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Abstract: Multitask learning (MTL) has recently provided significant performance improvements
in supervised classification of hyperspectral images (HSIs) by incorporating shared information
across multiple tasks. However, the original MTL cannot effectively exploit both local and global
structures of the HSI and the class label information is not fully used. Moreover, although the
mathematical morphology (MM) has attracted considerable interest in feature extraction of HSI,
it remains a challenging issue to sufficiently utilize multiple morphological profiles obtained by
various structuring elements (SEs). In this paper, we propose a joint sparse and low-rank MTL
method with Laplacian-like regularization (termed as sllMTL) for hyperspectral classification by
utilizing the three-dimensional morphological profiles (3D-MPs) features. The main steps of the
proposed method are twofold. First, the 3D-MPs are extracted by the 3D-opening and 3D-closing
operators. Different SEs are adopted to result in multiple 3D-MPs. Second, sllMTL is proposed
for hyperspectral classification by taking the 3D-MPs as features of different tasks. In the sllMTL,
joint sparse and low-rank structures are exploited to capture the task specificity and relatedness,
respectively. Laplacian-like regularization is also added to make full use of the label information of
training samples. Experiments on three datasets demonstrate the OA of the proposed method is at
least about 2% higher than other state-of-the-art methods with very limited training samples.

Keywords: hyperspectral image (HSI); classification; low-rank; sparse; regularization; 3D
morphological profile

1. Introduction

By simultaneously acquiring hundreds of continuous narrow spectral wavelengths for each
image pixel, hyperspectral remote sensors can generate three-dimensional (3D) hyperspectral cubes
containing rich spectral and spatial information. Thanks to the high spectral and spatial resolution,
hyperspectral images (HSIs) have opened up new avenues for the remote sensing applications,
including earth observation [1], environmental science [2], agriculture [3], mineral identification
[4], etc. Supervised classification [5–8], which aims at assigning each pixel in the HSI into an accurate
class label with representative training samples, plays an important role in those applications. However,
it still faces some challenges in the classification task. For example, a large number of labeled samples
are crucial to producing good classification results due to the Hughes phenomenon, but in reality,
it is extremely difficult even impossible to identify the labels of samples. Other difficulties, such as
the spectral signature from identical material may vary while different materials may have similar
signatures, will also give a negative effect on the classification performance.
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Much work has been carried out in the literature to address the above-mentioned dilemmas. The
first category is to design reliable classifiers, among which support vector machine (SVM) [9,10] is
one of the state-of-the-art methods. The success of SVM stems from the fact that it is robust to the
high spectral dimension by using kernel tricks. Variations of the SVM-based methods are proposed to
improve the classification performance, such as incorporating spatial information by composite kernels
(SVMCK) [11] or multiple kernels [12], combining the kernel matrices of a family of SVM classifiers
by ensemble learning [13], and the semi-supervised learning extension [14,15] by exploiting both
labeled and unlabeled samples, etc. However, the kernel tricks in the SVM require proper tuning of
parameters. Sparse representation-based classification (SRC), which is pioneered by Wright et al. [16]
for face recognition, has become another widely used hyperspectral classifier [17–25]. The SRC is
suitable for classifying the HSIs because it relies on the assumption that the spectral signatures of
hyperspectral pixels belonging to the same class approximately lie in the same low-dimensional
subspace and the unknown test sample can be sparsely represented by a linear combination of a few
atoms from the whole training dictionary. Haq et al. [26] propose a homotopy-based SRC to alleviate
the problem introduced by the high-dimensional data with too few labeled samples. The contextual
information of neighboring pixels can also be incorporated to solve the problem of lack of sufficient
training samples [18,19,22,23]. Multitask learning (MTL) [27–31], which can learn shared information
across multiple tasks, has also demonstrated to be very powerful. In [28], several complementary
features (i.e., spectral, gradient, Gabor texture and shape) are combined in a MTL fusion to enhance the
discrimination of hyperspectral pixels, while kernel joint collaborative representation with adaptive
weighted MTL is proposed in [29] to obtain desirable classification results. A SVM-based MTL method
is proposed in [31] to effectively utilize the rich information included in the extracted two-dimensional
(2D) Gabor features. Although many contributions have been carried out to improve the classification
performance of MTL, till now, existing MTL methods rarely exploit both the task specificity and
relatedness, and the label information of the training samples is also not fully utilized.

The second category is to increase the class separability by feature extraction/selection. Apart
from spectral profiles, the spatial context can be adopted to improve the classification results. Many
spatial filters have been proposed over the past few years, such as the edge-preserving filtering [5,32]
and the mathematical morphology (MM) processing [33,34], where the spatial-domain features are
extracted by edge-preserving filter or opening/closing operators. In [32], the edge-preserving filtering
is conducted on the probability maps (i.e., probability presentation of the classification maps) and the
label of a test sample is determined by maximum probability. In [5], a principal component analysis
(PCA)-based edge-preserving method is proposed to highlight the separability of pixels. This simple
yet powerful filtering approach has announced impressive results for hyperspectral classification.
The MM-based method proposed in [33,34] is termed as extended morphological profile (EMP), where
the opening and closing operators with different sizes of structuring elements (SEs) are performed on
the first several principal components. It is worth stressing that a HSI data is naturally formed as a 3D
cube consisting of a spectral dimension and two spatial dimensions. However, the above-mentioned
methods ignore the 3D nature of the HSI.

In this paper, we propose a joint sparse and low-rank MTL method with Laplacian-like
regularization (abbreviated as sllMTL) for classification of HSI by utilizing the 3D morphological
profiles (3D-MPs). The visual illustration of the proposed method is shown in Figure 1, which is
consisted of two major steps. In the feature extraction step, the 3D-MPs [35] of the HSI are obtained by
the 3D-opening and 3D-closing operators with various SEs. Each SE can produce two corresponding
3D-MPs (one is obtained by the 3D-opening and another is generated by the 3D-closing). The significant
difference between the existing 3D-MPs-based method [35] and our proposed method is that: other than
simply stacking multiple 3D-MPs together, we make full use of the 3D-MPs cubes simultaneously in a
MTL manner. In the classification step, the sllMTL is proposed to exploit the joint sparse and low-rank
structures by treating each 3D-MP as the feature of a specific task. Both sparse and low-rank constraints
are added to the representation coefficients so as to capture the task specificity and relatedness.
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A Laplacian-like regularization is also adopted to take advantage of the class label information. Finally,
the class label of the test sample can be determined by the minimal total residual.

The advantages of the proposed method lie in the following two aspects:

• 3D-MPs are adopted for feature extraction of the HSI cube. Compared to the vector/image-based
methods, we respect the 3D nature of the HSI and take the HSI cube as a whole entity to
simultaneously extract the spectral-spatial features. Different from the existing 3D-MPs-based
method, we do not simply stack multiple 3D-MPs but fully exploit the spectral-spatial feature of
each 3DMP in a novel MTL framework.

• sllMTL is proposed to simultaneously classify the 3D-MPs by taking each 3D-MP as the feature of
a specific task. Compared to the existing MTL, the proposed sllMTL can capture both specificities
and shared factors of the tasks by utilizing the sparse and low-rank constraints. Moreover, the
Laplacian-like regularization can improve the classification performance further by making full
use of the class label information.
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Figure 1. Schematic illustration of the proposed HSI classification method.

The remainder of this paper is organized as follows. Section 2 introduces two types of 3D
mathematical morphology methods (i.e., 3D-opening and 3D-closing operators) to obtain multiple
3D-MPs. Section 3 describes the proposed sllMTL for hyperspectral classification in detail. Section 4
shows the experimental results, and discussions and conclusions are drawn in Sections 5 and 6.

2. Multiple Morphological Profiles Extracted by 3D Mathematical Morphology

Although the EMP has been successfully employed in feature extraction of the HSI, it ignores
the 3D nature of the hyperspectral cube and thus cannot fully investigate the 3D spectral-spatial
dependence among pixels. In this section, 3D mathematical operators (i.e., 3D-opening and 3D-closing)
are applied for multiple morphological profiles extraction of HSI.

MM is initially proposed as a rigorous theoretic framework for analyzing the spatial relationship
of different pixels by using SEs with given shapes and sizes as input. The relationship and structural
character of the image can be captured by keeping the SEs sliding over the image. In analogy to
the 2D MM operators, the 3D extension ones learn the structural characters through the moving of
3D-SEs in the image. The major advantage of the 3D-SEs lies in that they can effectively explore the
spectral-spatial structure of the 3D images (e.g., HSI). It is noteworthy that erosion and dilation are two
basic morphological operators. Suppose the original HSI cube is represented as I ∈ Rm×n×b, where
m, n and b refer to the number of rows, columns and spectral bands, respectively, the value in the cube
I for a given coordinate (x0, y0, z0) is I(x0, y0, z0) with I(x0, y0, z0) ∈ R, B is a 3D-SE and B(x0, y0, z0)
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indicates a set of values centered at the coordinate (x0, y0, z0) of I, the 3D-erosion ε3D
B (I(x0, y0, z0))

of the cube I at the coordinate (x0, y0, z0) with the 3D-SE B is determined by the minimum value of
pixels inside B(x0, y0, z0)

ε3D
B (I(x0, y0, z0)) = I 	 B = min

(x,y,z)
(I(x, y, z) ∈ B(x0, y0, z0)) (1)

where “	” indicates the 3D-erosion operator.
The 3D-dilation δ3D

B (I(x0, y0, z0)) can be regarded as the dual operator, which switches the
minimum operator to the maximum one

δ3D
B (I(x0, y0, z0)) = I ⊕ B = max

(x,y,z)
(I(x, y, z) ∈ B(x0, y0, z0)) (2)

where “⊕” indicates the 3D-dilation operator.
The 3D-erosion can expand objects of the HSI cube that are darker than their neighborhoods, while

the 3D-dilation shrinks them, and vice versa for the objects that are brighter than their neighborhoods.
The 3D-opening and 3D-closing operators can be derived from the combination of 3D-erosion and
3D-dilation. In greater detail, the 3D-opening γ3D

B (I) is calculated by the 3D-erosion of the HSI cube I
with B followed by the 3D-dilation with B

γ3D
B (I) = I ◦ B = (I 	 B)⊕ B = δ3D

B (ε3D
B (I)) (3)

where “◦” indicates the 3D-opening operator.
Similarly, the 3D-closing φ3D

B (I) can be obtained by the 3D-dilation of the HSI cube I with B
followed by the 3D-erosion with B

φ3D
B (I) = I • B = (I ⊕ B)	 B = ε3D

B (δ3D
B (I)) (4)

where “•” indicates the 3D-closing operator.

(a) Sphere (L = 3) (b) Sphere (L = 5) (c) Sphere (L = 7)

(d) Cube (L = 3) (e) Cube (L = 5) (f) Cube (L = 7)

Figure 2. 3D-SEs examples with various shapes (e.g., cube, sphere) and sizes (e.g., side length (L) is set
to 3, 5 and 7). (a–c) are spheres with different sizes, and (d–f) are cubes with different sizes.
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The multiple 3D-MPs of I in our proposed method are generated by performing a series of
3D-opening and 3D-closing operators with different 3D-SEs. As an example, Figure 2 depicts a set
of 3D-SEs with various shapes (e.g., cube, sphere) and sizes (e.g., side length (L) is set to 3, 5 and 7).
Each 3D-SE can produce two corresponding 3D-MPs in merit of the 3D-opening and 3D-closing,
respectively.

3. Joint Sparse and Low-Rank Multitask Learning with Laplacian-Like Regularization

In this section, we propose the sllMTL method to exploit both the local and global structures of
the HSI by taking the 3D-MPs obtained from the 3D-opening and 3D-closing morphological operators
as features of multiple tasks. Both sparse and low-rank constraints are considered in the sllMTL to
capture the task specificity and relatedness. Moreover, Laplacian-like regularization is also added to
improve the classification performance by taking full advantage of the label information of training
samples. Suppose K 3D-MPs are generated by the 3D morphological operators, there are K tasks in
the sllMTL. For each task index k = 1, 2, . . . , K, represent Xk = [Xk

1 , Xk
2 , . . . , Xk

J ] as the training feature
matrix, in which Xk

j ∈ Rmk×pj , j = 1, 2, . . . , J is related to the jth class, J indicates the total number
of classes contained in the HSI, mk refers to the dimensionality of the kth task (note that no feature
reduction is performed, mk equals to the number of spectral bands b), pj denotes the number of training

samples belong to class j, and ∑J
j=1 pj = P is the total number of training samples. Given the unlabeled

test sample Y = [Y1, Y2, . . . , YK], the sllMTL method is formulated as the solution to the following
problem

min
Z

‖Z‖∗ + λ‖Z‖1,2 + βtr(ZTLZ)

s.t. Yk = XkZk, k = 1, 2, . . . , K
(5)

where Z denotes the coefficient matrix to be calculated, joint sparse and low-rank constraints are added
to Z, ‖Z‖∗ refers to the trace norm (also known as the nuclear norm, i.e., the sum of singular values
of a matrix), which can be utilized to identify the shared characters among multiple tasks, ‖Z‖1,2

indicates the row-sparse constraint to identify the task specificities, L is the Laplacian-like matrix, tr(·)
is the trace of a matrix, i.e., the sum of the elements on the main diagonal. The matrix L is generated
by the natural assumption that the coefficients Zp and Z p̃, p, p̃ = 1, 2, . . . , P from the same class are
more closer or similar than those belong to different classes. This assumption can be realized in terms
of similarity. In mathematics, a reasonable way is to minimize the following function

1
2

P
∑

p,p̃=1
‖Zp − Z p̃‖2

2Wpp̃ =
P
∑

p=1
ZpZT

p Dpp −
P
∑

p,p̃=1
ZpZT

p̃Wpp̃

= tr(ZTDZ)− tr(ZTWZ)

= tr(ZTLZ)

(6)

where D is a diagonal matrix in which Dpp = ∑P
p̃=1 Wpp̃, L is the Laplacian-like matrix obtained by

L = D −W , and Wpp̃ =

{
1 if the pth and p̃th training samples belong to the same class

0 otherwise
. To give

an intuitive explanation, Figure 3 visually shows the W used in the three HSI datasets. It should
be mentioned that the label information of the training samples are adopted to obtain the matrix
W , which can then be utilized to generate L (L = D −W) in Equation (5). Therefore, the training
samples are utilized more fully in the proposed method. Moreover, although we add a Laplacian-like
regularization in the joint sparse and low-rank multitask learning method, it cannot state that the
Laplacian-like regularization is more effective than the sparse and low-rank regularizations. Actually,
the Laplacian-like regularization is complementary to the sparse and low-rank regularizations. Note
that the usage of the low-rank and sparsity priors have achieved great success in HSI classification, we
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also use the joint sparse and low-rank regularizations (i.e., ‖Z‖∗ and ‖Z‖1,2) in the proposed method
(see Equation (5)).
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(a) Indian Pines data
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100 200 300 400 500

100

200

300

400

500

(c) Salinas data

Figure 3. The W used in (a) Indian Pines data, (b) University of Pavia data and (c) Salinas data.

To solve Equation (5), we first introduce two auxiliary matrices P and Q to make the optimization
problem in Equation (5) separable and simplify the solution procedure, in this regard, the problem in
Equation (5) can be rewritten as

min
Z,P,Q

‖P‖∗ + λ‖Q‖1,2 + βtr(PTLP)

s.t. Yk = XkZk, Zk = Qk, Zk = Pk, k = 1, 2, . . . , K
(7)

Linearized alternating direction method with Adaptive Penalty (LADMAP) [36] can be adopted
to solve the above-mentioned problem, whose augmented Lagrangian function yields

L(Z, P, Q) = ‖P‖∗ + λ‖Q‖1,2 + βtr(PTLP)

+
K
∑

k=1

{
< Mk

1 , Yk − XkZk > + < Mk
2 , Zk −Qk > + < Mk

3 , Zk − Pk >

+ µ
2

(
‖Yk − XkZk‖2

F + ‖Zk −Qk‖2
F + ‖Zk − Pk‖2

F

) } (8)

where µ > 0 is a penalty parameter, Mk
1 , Mk

2 , k = 1, 2, · · · , K are Lagrange multipliers, Zk, Pk, Qk are
the kth column of Z, P, Q, respectively, and ‖ · ‖F is the Frobenius norm obtained by the square root of

the sum of the absolute squares of matrix elements, e.g., ‖A‖F =
√

∑i ∑j |aij|2.
The variables Z, P and Q can be updated alternately by minimizing the augmented Lagrangian

function (see Equation (8)) with other variables fixed. In case the augmented Lagrangian function is
difficult to minimize with a specific variable, we will linearize the corresponding smooth component.
Specifically, the updating process is as follows.

Fix other variables, and the variable P in the (t + 1)th iteration can be updated by minimizing
L(Z(t), P, Q(t))
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P(t+1) = arg min
P
L(Z(t), P, Q(t))

= arg min
P
‖P‖∗ + βtr(PTLP) + µ

2

K
∑

k=1

{
2
µ < Mk,(t)

3 , Zk,(t) − Pk > +‖Zk,(t) − Pk‖2
F

}
= arg min

P
‖P‖∗ + βtr(PTLP) + µ

2

K
∑

k=1

{∥∥∥Zk,(t) − Pk +
Mk,(t)

3
µ

∥∥∥2

F

}
= arg min

P
‖P‖∗ + βtr(PTLP) + µ

2

∥∥∥Z(t) − P +
M(t)

3
µ

∥∥∥2

F

= arg min
P
‖PT‖∗ + βtr(PTLP) + µ

2

∥∥∥(Z(t) − P +
M(t)

3
µ

)T∥∥∥2

F

= arg min
P̃
‖P̃‖∗ + βtr(P̃LP̃T) + µ

2

∥∥∥Z(t)T − P̃ +
M(t)T

3
µ

∥∥∥2

F

(9)

where P̃ = PT.
Note that Equation (9) does not have a closed-form solution, we express the smooth component

of L(Z(t), P, Q(t)) as

q(P̃) = βtr(P̃LP̃T) +
µ

2

∥∥∥Z(t)T − P̃ +
M(t)T

3
µ

∥∥∥2

F
(10)

Inspired by the LADMAP method, minimizing L(Z(t), P, Q(t)) can be approximately substituted
by solving the following problem

P̃(t+1) ≈ arg min
P=P̃T

‖P̃‖∗+ < ∇P̃q(P̃(t)), P̃− P̃(t) > + η
2 ‖P̃− P̃(t)‖2

F

= arg min
P=P̃T

1
η ‖P̃‖∗ +

1
η < ∇P̃q(P̃(t)), P̃− P̃(t) > + 1

2‖P̃− P̃(t)‖2
F

= arg min
P=P̃T

1
η ‖P̃‖∗ +

1
2

{
2
η < ∇P̃q(P̃(t)), P̃− P̃(t) > +‖P̃− P̃(t)‖2

F

}
= arg min

P=P̃T

1
η ‖P̃‖∗ +

1
2

(∥∥∥P̃− P̃(t) + 1
η∇P̃q(P̃(t))

∥∥∥2

F

)
(11)

where q(P̃) is approximated by its linearization < ∇P̃q(P̃(t)), P̃− P̃(t) > at P̃(t) plus a proximal term
η
2 ‖P̃− P̃(t)‖2

F, and ∇P̃q(P̃(t)) denotes the gradient of q w.r.t. P̃. As long as η > 2β‖L‖2 + µ, the above
substitution is valid. Therefore, the Equation (11) has a closed-form solution formulated as

P̃(t+1) = Dµ−1

(
P̃(t) − 1

η∇P̃q(P̃(t))
)

= UDµ−1(Σ)VT

= Udiag

({(
πi − 1

µ

)
+

}
1≤i≤r̃

)
VT

(12)

where U and V are the matrices with orthogonal columns, (·)+ = max(·, 0), r̃ and πi refer to the rank
and singular values of

(
P̃(t) − 1

η∇P̃q(P̃(t))
)

, respectively, and P(t+1) = P̃(t+1)T.
Fix the others, and the variable Q in the (t + 1)th iteration can be updated by

Q(t+1) = arg min
Q
L(Z(t), P(t+1), Q)

= arg min
Q

λ
µ‖Q‖1,2 +

1
2

∥∥∥Q−
(

Z(t) +
M(t)

2
µ

)∥∥∥2

F

(13)

which has the closed-form solution represented by the row-shrinkage thresholding operator.
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Finally, fix the others and the variable Z in the (t + 1)th iteration can be updated by

Z(t+1) = arg min
Z
L(Z, P(t+1), Q(t+1))

= arg min
Z

K
∑

k=1

{
Zk,(t+1)T

(
Xk,(t+1)TXk,(t+1) + 2I

)
Zk,(t+1) − 2Zk,(t+1)T

(
Xk,(t+1)TYk,(t+1)

− Xk,(t+1)T Mk,(t)
1

µ +Qk,(t+1)−Mk,(t)
2
µ +Pk,(t+1)−Mk,(t)

3
µ

)} (14)

According to Equation (14), the kth column of Z(t+1) yields

Zk,(t+1) =
(

Xk,(t+1)TXk,(t+1) + 2I
)−1

Hk,(t+1) (15)

where Hk,(t+1) = Xk,(t+1)TYk,(t+1)− Xk,(t+1)T Mk,(t)
1

µ +Qk,(t+1)−Mk,(t)
2
µ +Pk,(t+1)−Mk,(t)

3
µ and I is an identity

matrix.
The above-mentioned equations are the major steps for updating the variables Z, P, Q. The

detailed procedure for solving the optimization problem (see Equation (5)) in the proposed sllMTL
method is summarized in Algorithm 1, in which µ is adjusted using an adaptive updating strategy [36]
for faster convergence. As long as the coefficient matrix Z is obtained, the label of the unlabeled test
sample Y can be determined by the minimal total residual

Class Y = arg min
j

rj = arg min
j

K

∑
k

∥∥∥Yk − Xk
j Zk

j

∥∥∥2

2
(16)

where Xk
j and Zk

j are associated with the jth (j = 1, 2, . . . , J) class.

Algorithm 1: LADMAP for Solving the Optimization Problem (see Equation (5)) in the Proposed
sllMTL Method

Require: The test feature matrix Y , the training feature matrix Xk, k = 1, 2, . . . , K, and the
parameters λ and β

Ensure: The solution Z and class label of the unlabeled test sample Y
1: Initialize: Z = P = Q = M2 = M3 = 0, M1 = 0, ρ = 1.1, µ = 10−6, µmax = 106 and t = 0
2: while Convergence is not attained do
3: Fix the others and update the variable P by Equation (12)
4: Fix the others and update the variable Q by Equation (13)
5: Fix the others and update the variable Z by Equation (15)
6: Update the Lagrange multipliers M1, M2 and M3 by

Mk,(t+1)
1 = Mk,(t)

1 + µ(Yk,(t+1) − Xk,(t+1)Zk,(t+1))

Mk,(t+1)
2 = Mk,(t)

2 + µ(Zk,(t+1) −Qk,(t+1))

Mk,(t+1)
3 = Mk,(t)

3 + µ(Zk,(t+1) − Pk,(t+1))

7: Update the parameter µ by µ = min(µmax, ρµ)

8: Update t by t = t + 1
9: end while

10: Determine the class label of Y by Equation (16)
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4. Experiments

4.1. Dataset Description

In the experiments, we verify the performance of the proposed hyperspectral classification method
on three benchmark datasets, i.e., the Indian Pines data, the University of Pavia data and the Salinas
data. All the three hyperspectral datasets used in the experiments have been preprocessed by distortion
correction. Details of each dataset are given below.

1. Indian Pines data: the first data was gathered by the National Aeronautics and Space
Administration’s (NASA) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor on 12
June 1992 over the Indian Pines test site in Northwest Indiana, and it consists of 145× 145 pixels
and 220 spectral reflectance bands cover the wavelength range of 0.4–2.5 µm. The number of
bands is reduced to 200 by removing the noisy and water-vapor absorption bands (bands 104–108,
150–163, and 220). The spatial resolution is about 20 m per pixel. Figure 4 depicts the three-band
false color composite image together with its corresponding ground truth. The data contains
16 classes of interest land-covers and 10366 labeled pixels ranging unbalanced from 20 to 2468,
which poses a big challenge to the classification problem. Table 1 displays the detailed number of
samples of each class, and the background color represents different classes of land-covers.

2. University of Pavia data: the second dataset was captured by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor on 8 July 2002 over an urban area surrounding the
University of Pavia, Italy. It contains 610× 340 pixels with a spatial resolution of 1.3 m per
pixel. The original dataset has 115 spectral channels with a coverage range from 0.43 to 0.86
µm. 12 most noisy bands are removed before experiments, remaining 103 bands for experiments.
9 classes of interest are considered in this dataset. The color composite image, the ground truth
data as well as the available training samples are depicted in Figure 5. As shown in Table 2, there
are more than 900 pixels in each class, but the available training samples of each class are less
than 600. In analogy to the Indian Pines data, the background color in Table 2 also agrees with
that in Figure 5b,c.

3. Salinas data: the third dataset was acquired by the AVIRIS sensor on 8 October 1998 over the
Salinas Valley, Southern California, USA. There are 224 bands in the original dataset, and 24 bands
(bands 108–112, 154–167, and 224) are removed for the water absorption. The size of each band is
512× 217 pixels with a spatial resolution of 3.7 m per pixel. The color composite image and the
ground truth are plotted in Figure 6. This dataset contains 16 classes of ground truth, and the
detailed number of samples in each class is listed in Table 3, whose background color corresponds
to different classes of land-covers.

Table 1. Number of samples (NoS) used in the Indian Pines data.

Class Name NoS Class Name NoS

1 alfalfa 54 9 oats 20
2 corn-no till 1434 10 soybean-no till 968
3 corn-min till 834 11 soybean-min till 2468
4 corn 234 12 soybean-clean till 614
5 grass/pasture 497 13 wheat 212
6 grass/trees 747 14 woods 1294
7 grass/pasture-mowed 26 15 bldg-grass-tree-drives 380
8 hay-windrowed 489 16 stone-steel towers 95

Total 10,366



Remote Sens. 2018, 10, 322 10 of 22

0 175 350Meters

500 1000Meters0

(a)

0 175 350Meters

500 1000Meters0

(b)

Figure 4. Indian Pines data. (a) Three-band false color composite and (b) ground truth data with 16 classes.
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Figure 5. University of Pavia data. (a) Three-band false color composite, (b) ground truth data with
9 classes and (c) available training samples.

Table 2. NoS and available training samples (NoATS) used in the University of Pavia data.

Class Name NoS NoATS Class Name NoS NoATS

1 asphalt 6631 548 6 bare soil 5029 532
2 meadows 18,649 540 7 bitumen 1330 375
3 gravel 2099 392 8 bricks 3682 514
4 trees 3064 524 9 shadows 947 231
5 metal sheets 1345 265 Total 42,776 3921

Table 3. NoS used in the Salinas data.

Class Name NoS Class Name NoS

1 brocoli-green-weeds-1 2009 9 soil-vinyard-develop 6203
2 brocoli-green-weeds-2 3726 10 corn-senesced-green-weeds 3278
3 fallow 1976 11 lettuce-romaine-4wk 1068
4 fallow-rough-plow 1394 12 lettuce-romaine-5wk 1927
5 fallow-smooth 2678 13 lettuce-romaine-6wk 916
6 stubble 3959 14 lettuce-romaine-7wk 1070
7 celery 3579 15 vinyard-untrained 7268
8 grapes-untrained 11,271 16 vinyard-vertical-trellis 1807

Total 54,129
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Figure 6. Salinas data. (a) Three-band false color composite and (b) ground truth data with 16 classes.

4.2. Experimental Design

To evaluate the effectiveness of the proposed method for hyperspectral classification, we compare
our method with several baseline approaches, including the EMP [34], 3D discrete wavelet transform
(3D-DWT) [37], SVM [9], SVMCK [11] and MTL [27]. The original spectral features (abbreviated as
“Spec”) are also taken into consideration in the experiments. It is worthwhile to note that the “Spec”,
EMP, 3D-DWT and 3D-MPs are feature extraction methods, whereas the SVM, SVMCK, MTL and
sllMTL are classification methods. To investigate the performance of the proposed method in both
feature extraction and classification, we compare the 3D-MPs with the “Spec”, EMP and 3D-DWT by
fixing the classifier as sllMTL. Moreover, the sllMTL is compared with the SVM, SVMCK and MTL by
utilizing the 3D-MPs-based features.

In greater detail, the 3D-MPs-based feature extraction method is validated by comparing with
other widely-used methods, i.e., the original “Spec”, the multiple features obtained by the EMP,
as well as the multiple features generated by the 3D-DWT. As to the above-mentioned feature
extraction methods, (1) the original “Spec” features can be viewed as a special case of the sllMTL
classifier with K = 1. (2) The EMP does not use the PCA for dimensional reduction but obtains
the morphological profiles by performing the opening/closing operators with various SEs on all of
the bands. (3) The 3D-DWT-based multiple cubes consisted of the subcubes with different scales,
frequencies and orientations are also used for comparison. (4) The 3D-MPs-based multiple cubes are
obtained by directly performing the 3D-opening and 3D-closing on the HSI cubes using different
3D-SEs. The 3D-SEs adopted in 3D-MPs are the cube and sphere shapes. Note that there are large
areas of homogeneous regions in the Indian Pines data and Salinas data, the side lengths of the 3D-SEs
are set to L = 5, 9, 13, 17 and 21. Since many narrow regions are present in the University of Pavia data,
smaller side lengths of 3D-SEs are chosen, i.e., L = 3, 5, 9, 13 and 17.

On the other hand, we test the performance of the sllMTL by fixing the input features as 3D-MPs
and comparing the sllMTL with the SVM, SVMCK and MTL. Note that no nonlinear kernel is used
in the proposed sllMTL, we adopt linear kernel in the SVM, SVMCK and MTL for consistency.
For the SVM, which cannot handle the multiple-feature-based scenario, the multiple 3D-MPs are
stacked together to form a single cube. For the SVMCK, the composite weight is set to 1

K for all
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of the 3D-MPs cubes. The penalty term in both SVM and SVMCK is set to 60. For the MTL, the
regularization parameter λ is selected from [0.01, 0.05, 0.1, 0.2, . . . , 1]. For the sllMTL, three situations
are taken into account: (1) λ = β = 0 (abbreviated as sllMTL1), i.e., only low-rank constraint is
considered; (2) λ 6= 0, β = 0 (abbreviated as sllMTL2), i.e., joint sparse and low-rank constraints are
considered; (3) λ 6= 0, β 6= 0 (abbreviated as sllMTL3), i.e., all the sparse, low-rank and Laplacian-like
constraints are considered. In the sllMTL2 and sllMTL3, the nonzero parameters (λ or β) are chosen
from [0.01, 0.05, 0.1, 0.2, . . . , 1].

Moreover, all the classification experiments are conducted on the aforementioned three
hyperspectral datasets (see Section 4.1). Since the class labels are difficult to identify in reality, very
limited number of labeled samples are utilized in the experiments. That means, 1% samples per class
are randomly selected as training samples and the rest are for testing in the Indian Pines data and
Salinas data. In case 1% samples of some classes are less than 2, we randomly choose 2 samples as
training samples. Regarding to the University of Pavia data, whose available training samples (see
Figure 5c) are separate from the whole ground truth data, 1% samples per class from the available
training samples are randomly chosen for training. It should be highlighted that the experimental
results in the tables are the average results of 10 independent trials to avoid possible bias. Three
popular indexes (overall accuracy (OA), average accuracy (AA) and kappa coefficient (κ)) are adopted
to compare different methods quantitatively.

4.3. Experimental Results

In this section, the experimental results are provided to assess the performance of the 3D-MPs
for spectral-spatial feature extraction and the sllMTL for hyperspectral classification. To this end, the
3D-MPs are compared with the “Spec”, EMP and 3D-DWT. The “Spec” utilizes the original spectral
features, the EMP can incorporate spatial features, while 3D-DWT and 3D-MPs respect the 3D nature of
the HSI and exploit spectral-spatial features. As an example, Figure 7 depicts the 3D-MPs obtained by
3D-opening with both cube and sphere 3D-SEs of side length L = 5, while Figure 8 plots the 3D-MPs
of the 150th band. It can be observed from Figures 7 and 8 that the 3D-MPs highlight the structural
characteristics of the HSI cube and provide smoother features in both spectral and spatial domains.

(a) Original data cube (b) 3D-MPs (cube SE) (c) 3D-MPs (sphere SE)

Figure 7. 3D-MPs obtained by 3D-opening with both cube and sphere SEs of side length L = 5. (a) is
the original Indian Pines data, (b) is the 3D-MPs obtained by the cube SE, and (c) is the 3D-MPs
obtained by the sphere SE.

The thematic maps of those methods in a trial are visually reported in Figures 9–11, while the
detailed average classification accuracies are listed and compared in Tables 4–6. A few observations
can be made based on the above-mentioned experimental results.
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(a) Original band (b) 3D-MPs (cube SE) (c) 3D-MPs (sphere SE)

Figure 8. Spatial scenes of the 150th band. (a) is chosen from the original Indian Pines data, and
(b,c) are chosen from the 3D-MPs.
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Figure 9. Classification maps of the Indian Pines data obtained by different methods.

It can be first seen that, the original “Spec”, which is based only on spectral characteristics,
provides poor classification results compared with other methods. For instance, the OA of SVM in the
Indian Pines data (see Table 4) is 16.86%, 17.30% and 20.01% lower than those of the EMP, 3D-DWT and
3D-MPs, respectively. As shown in Figure 9, the Spec-sllMTL3 produces much more “salt-and-pepper”
phenomenon than its counterparts. Similar properties can also be found in the University of Pavia data
and the Salinas data. Note that the “Spec” utilizes the original spectral features without a spatial prior,
it is not hard to infer that the spatial information can be utilized to alleviate the spectral variations
and stabilize the pixel-based features. Therefore, the above-mentioned phenomena stress yet again the
importance of spatial information for HSI classification.
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Table 4. Classification accuracy (%) of different methods for the Indian Pines data, bold values indicate
the best result for a row.

Class sllMTL3 3D-MPs

Spec EMP 3D-DWT 3D-MPs SVM SVMCK MTL sllMTL1 sllMTL2 sllMTL3

1 25.38 59.13 63.46 88.46 93.27 93.27 70.77 70.43 73.72 88.46
2 63.90 80.36 82.52 70.68 57.49 61.79 78.27 77.03 74.44 70.68
3 48.85 71.70 70.29 78.42 87.79 85.83 75.61 66.39 73.09 78.42
4 26.54 73.86 74.68 86.15 69.96 76.45 53.46 72.35 73.30 86.15
5 73.70 72.23 73.81 74.59 65.73 67.30 75.94 63.08 72.49 74.59
6 88.44 91.90 92.35 95.81 89.53 90.37 93.25 90.12 92.11 95.81
7 53.75 100.00 100.00 100.00 95.42 100.00 100.00 99.48 100.00 100.00
8 92.98 99.20 99.20 99.17 98.62 98.60 97.19 99.07 99.17 99.17
9 46.67 95.14 93.75 88.89 47.22 80.00 70.56 84.03 87.04 88.89

10 64.06 75.89 76.62 89.98 70.52 75.72 75.82 78.05 82.64 89.98
11 73.24 91.17 91.21 94.35 90.23 90.69 93.78 91.84 96.64 94.35
12 36.39 74.63 74.79 86.33 60.02 63.82 65.85 74.16 74.30 86.33
13 94.16 99.46 99.46 99.52 97.94 98.42 93.21 98.50 98.41 99.52
14 92.58 97.45 97.38 99.53 98.17 98.24 97.66 97.10 99.17 99.53
15 26.81 82.18 83.18 85.11 80.72 83.38 70.19 78.32 84.13 85.11
16 50.00 99.73 99.56 100.00 91.72 95.70 89.57 99.33 98.57 100.00

OA 68.54 85.40 85.84 88.55 81.35 83.11 84.62 84.07 86.93 88.55

AA 59.84 85.25 85.77 89.81 80.90 84.97 81.32 83.71 86.20 89.81

κ 63.92 83.28 83.79 86.90 78.73 80.76 82.35 81.73 85.00 86.90
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Figure 10. Classification maps of the University of Pavia data obtained by different methods.
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Table 5. Classification accuracy (%) of different methods for the University of Pavia data, bold values
indicate the best result for a row.

Class sllMTL3 3D-MPs

Spec EMP 3D-DWT 3D-MPs SVM SVMCK MTL sllMTL1 sllMTL2 sllMTL3

1 68.90 87.91 88.13 92.04 86.62 89.64 87.20 86.07 91.25 92.04
2 77.85 67.59 70.63 69.31 69.31 68.13 73.70 65.15 67.74 69.31
3 51.60 65.60 73.70 82.99 72.46 74.85 73.56 66.22 71.80 82.99
4 86.85 63.94 82.21 97.81 72.06 83.58 80.29 79.96 88.19 97.81
5 72.19 99.93 99.93 79.33 59.70 76.58 60.59 99.85 98.74 79.33
6 38.38 72.94 61.13 76.72 55.90 63.59 58.62 75.98 69.85 76.72
7 89.77 93.08 96.84 93.01 96.69 96.54 91.20 95.34 94.74 93.01
8 41.01 78.79 61.68 74.99 63.25 63.82 69.07 83.41 74.96 74.99
9 59.13 97.99 95.67 99.26 96.09 98.63 96.20 99.47 99.37 99.26

OA 67.79 74.45 74.73 78.62 71.39 73.82 74.71 75.14 76.43 78.62

AA 65.08 80.86 81.10 85.05 74.68 79.48 76.71 83.49 84.07 85.05

κ 58.03 67.42 67.54 73.02 62.68 66.36 66.74 68.67 70.02 73.02
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Figure 11. Classification maps of the Salinas data obtained by different methods.
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Table 6. Classification accuracy (%) of different methods for the Salinas data, bold values indicate the
best result for a row.

Class sllMTL3 3D-MPs

Spec EMP 3D-DWT 3D-MPs SVM SVMCK MTL sllMTL1 sllMTL2 sllMTL3

1 97.48 98.54 99.35 99.90 99.45 98.09 98.29 98.64 99.30 99.90
2 99.78 99.16 99.02 100.00 97.97 99.13 99.70 99.54 99.78 100.00
3 98.01 98.11 97.14 99.54 98.77 97.65 98.62 98.21 99.64 99.54
4 98.12 98.99 99.35 99.71 98.70 97.61 99.28 98.70 98.99 99.71
5 98.53 97.81 96.57 98.83 96.57 96.34 97.51 96.83 98.30 98.83
6 99.95 99.95 99.13 99.97 99.16 98.72 99.72 99.92 99.92 99.97
7 99.72 98.50 99.41 99.86 95.96 99.27 99.63 99.69 99.77 99.86
8 89.56 88.19 91.49 93.85 83.82 87.42 91.76 90.10 93.37 93.85
9 99.45 99.67 99.25 99.90 99.59 99.09 99.35 99.54 99.79 99.90

10 89.65 95.10 93.93 98.34 87.70 92.70 96.21 96.09 95.93 98.34
11 91.49 98.01 94.99 99.62 90.26 95.65 88.55 92.90 96.78 99.62
12 99.58 99.42 99.79 100.00 99.63 99.58 99.84 99.84 99.79 100.00
13 98.45 98.34 99.12 99.45 97.90 98.12 98.23 94.81 99.45 99.45
14 94.81 95.85 97.26 99.34 96.79 93.67 93.86 97.92 97.54 99.34
15 57.05 85.24 83.16 86.46 82.34 81.26 80.93 81.14 81.42 86.46
16 98.04 97.26 98.49 99.22 96.98 96.48 98.27 98.64 97.54 99.22

OA 90.67 94.54 94.80 96.64 92.33 93.34 94.66 94.43 95.46 96.64

AA 94.35 96.76 96.71 98.37 95.10 95.67 96.24 96.39 97.33 98.37

κ 89.57 93.93 94.20 96.25 91.45 92.59 94.05 93.79 94.94 96.25

Second, the 3D-based feature extraction methods (i.e., 3D-DWT and 3D-MPs) achieve comparable
or better performance than the 2D-based one (i.e., EMP). For instance, as observed from Table 5, the
OA, AA and κ of 3D-DWT are slightly better than the EMP, while the OA, AA and κ of 3D-MPs are
4.17%, 4.19%, 5.60% higher than the EMP, respectively. The classification results of the 3D-DWT and
3D-MPs are also comparable or better than the EMP in Tabels 4 and 6. The reason for good results of
3D-DWT and 3D-MPs-based feature extraction methods is that they can respect the 3D nature of the
HSI cube by taking the HSI cube as a whole entity to extract the spectral-spatial features.

Third, the 3D-MPs yields the best classification performance in all the feature extraction methods
by fixing the sllMTL3 as classifier. For instance, in the Indian Pines data (see Table 4), the OA of 3D-MPs
is 20.01%, 3.15% and 2.71% higher than those of the “Spec”, EMP and 3D-DWT, respectively. In the
University of Pavia data (see Table 5), the OA of 3D-MPs is also 10.83%, 4.17% and 3.89% higher than
those of the “Spec”, EMP and 3D-DWT, respectively. In the Salinas data (see Table 6), the OA of 3D-MPs
is 5.97%, 2.10% and 1.84% higher than other feature extraction methods. Similarly, the AA and κ of the
3D-MPs are also much higher than its counterparts on the three HSI datasets. It demonstrates that
multiple features obtained by varying the shapes and sizes of SEs can offer additional complementary
information, and thus, effectively improve the performance of hyperspectral classification.

Fourth, the classification results of the SVM are inferior to other ones. For instance, it can be
observed from Table 4 that the OA of SVM is about 2% to 7% lower than other classifiers (i.e., SVMCK,
MTL, sllMTL1, sllMTL2 and sllMTL3), the AA (or κ) of SVM is also about 0.4% to 9% (or 2% to 8%)
lower than its competitors. It is notable that the classification results of the University of Pavia data
(see Table 5) and the Salinas data (see Table 6) also yield similar properties. This is due to the fact that
the SVM cannot able to cope with the multiple-feature-based scenario but simple stacks the multiple
3D-MPs together to generate a single cube, while the other methods can make full use of the multiple
3D-MPs features by taking each 3D-MPs cube as the feature of a task.

Fifth, we compare the multitask-based classifiers (i.e., MTL, sllMTL1, sllMTL2 and sllMTL3) by
utilizing the 3D-MPs-based features. To provide intuitive insight, the coefficient matrices of a test
sample from class 4 (i.e., corn) located at (35,5) in the Indian Pines data are compared in Figure 12.
The x-axis labels the task number and the y-axis labels the representation number. We can see from
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Figure 12 that, for an instance in a certain class of data, a distinctive training feature is active in the
sllMTL2 and sllMTL3. The joint sparse and low-rank constraints in the sllMTL2 and sllMTL3 can
effectively capture the task specificity and relatedness, and thus alleviate the misclassification problem.
The normalized residues of the same sample from class 4 (i.e., corn) located at (35,5) are plotted
in Figure 13, from which one can observe that, by utilizing the 3D-MPs features, the sllMTL2 and
sllMTL3 yield more accurate classification results than the MTL and sllMTL1. Moreover, it is shown in
Tables 4–6 that the sllMTL2 and sllMTL3 outperform the MTL and sllMTL1, and the sllMTL3 performs
much better than the sllMTL2 since a Laplacian-like regularization is added in the sllMTL3 to take
full advantage of the label information of training samples. In addition, as displayed in Figures 9–11,
the classification maps of sllMTL3 are more close to the ground truth (see Figures 4a, 5b and 6b) than
other methods.

Finally, it is worthwhile to note that the proposed method is much better than those in previous
work (e.g., [17,34]). Although we use the same hyperspectral datasets as [17,34], the number of training
and test samples are completely different. For instance, in the Indian Pines data, around 10% of the
labeled samples are chosen for training in [17], while only 1% samples per class are selected as training
samples in this paper. Therefore, it is not very surprising to see that the OA of our proposed method
is much lower than the results shown in Table 2 of [17]. As can be seen in Figure 5 of [17], the OA is
lower than 75% when only 1% labeled samples in each class are chosen as training samples, while
the OA of 3D-MPs-sllMTL3 achieves to 88.55% with the same number of training samples. Similarly,
in the University of Pavia data, the number of training samples is 3921 in [34], while very limited
training samples (1% samples from the available 3921 training samples are chosen for training, i.e.,
about 39 samples in total) are chosen in this paper. It is observed from Table 5 that the classification
performance of 3D-MPs is better than the EMP with the same classifier.
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(a) Detailed location of the sample from class 4
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Figure 12. The coefficient matrices of a test sample from class 4 (i.e., corn) located at (35,5) in the Indian
Pines data for (b) MTL, (c) sllMTL1, (d) sllMTL2, and (e) sllMTL3. The x-axis labels the task number
and the y-axis labels the representation number.
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(a)Normalized residues of the 3D-MPs-MTL
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(b) Normalized residues of the 3D-MPs-sllMTL1
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(c) Normalized residues of the 3D-MPs-sllMTL2
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(d) Normalized residues of the 3D-MPs-sllMTL3

Figure 13. Normalized residues of a sample from class 4 (i.e., corn) located at (35,5). (a–d) are the
normalized residues of the 3D-MPs-MTL, 3D-MPs-sllMTL1, 3D-MPs-sllMTL2, and 3D-MPs-sllMTL3,
respectively.

5. Discussion

5.1. Statistical Significance Analysis of the Results

To discuss whether the proposed method significantly outperforms its counterparts, we apply the
McNemar’s test to evaluate the statistical significance in accuracy improvement. The McNermar’s test
is a non-parametric test based upon the standardized normal test statistic

Z =
f12 − f21√

f12 + f21
(17)

where fij indicates the number of samples classified correctly by the classifier i but incorrectly by
the classifier j. This test allows two methods to be compared. In this paper, we compare the
3D-MPs-sllMTL3 with the other methods one by one. If the absolute of the McNemar’s value Z
is greater than 1.96 (i.e., |Z| > 1.96), the difference in accuracy between the ith and jth classifiers is
considered statistically significant at the 5% level of significance. The average McNemar’s values Z of
the proposed method and other methods by utilizing the afore-mentioned three experimental datasets
are depicted in Figure 14. It is clearly shown in Figure 14 that the Z is larger than 1.96 in all cases, and
therefore, the 3D-MPs-sllMTL3 performs significantly better than the other methods according to the
McNemar’s test.
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Figure 14. McNemar’s test between 3D-MPs-sllMTL3 and other methods.

5.2. Sensitivity Analysis of the Parameters

Another important issue is to discuss the sensitivity of the parameters in the proposed
3D-MPs-sllMTL3. There are two key parameters in the 3D-MPs-sllMTL3: λ and β. The impacts
of the parameters λ and β are shown in Figure 15, whose x-axis and y-axis are the value ranges of
the corresponding parameters and the z-axis denotes the OA (%) of various hyperspectral datasets.
It can be seen from Figure 15 that the classification accuracies for the three datasets generally improve
slowly as the parameters λ and β increase, and then, begin to decrease after obtaining the maximum
values. When the parameters λ and β are very small, the low-rank constraint term will dominate the
optimization process and the sparse and Laplacian-like regularizations will be weakened. The influence
of the sparse and Laplacian-like regularizations will become strong with the increase of λ and β. Based
on the above analysis, it is better to make a tradeoff among the three constraints so as to achieve
satisfactory classification performance.
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Figure 15. The impact of parameters λ and β on the OA in (a) Indian Pines data, (b) University of
Pavia data and (c) Salinas data.

5.3. Influence Analysis of the 3D-SEs

Note that one can extract different structure features of the HSI by applying a series of 3D-SEs, it
is interesting to analyze the influence of the 3D-SEs with different shapes and sizes. As an example,
we discuss the influence of the 3D-SEs in the Indian Pines data. Both cube and sphere shapes with side
length L = 5, 9, 13, 17 and 21 are adopted in the experiments. We set K = 1 in the sllMTL3 and analyze
the influence of the 3D-SEs by classifying each 3D-MP feature separately. The classification results of
different 3D-MPs is shown in Figure 16, from which we can observe that the sphere(closing) with L = 5
provides the lowest classification accuracy, while cube(opening) with L = 17 achieves the highest
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classification accuracy among all the 3D-MPs. However, it is shown in Table 4 that the combination of
multiple 3D-MPs gives much better performance than using each 3D-MP feature separately. The reason
is that a single 3D-MP can only reflect the characteristic of the HSI in one aspect, while multiple features
can represent the characteristic of the HSI more effectively from different perspectives.

Cube(opening) Cube(closing) Sphere(opening) Sphere(closing)
0

20

40

60

80

100

O
A

 (
%

)

L=5
L=9
L=13
L=17
L=21

Figure 16. Classification results the sllMTL3 by using different 3D-MPs.

6. Conclusions

In this paper, we have proposed a 3D-MPs-based MTL framework, namely, 3D-MPs-sllMTL, for
hyperspectral imagery classification. On the one hand, the 3D-opening and 3D-closing operators are
applied for feature extraction of the HSI cubes. Multiple SEs with different shapes and sizes are used to
extract the spectral-spatial features from different aspects. Comparing against the vector/image-based
methods in the literature, the proposed 3D-MPs-based method respects the 3D nature of the HSI
by taking the HSI cube as a whole entity. On the other hand, the sllMTL method is proposed in
this paper to exploit the joint sparse and low-rank structures by taking each 3D-MP as features of a
specific task. Comparing against the existing MTL methods, the proposed sllMTL can capture both
specificities and shared factors of the tasks by adopting the joint sparse and low-rank constraints.
The Laplacian-like regularization can also improve the classification performance further by making
full use of the class label information. We have validated the superiority of the 3D-MPs-sllMTL
approach on three benchmark hyperspectral datasets and compared our method with a number of
alternatives, i.e., the original “Spec”, EMP, 3D-DWT, SVM, SVMCK and MTL. The experimental results
consistently demonstrate the effectiveness of the proposed method. Quantitatively, by utilizing the
3D-MPs features, the OA of sllMTL3 is at least about 4%, 3% and 2% higher than the SVM, SVMCK
and MTL, respectively. By utilizing the sllMTL3, the OA of 3D-MPs is at least about 6%, 2% and 2%
higher than the “Spec”, EMP and 3D-DWT, respectively. Note that the sllMTL considers an equal
contribution for any 3D-MPs-based features in the classification process, a future research direction
is to investigate the importance of different features by assigning different weights to the features.
Extending the sllMTL to its kernel versions is also a promising research topic for further improving the
classification performance. Moreover, as to other kinds of images (e.g., the sequence of the 2D images
or medical images), we can also take them as 3D cubes, whose 3D-MPs features can be extracted by
the 3D MM. However, the sllMTL cannot be directly used for classification of those images because a
pixel in those images usually comes from different classes. One should extract and arrange the features
from the same class together before applying the sllMTL. Therefore, applying the proposed method to
classify other images (e.g., the sequence of the 2D images or medical images) is also an interesting area
of future work.
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