CRs. Using a higher robustness
iteration parameter (i.e., 4) and applying the resampling process, simultaneously, we observed a
small increase of accuracy in the MPC results. Both the NCC-based estimators (i.e., SC by COSI-Corr
and NCC by CIAS) yielded similar results with a relative superiority of SC. Since both use the NCC
function to estimate the offset, these results suggest differences in their algorithm implementation.
For the CR51, NCC was not able to estimate the displacement.

4.2.2. Feature-Based Matching Results

The results of the CRs offsets derived by the feature-based matching algorithms with respect to
the GPS measurements are presented in Table 7. The best-offset estimations are obtained by: the BRISK
for CR53, the HARRIS for CR54, the BRISK_S for CR54, the MEIGEN and MEIGEN_S for CR58, and,
the HARRIS and MEIGEN (with SURF descriptor as well) for CR51 and 55 (see Table 7).

The corner-based detectors were completely able to find all CRs on the images (except using
FAST for CR53, 51 and 58). After running the corner and blob-based algorithms on the SAR data, all
corner-based detectors (except FAST for CR53, 51 and 58) could detect all the CRs positions properly
(e.g., BRISK in Figure 8a), whereas the blob-based detector (i.e., SURF) was not able to detect none of
the CRs positions (Figure 8b).
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Figure 8. CRs detection. The high velocity rate CRs detected by (a) BRISK function as corner-based
feature detector and (b) SURF function as blob-based feature detector. The detected features of both
algorithms were superimposed on the SAR data in 5 April 2014 (only for the high velocity rate CRs
region).

After finding the desired features (CRs), they have matched by the relevent descripors.
For example, the CRs extrected by BRISK detector in Figure 8a have been matched using the FREAK
descriptor to the pair of SAR data (see Figure 9). Random sample consensus (RANSAC) [56] was used to
only keep the inlier matched connections and remove the outliers when the features matched wrongly.

The offset accuracies of the feature-based algorithms are shown in Table 8. Based on SPxy index,
BRISK, HARRIS, MEIGEN and their combination with SURF presented the absolute highest accuracy.
HARRIS, BRISK and MEIGEN generally presented more accurate results, respectively, and the FAST
showed the worst accuracy.
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Table 7. The dx and dy offsets (in meter) for four corner-based feature matching algorithms and the combination of BRISK with FREAK, and HARRIS, MEIGEN and
FAST with SURF.

CR No.
GPS BRISK HARRIS MEIGEN FAST BRISK_S HARRIS_S MEIGEN_S

dx dy dx dy dx dy dx dy dx dy dx dy dx dy dx dy

53 1.6 0.3 1.3 0.4 0.9 0 1.14 0.2 - - 3.06 0.4 0.9 0 1.14 0.2
54 3.2 1.1 2.4 2.8 2.6 1.4 2.4 1.4 6 6 4.8 1.6 2.6 1.4 2.4 1.4
56 0.7 3.4 2.0 3.6 2.4 3.8 2.2 3.6 0 4 0.8 3.6 2.4 3.8 2.2 3.6
51 6.1 39.4 7.4 38.0 7 39.4 7 39.4 - - 9 37 7 39.4 7 39.4
55 40 14 37.4 14.6 41 14.8 41 14.8 36 14 37.4 14.6 41 14.8 41 14.8
58 0.016 0.35 0.4 0.9 0.8 0 0.8 0.04 - - 0.4 0.86 0.8 0 0.8 0.04

Table 8. Extracted offsets accuracy (i.e., %Px and %Py) in terms of pixel size percentage. SPxy is an indicator showing the total accuracy for each CR.

CR No.
BRISK HARRIS MEIGEN FAST BRISK_S HARRIS_S MEIGEN_S

%Px %Py SPxy %Px %Py SPxy %Px %Py SPxy %Px %Px SPxy %Px %Px SPxy %Px %Px SPxy %Px %Px SPxy

53 15 4 19 35 16 51 23 6 29 - - - 73 4 77 35 16 51 23 6 29
54 40 82 122 30 12 42 40 12 52 140 242 382 80 22 102 30 12 42 40 12 52
56 65 6 71 85 16 101 75 6 81 35 26 61 5 6 11 85 16 101 75 6 81
51 65 70 135 44 0 44 44 0 44 - - - 145 120 265 44 0 44 45 0 44
55 130 30 160 50 40 90 50 40 90 200 0 200 130 30 160 50 40 90 50 40 90
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5. Discussion

5.1. InSAR

5.1.1. Non-Linearity Effect in PSI

According to the CR quality assessment results, we observed that the footprints of the CR13
(Figure 2b) and CR58 (Figure 4c) do not correspond to a cross-like shape, meaning that their IRFs
are not the ideal ones (as presented in Figure 2d). A comparison of the RPSLR, APSLR and ISLR
parameters between the first and last acquisitions (Table 2) clearly shows variations of the values.
These changes indicate that CRs did not keep the optimal orientation during the data acquisition time
span. This problem has probably occurred due to the landslide movement tilting the CRs. The tilts led
to un-correlated signal in the clutter region (i.e., the grass surrounding the CRs) and induced a phase
error. The probability density function (pdf ) (Equation (15)) of phase error (ϕe) (Equation (16)) for a
Point Scatterer (PS) shows that the amplitude of the phase error depends on the Signal to Clutter Ratio
(SCR) (Equation (17)) [57]:

pd f (ϕ) =

√
SCR . |Cos(ϕ)|√

π
. eSCR.Sin2(ϕ) (15)

ϕe =
1√

2.SCR
(16)

SCR =
σT

〈σC〉
=

σT

〈σ◦〉A (17)

where σT , σC, σ
◦

and A indicate SCR of PS, average of SCR clutter, sigma naught and surface around
the PS, respectively [58]. Equations (15) and (16) imply that by increasing the SCR the width of the pdf
of the phase error narrows and the phase error decreases.

Some considerations are also inferred by investigating the PSI results accuracy assessment of
each CR (Table 4). DA of all CRs have values smaller than 0.25 leading to a high coherence of the
SAR signals that indicates that CR backscattering values allow them to be considered as PS despite
the accrued tilting. Mc values vary between 0.51 (the lowest for CR57) and 0.62 (the highest for the
CR6 and CR11), which implies a deviation of CRs motion type from the linear behavior. The GPS
measurements showed a not-steady status and some irregular patterns (i.e., sudden vertical changes
for some given time) in the CRs movements. The vertical changes of CR6 and CR28 (measured by GPS)
are here represented as examples of non-linear and linear CRs behaviors (see Figure 10). The effect of
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this non-linearity can be observed in PSI results. If we compare the cumulative displacements of CR28
with CR6 (Figure 6), CR28 shows clearly a better agreement than CR6 with the GPS line.
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Figure 10. Linear and non-linearity behaviors of CRs. Elevation changes of CR28 and CR6 are derived
by the GPS measurements.

These sudden and irregular changes are mainly related to the landslide movement itself probably
trigged by specific meteorological conditions. Since the conventional PSI technique is based on a
predefined linear model, the effect of non-linearity appears as a bias in the precision assessment step
(e.g., high RMSE value). Different quadratic, cubic and stepwise models can be used as pre-defined
models to mitigate the effect of non-linearity. However, adapting a function that perfectly represents the
motion type of natural phenomena (e.g., landslide) is not straightforward, due to their unpredictability
and complexity. Therefore, non-predefined model-based techniques, which relies on spatial-correlation
filtering, turn out more appropriate for monitoring complex natural terrain [5].

While deformation information derived by the PSI technique is limited to LOS direction,
an increase of the uncertainty is expected for non-LOS displacements. However, a meaningful trend is
generally observed by assessing the Std of PSI results and azimuth displacements of each CR (Table 4).
The Std and RMSE decrease at the CRs with the displacement azimuth close to LOS in comparison
to other CRs. Since the azimuth displacement of CR8 (i.e., 283◦) is very close to the azimuth of LOS
(i.e., 280◦), we assume that the Std of its measurement equals LOS precision (corresponding to 3.17 cm
displacement). Therefore, the precision of the vertical and horizontal displacements was calculated
using Equation (5) based on this assumption (Figure 11). The Std values increase (i.e., decrease in
precision) by getting away from the LOS direction shown on the circle in Figure 11c.
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Figure 11. Sensitivity analysis of the CRs displacements. (a) Azimuth angles of CRs displacements
(the low velocity rate category) with the vectors of the LOS and heading of the satellite; (b) Precision of
CRs displacements in LOS direction for the vertical and horizontal displacements in the Zero-Doppler
plane and (c) Precision of the CRs displacement measurements in the East and North plane.
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Another key factor that could potentially lead to a bias in the GPS measurements, which in turn
increases Std values in Table 4 is CR tilting. Since the phase center variation (PCV) of GPS antenna is
computed in the horizontal position, any slight changes (e.g., tilting) in the antenna statues causes the
PCV estimation are not valid anymore and the measurements are biased corresponding to the degree
of the antenna tilting.

With respect to the InSAR-PSI results, a lower LOS Std for C-band CR displacement (i.e., 5 mm)
has been reported with a related sensitivity analysis for urban areas [59] [60]. Several main reasons can
justify the higher Std values of our results including lack of an optimal orientation of the CRs and the
errors propagated in the measurement caused by the non-linearity behavior of CR motion type installed
in the natural terrain. In summary, many error sources can contribute to PSI measurements leading
to the increase of Std and RMSE. They can be categorized into three main categories: (i) CR-related
error sources such as manufacturing, optimal size, and CR orientation; (ii) GPS measurement error
(in the PCV computation due to the CRs tilting); (iii) performance of the used InSAR algorithm for the
intended application (i.e., predefined model-based or non-model-based); and (iv) other external noise
(e.g., atmosphere).

5.1.2. MAI Challenges and Limitations

The precision of the MAI phase is a function of n (normalized squint) in Equation (8) and MAI
phase is determined by the following equation [61]:

σMAI ≈
1√

2NL.MAI

√
1− γ2

γ
(18)

γ =
γ f + γb

2
(19)

NL.MAI = Na.Nr.(Bs.PRF).(Bc. fs).Ws (20)

where Nl and γ refer to the effective number of looks and total correlation (forward γ f and backward
γb), respectively. The NL.MAI is determined by the system parameters: the multi-looking factor in
azimuth (Na) and range (Nr), the chirp bandwidth (Bc), the sub-aperture Doppler bandwidth (Bs), the
sampling frequency (fs), the pulse repetition frequency (PRF) and the noise reduction factor by an
adaptive filtering (Ws) [61].

According to Equations (8) and (18), the MAI phase precision can be improved by increasing
n and NL.MAI When we increased Na and Nr (i.e., 4 × 4, 8 × 8 and 16 × 16) the coherence
considerably deceased. As CRs represent clusters of coherent pixel, surrounded by low coherence ones
(i.e., vegetation), increasing the multi-looking factor spatially averages the coherence values decreasing
the coherence. Therefore, this limitation does not make it possible to increase the MAI phase precision
by increasing the multi-looking factor. Regarding increasing the “n” parameter, an increase of “n” did
not improve the MAI results in terms of displacement precision. Since the satellite observes the CR
as a point-like target, at least within a quite wide range of angles, it does not matter how much the
separation width of the aperture is, in any case the CR will be viewed by satellite as a point target
depart from any change in the squint angle. In the high velocity rate CRs category, only the CR58
displacement (about 34 cm) was in the range of MAI maximum detectable displacement and other
CRs experienced a displacement of more than one meter in the time span. As the CR58 displacement
azimuth (i.e., 177◦) was nearly along the satellite azimuth (i.e., 190◦), the displacement accuracy
derived by the MAI technique provided higher accuracy (i.e., 2.5%-pixel size) than with offset tracking
techniques (see Table 9).

Although MAI measurement precision up to approximately 1% of the azimuth resolution has
been reported [61] in a high coherent region and applying a high multi-looking factor, the restriction
of multi-looking factor (leading to a decrease in coherency) does not improve the precision for the
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CR displacement. Despite this limitation, the estimated displacement using the MAI technique
outperformed the offset-based techniques in the azimuth direction.

A comparison of ADEM precision (i.e., CCC, ICC, SD) in SAR domain is provided in the following.
The precision equations of the coherent (CCC) [22] and incoherent (ICC) [62] and spectral diversity
(SD) [63] are as follows:

σCCC =

√
3

2N

√
1− γ2

πγ
(21)

σICC =

√
3

10N

√
2 + 5γ2 − 7γ4

πγ2 (22)

σSD =
1

2
√

2
Bc

Bc − Bs

√
Bc

bs

1√
N

√
1− γ2

πγ
(23)

where γ, N, Bc and Bs refers to coherence, independent samples, bandwidth, and sub-bandwidth,
respectively. Therefore, by assuming γ→1, the variance comparison ratio shows that of σ2

ICC is 1.8
times more than σ2

CCC
(
σ2

ICC/σ2
CCC = 9/5 = 1.8

)
[62]. It means that ICC will provide a better precision

than CCC when we have good coherence. In the same way, the accuracy ratio (σ2
SD/σ2

CCC) of SD and
CCC is equal to 1.06 and 1.15, respectively, for the bandwidth gap of 1/3 and 1/5 while measured 1.6
that means that SD outperforms ICC and both are superior to CCC [17].

5.2. Offset Tracking

5.2.1. Potentials of the Area-Based Matching Algorithms

To evaluate the performance of each estimators in details, the evolution of the footprint of each CR
and its pixel values must be investigated. For instance, the footprint of CR53 and CR55 (with related
pixel values) show the slight and drastic pixel values changes between the first and last data acquisition,
respectively (Figure 12). According to the PSLR and ISLR parameters of the CRs (Table 2), the tilts on
the CRs triggered by the landslide movement caused some changes in those parameters. The CRs
tilting have modified data pixel values leading difficulties for similarity-based or variant-sensitive
estimators to find the exact position of the signal peak for an accurate offset estimation (see Figure 12).
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Figure 12. Changes of the footprints shape and pixel values of CRs. The footprints of the CR53 and
CR55 with the corresponding pixel values on the CSK data for the first and last data acquisitions
are given.

The function behavior of each estimator of the CR footprint could be an appropriate indicator to
understand why some estimators provide more precise results than others for a given CR. Figure 13
reports three functions of the used estimators from three template matching categories (i.e., phase-based
(PC), feature-based (OC) and cross correlation-based (NCC)) depicted. The NCC response to the CRs
corresponding to stable pixels values (i.e., CR53 and CR54) between two data acquisitions is nearly
flat, whereas those with highly changing pixel values due to tilting (i.e., CR51 and CR55) have uneven
or semi-flat surface. PC response provides a single sharp peak for the nearly fixed CRs (i.e., CR53
and CR54) and multiple sharp peaks for the tilted CRs (i.e., CR51 and CR55). OC, as a feature-based
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method, seeks for a distinctive feature (the CRs footprint) using a pre-defined descriptor (i.e., OIOG).
The results show that PC and OC outperform NCC and OC is relatively superior to PC.Remote Sens. 2018, 10, x FOR PEER REVIEW  23 of 31 
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Figure 13. Estimator function trends. Behavior of the estimator functions (i.e., NCC, PC and OC) at
the CR51, 53, 54 and 55 positions. Since the range of R or SNR values of OC were small, for better
visualization the values have been multiplied by 1000.

Despite reliability and simplicity of CC-based methods, such as Normalized CC (NCC), several
downsides have been reported [64,65] . In this study, we noticed that the NCC accuracy of offset
estimation is sensitive to noise and limited to the data pixel size. In addition, changing scale, rotation
or shearing of image features lead to decrease the correlation coefficient. Some drawbacks of CC-based
matching related to the geometrical changes could also be mitigated using the generalized versions of
CC-based methods [66–68].
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5.2.2. Potential of the Feature-Based Matching Algorithms

For CR53, CR54 and CR56 that are slightly tilted (small changes in pixel values and shape)
comparing to CR51 and CR55 (drastic changes in pixel values and shape) by the landslide movement,
feature-based matching results outperformed the area-based ones. This means that the feature-based
matching algorithms (as invariant detectors/descriptors to feature deformation) managed to cope
with some degrees of the distortion caused by CR tilting. While in the case of drastic changes in pixel
values (e.g., CR51 and CR55), they were not able to remain invariant to the pixel value variations.

The comparison of the area and feature-based results in Table 10 show that the PC from the
area-based and OC from feature-based categories provided better results than feature-based algorithms
(see SPxy indexes). HARRIS and MEIGEN detectors generally provided more accurate results than
BRISK and FAST, whereas FAST had the worst performance among the all corner-based detectors.
In cases of CR54, CR51 and CR55, the HARRIS and EIGEN results were identical when combined with
the SURF descriptor. This means that in case of high pixel value changes, the detector and descriptor
combination does not affect on the results.

To evaluate the performance of the feature-based matching algorithms, some evaluation metrics
have been proposed. Ref. [69] defined the 1-accuracy and recall values of each image to assess the
matching performance. The 1-accuracy and recall refer to the number of false matches relative to the
total number of matches and the number of correctly matched regions with respect to the number
of corresponding regions between two images of the same scene, respectively. According to [70],
five different metrics are proposed to evaluate the detector and descriptor performance: putative
match ratio, accuracy, matching score, recall and entropy. Since we used only one pair of the SAR
images and the intended features on the images were only 16 CRs, we compared the achieved offsets
with GPS measurements as Ground Control Point (GCP) to validate the performance of each algorithm.
More information concerning a quantitative and qualitative comparison of the area and feature-based
matching can be found in [71], while feature-based matching algorithms and performance comparison
are described in [69,72,73]. A summary of the advantages and disadvantages of both area and
feature-based matching are presented in Tables 11 and 12.

Finally, the velocity map of the CRs using integration of PSI, MAI, and offset tracking
displacements (using the most accurate results derived by the related algorithms) is presented in
Figure 14. The minimum 8.8 cm/year and maximum 31.6 m/year velocity rates were derived for
CR6 and CR55, respectively, by the PSI and OC techniques. Based on the velocity map provided
in Figure 14, three different geomorphological zones can be distinguished: (i) Accumulation zone
including CRs4, 6, 8, 11; (ii) track zone including CRs13 and 53; and (iii) source zone including CRs23,
25, 28, 49, 57 and 58 [38].
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Table 9. The offsets and error %P (i.e., P = (Dgps − Dest)/2 × 100) for CR58 (unit in meter). All the offsets obtained by the estimators and GPS measurements were
projected to the satellite azimuth direction using Equation (6).

InSAR Area-Based Matching Feature-Based Matching

CR No. GPS MAI SC NCC MPC OC PC BRISK HARRIS MEIGEN FAST BRISK_S HARRIS_S MEIGEN_S

58 0.34 0.29 0.19 0.2 0.13 0.043 0.2 0.95 0.13 0.17 - 0.91 0.13 0.17
%P 2.5 7.5 7 10.5 14.8 7 30.5 10.5 8.5 - 28.5 10.5 8.5

Table 10. SPxy index comparison between area and feature-based matching algorithms. Bolds values indicate higher accuracy achieved by a particular estimator for
one specific CR.

CR No.

SPxy Index

Area-Based Matching Feature-Based Matching

SC NCC MPC OC PC BRISK HARRIS MEIGEN FAST BRISK_S HARRIS_S MEIGEN_S

53 55 70 55 100 30 19 51 29 - 77 51 29
54 135 175 65 55 95 122 42 52 382 102 42 52
56 90 90 85 77 90 71 101 81 61 11 101 81
51 50 - 40 55 32 135 44 44 - 265 44 44
55 75 70 55 20 104 160 90 90 200 160 90 90
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Table 11. Advantages and disadvantages of the area and feature-based matching techniques.

Matching Methods Patch or Area-Based Featured-Based

Image domain spatial domain frequency domain frequency domain

Techniques CC NCC PC OC

Accuracy Up to sub-pixel (by interpolation) Up to sub-pixel (by interpolation) Up to sub-pixel (by over sampling) Up to sub-pixel

Function Similarity Similarity Similarity—FFT Orientation of intensity and FFT

Advantages Simple and easy computation

- Invariant to linear brightness
and contrast variations

- Not too sensitive to translation
and small rotation and
scale changes

- Less sensitive to frequency
dependent noise and
varying illumination

- Invariant to linear changes
in brightness

- Invariant to rotation

- Statistically robust
- Illumination and

scale invariant
- Fast

Shortcoming

- Biased by changes in
global brightness

- Sensitive to intensity changes
(varying Illumination)

- Sensitive to rotation, scale
changes, different illumination,
viewing angle and
temporal changes

- Flatness of peak

- Sensitive to spatial dependent noise
and illumination

- conditions

- More sensitive to local
structural than
intensity information

Table 12. Advantages and disadvantages of the feature-based matching algorithms regarding offset estimation.

Matching
Method Featured-Based

Feature style Corner-based Blob-based

Detector BRISK HARRIS MEIGEN FAST SURF

Feature type

- Point tracking
- Corners
- multi-scale detection

- Point tracking
- Corners
- Single-scale detection

- Point tracking
- Corners
- Single-scale detection

- Point tracking
- Corners
- Single-scale detection

- Blob
- Multiscale detection

Scale-Rotation Invariant-Invariant Variant-Invariant Variant (scale) Variant-Invariant Invariant-Invariant

Descriptor

- Binary-based
- Fast but Less accurate

(localization)
- - -

- Distribution-based
- Slower
- More accurate (localization)
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6. Conclusions

Although the Corvara landslide has been the subject of the previous studies [36,39], they have
faced with the intrinsic limitations of the techniques used. For example, PSI was not able to estimate
the high velocity rate and non-LOS CRs and the differential DEM (UAV-based photogrammetry)
derived from two subsequent acquisitions was only able to detect the vertical deformation limited
only to the small part of the landslide (i.e., left-down side of CR58) due to the large extend of the
landslide. In this research, these limitations have been overcome by using the integration of PSI, MAI,
and offset tracking results, allowing the estimation of the displacements of the CRs over the whole
part of the landslide.

The PSI results showed that the proper orientation and quality assessment parameters of CRs
(i.e., PSLR; ISLR and IRF) have a key role in the noise error reduction. The provided sensitivity
analysis model indicated that the uncertainty of the PSI measurements increases by deviating from the
displacements azimuth with respect to the LOS azimuth. When displacement is aligned to the satellite
azimuth, the displacement estimation is impossible (infinitive Std). Moreover, non-linearity behavior
of the CRs motion in natural terrain could propagate some errors in the final extracted displacements
when a pre-defined-based model of the PSI technique is used. In such case, non-predefined model
methods should be considered.

The MAI result obtained for CR58 demonstrated that MAI provided the best-offset estimation
among other offset-based estimators. This means that if displacement is aligned to N–S direction (nearly
satellite path), MAI provides the highest accuracy up to 2.5% of the pixel size of CSK data (i.e., 2 m).
This result could even be improved in case of having data with a higher coherence. Low coherence or
a high coherent target surrounded by low coherent surface (in our case CR surrounded by vegetation)
are the limiting factors to use higher multi-looking factors to increase MAI precision.

The accuracy of the amplitude offset tracking technique have been empirically estimated between
about 1/10 to 1/30 of the pixel size for typical SAR systems. This accuracy corresponds to 20 cm
and 6.6 cm of the pixel size of CSK data (i.e., 2 m) or 10% and 3.3% of the pixel size. The offset
accuracy varied in xy directions, achieving from 0% of the pixel size (i.e., correct estimation) using a
combination of the feature-based algorithms (e.g., MEIGEN_S for y offset of CR51) up to 1% of the
pixel size using the phase correlation (e.g., PC for x offset of CR51). According to the results, not only
the main objective of the paper was fulfilled (i.e., sub-pixel accuracy of offset estimation) but also a
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higher accuracy was obtained. The results were obtained when the random changes in pixel values
occurred by CR tilting between two data acquisitions (i.e., at the worst-case scenario). Meanwhile,
area and feature-based algorithms have been mainly developed to take into account the common
geometric distortions (e.g., scale, rotation, and translation). Therefore, in normal conditions (with
common distortions), the proposed approaches should provide more accurate and reliable results.

In general, the feature-based matching algorithms outperformed the area-based matching ones,
which are usually used for offset estimation in the SAR data domain. The modularity of the
feature-based algorithms allows us to combine each of corner and blob-based feature detection
functions and descriptors. The combination of different algorithms leads to benefits from the capability
of a given detector/descriptor (e.g., high localization accuracy of SURF descriptor) to compensate the
weakness of other one (e.g., less localization accuracy of BRISK descriptor) or vice versa.

Upon inspecting the results, the provided survey on the offset tracking techniques shows that a
single all-purpose algorithm to be able to extract offsets in all situations does not exist. Each of the
different approaches has relative advantages and drawbacks, dependent on data properties, features
and application.

In summary, although the InSAR-based techniques could provide more precise results, in cases
of low coherence, high velocity rate and non-LOS movement, the area and feature-based matching
techniques could be used as a robust alternative candidate for offset estimation.
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