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Abstract: Mapping of surficial geology is an important requirement for broadening the geoscience
database of northern Canada. Surficial geology maps are an integral data source for mineral and
energy exploration. Moreover, they provide information such as the location of gravels and sands,
which are important for infrastructure development. Currently, surficial geology maps are produced
through expert interpretation of aerial photography and field data. However, interpretation is
known to be subjective, labour-intensive and difficult to repeat. The expert knowledge required
for interpretation can be challenging to maintain and transfer. In this research, we seek to assess
the potential of deep neural networks to aid surficial geology mapping by providing an objective
surficial materials initial layer that experts can modify to speed map development and improve
consistency between mapped areas. Such an approach may also harness expert knowledge in a
way that is transferable to unmapped areas. For this purpose, we assess the ability of convolution
neural networks (CNN) to predict surficial geology classes under two sampling scenarios. In the first
scenario, a CNN uses samples collected over the area to be mapped. In the second, a CNN trained
over one area is then applied to locations where the available samples were not used in training
the network. The latter case is important, as a collection of in situ training data can be costly. The
evaluation of the CNN was carried out using aerial photos, Landsat reflectance, and high-resolution
digital elevation data over five areas within the South Rae geological region of Northwest Territories,
Canada. The results are encouraging, with the CNN generating average accuracy of 76% when
locally trained. For independent test areas (i.e., trained over one area and applied over other),
accuracy dropped to 59–70% depending on the classes selected for mapping. In the South Rae region,
significant confusion was found between till veneer and till blanket as well as glaciofluvial subclasses
(esker, terraced, and hummocky ice-contact). Merging these classes respectively increased accuracy
for independent test area to 68% on average. Relative to the more widely used Random Forest
machine learning algorithm, this represents an improvement in accuracy of 4%. Furthermore, the
CNN produced better results for less frequent classes with distinct spatial structure.

Keywords: surficial materials mapping; surficial geology; deep learning; remote sensing

1. Introduction

Mapping of surficial geology is an important requirement for broadening the geoscience database
of northern Canada. Surficial geology maps are an integral data source for mineral—exploration
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infrastructure, land-use planning, hazard assessment and other applications. However, mapping large
remote regions can be a major challenge requiring significant labour and cost for timely production.
With access to remotely sensed imagery, new machine learning approaches are emerging that support
the surficial geological mapping of vast northern regions appropriate for regional scale mineral
exploration and related land-use management. This is particularly relevant in Northern Canada, which
is a huge territory that cannot easily be mapped following a systematic field sampling approach [1].
In addition, traditional mapping methods are based on interpretation of air photos requiring expert
knowledge and experience. Interpretation is subjective, labour-intensive and difficult to repeat, while
expert knowledge can be challenging to maintain and transfer [2]. Furthermore, fieldwork in remote
regions is costly and logistically challenging.

Remote Predictive Mapping (RPM) is a relatively rapid and cost-effective way to generate an
initial classification of surficial materials over large areas [3]. Machine learning applied to remote
sensing data is an approach that can provide more consistent results over time and space assuming
method, training samples and parameters are appropriately selected. Applying a well-trained model
can reduce the subjectivity associated with expert interpretation. While it may not be as detailed
or locally accurate as traditional methods, RPM products can guide fieldwork towards areas with
more complex geology, serve as first order geologic maps in areas where little knowledge currently
exists, and improve map production, accuracy and consistency by combining machine learning and
expert interpretation.

There have been several successful examples of machine learning applied to remote sensing data
for remote predictive mapping of surficial materials [4–9]. Most of the recent mapping approaches
utilized Decision Trees (DT), Random Forest (RF) [10,11], Support Vector Machine (SVM) or bootstrap
Maximum Likelihood (ML) algorithms [12]. In most surficial materials mapping cases, these algorithms
are dominantly implemented in a manner that limit utilization of the spatial properties of the surficial
material classes related to the geomorphology and class composition of base materials such as rock,
gravel, sand, vegetation, and water. Often, surficial material classes are comprised of materials
with very different spectral signatures. For example, till veneer is described as discontinuous sheet
of diamicton, a poorly sorted sediment containing a mixture of grain-sizes from clay to boulders,
overlying bedrock. Thus, to determine a particular surficial material class, a larger area needs to be
sampled, such that spatial features and spectral signatures of material ensembles can be considered.

New machine learning algorithms based on deep learning provide a potential means to address
some of the limitations of past efforts for surficial geology RPM. Deep learning is one of the
fastest-growing trends in big data analysis and was deemed one of the 10 breakthrough technologies
in the [13] MIT Technology Review of 2013. The name “deep learning neural network” reflects the
inclusion of a number of hidden layers. Unlike their shallow counterparts, deep neural networks
exploit feature representations learned exclusively from data, instead of hand-crafting features that are
mostly designed based on domain-specific knowledge. In recent times, deep neural networks have
received significant attention due to the development of graphic processing unit (GPU) technology,
which has enabled large networks to be trained much more efficiently than previously. Another
major advancement has been the development of deep neural networks designed specifically for
image recognition tasks. These are known as convolution neural networks (CNNs). They have
shown to be effective with high spatial resolution imagery where objects of interest have strong
spatial structure [14–16]. CNNs take an image as input and apply convolution filters to these images to
generate features that can discriminate image objects. The filters’ weights are learned through stochastic
gradient decent using error backpropagation and thus are optimized for the defined recognition task.
The typical CNN architecture consists of a convolution filter layer followed by a down-sampling
pooling layer. This sequence is repeated several times before a final dense layer that summarizes the
results and assigns the final output activation from the network [17–20]. Different architectures and
methods are evolving rapidly for a range of recognition tasks.
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In this research, we evaluate CNNs as means to improve surficial materials RPM for the case
where a model is trained and applied in the same spatial domain and where it is trained from one
area and applied in another. This CNN is compared against the more widely used RF algorithm as a
benchmark to assess potential improvement.

2. Materials and Methods

2.1. Study Area Location and Physiography

The area of interest is located in the southeast corner of the Northwest Territories, Canada and
defined by National Topographic System map sheet 75B, Abitau Lake (Figure 1). This region is
underlain by the high-grade metamorphic rocks of the South Rae geological province of the Canadian
Shield [21]. Most of the region exceeds 500 m elevation, ranging from ~420 m to 575 m above sea
level. Ridged to hummocky crystalline rocks form broad sloping uplands and lowlands. Bedrock
exposure varies from 0 to 40%. Swaths of streamlined terrain (till), till veneers and blankets, and minor
hummocky moraine comprised of sandy, silty till of varying composition and thickness dominate
the upland cover. Lowlands are primarily filled with lakes and wetlands (organic deposits). Large
esker systems cross the area, dominantly oriented northeast to southwest (esker-glacial landform is a
long winding ridge composed of stratified sand and gravel, which was deposited by a subglacial or
englacial meltwater stream). This region lies within the Selwyn Lake Upland ecoregion that extends
northwest from the Churchill River in Manitoba to the East Arm Hills at the eastern end of Great Slave
Lake [22] (Ecoregions Working Group, 1989). It is classified as having a low subarctic climate and is
part of the boreal forest–tundra transition zone extending from Labrador to Alaska, with tree cover
decreasing north–northwest. The characteristic vegetation consists of stuntd black spruce, dwarf birch
and Labrador Tea, with a ground cover of lichen and moss. Poorly drained wetlands are dominated by
bog–fen sequences of black spruce, ericaceous shrubs and mosses. Much of the area has been burned
by forest fires over the past several decades and regrowth has been slow. Permafrost is extensive and
discontinuous with low to medium ice content throughout the ecoregion. More detailed descriptions of
the region’s geology and landscape can be found in [23] Campbell and Eagles [24], Pehrsson et al. [25],
and Campbell et al. In this study, five subareas, within National Topographic System Abitau Lake map
sheet 75B (Figure 1) were used.
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and August, 1984–2012. To create a reflectance time series, the following processing steps were 
applied: reprojection, calibration, and cloud/cloud shadow detection using the processing 
methodology described in Latifovic et al. (2015) [26]. The Landsat L1G data are in the UTM map 
projection. However, the UTM is not an appropriate projection for large areas that cross several UTM 
zones. The Lambert Conformal Conic (LCC) projection is typically used in Canada for large area 
spatial datasets, as it does not require separate zones, yet keeps distortion to an acceptable level. The 

Figure 1. Location of the study area.

2.2. Data

2.2.1. Landsat Time Series

Landsat L1G TM/ETM+ scenes used were acquired by the U.S. Geological Survey between
July and August, 1984–2012. To create a reflectance time series, the following processing steps
were applied: reprojection, calibration, and cloud/cloud shadow detection using the processing
methodology described in Latifovic et al. (2015) [26]. The Landsat L1G data are in the UTM map
projection. However, the UTM is not an appropriate projection for large areas that cross several UTM
zones. The Lambert Conformal Conic (LCC) projection is typically used in Canada for large area
spatial datasets, as it does not require separate zones, yet keeps distortion to an acceptable level. The
LCC projection was specified with two standard parallels at 49◦N and 77◦N. The central meridian was
95◦W and the latitude of origin was 0◦.
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Remote mapping of surficial materials in part relies on the association between vegetation and the
underlying geological conditions. Fires can be problematic because vegetation is more indicative of the
post-fire succession than an expression of surficial geology. However, fires expose bedrock potentially
improving its detection. For this research, it was clear that removing fires would be beneficial as much
of the area is tree covered. Ultimately, we are seeking to retrieve the sensor observations between 1985
and 2012 that represent vegetation in its latest successional stage.

Analysis of the historical fire database [27] suggests that approximately 80% of the burned area
in the region occurred after 1984 and thus the observations can be replaced. To accomplish this, and
develop high quality data for analysis, a data synthesis approach was developed and applied to the
Landsat time series, using the normalized difference water index (NDWI) defined in Gao (1996) [28]
as a selection criterion rather than normalized difference vegetation index (NDVI). The NDWI is
a measure of liquid water molecules in vegetation canopies that interact with the incoming solar
radiation [26] while NDVI is measure of chlorophyll absorption. In this study, NDWI is considered
a better index for selection because it is significantly less affected by atmospheric scattering and
absorption, it is much more sensitive to vegetation structure and it does not saturate as quickly as
NDVI. In the first processing step, yearly average reflectance from clear-sky pixel observations were
computed for each year and then a temporal smoothing filter was applied using a window size of
three years. The maximum NDWI values from the smoothed time series were determined and, in the
second step, used to find all observations in the time series within ±10% range. These values were
averaged to get a robust reflectance measure for each Landsat band. Figure 2 shows that most of the
area affected by fires were replaced with observations obtained before fire occurred, although the
burn-scare of some pre-1984 fires are still evident in the image.Remote Sens. 2018, 10, 307  6 of 19 
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Figure 2. Landsat mosaics of National Topographic System map 75B: The image (a) shows the long-term
average. The image (b) shows the long-term average with fire scars removed. The top image is RGB
composite with near infrared band in red, shortwave infrared band in green and blue band in red. The
bottom mosaics and the zoomed-in examples are true colour images composite as red band in red,
green band in green, and blue band in blue.
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Another advantage of this processing approach was that it greatly improves image quality by
averaging observations over multiple years. The blue band is usually too noisy to be used for analysis
due to its strong sensitivity to atmosphere conditions. Nevertheless, Figure 3 shows an example of the
blue band reflectance for both the best available measurement from the 2009–2011 composite, and the
long-term average composite developed for use in this study. Much of the noise in the shorter-term
composite has been removed using the described processing steps. Time series data processing
provides a potential advantage as the blue band reflectance makes available specific information that
improves classification of bedrock lithology and surficial materials. In addition to the band top of
atmosphere reflectance, the Tasseled Cap Transformation (TCT) [29] was applied to produce Brightness,
Greenness and Wetness orthogonal components, which allow for reduction of data dimensionality.
The TCT was generated using coefficients provided by Huang et al. [30] for ETM and by Crist [31] for
TM sensors.
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Figure 3. Blue band comparison: the image (a) shows the best available measurement from 2009–2011.
Image (b) shows the long-term average from 1984–2011 generated using the temporal processing.

2.2.2. Air Photos

Historical air photos at approximately 1:50,000 scale are commonly used by the Geological
Survey of Canada (GSC) for mapping surficial materials and geomorphology by expert interpretation.
These easily accessible and affordable photos [32] can be scanned to high spatial resolution (typically
<2 m), and cover large extents of Canada. However, they can often be difficult and time-intensive
to geolocate, radiometrically balance, and mosaic into an accurate and seamless product suitable
for large area interpretation and mapping applications. An automation of the required processes
and methodology, for processing ~400 images covering a large portion of the South Rae region, was
developed in this study. Landsat data were used as a spatial reference, as the intent was to use the
resulting air photo mosaic for data fusion, to achieve a high-resolution multi-spectral image for surficial
materials and/or geological mapping. Pre-processing, processing diagnostics, iterative corrections,
radiometric normalization, and fusion were automated to generate an accurate and seamless product.
This methodology can be applied anywhere in Canada to provide enhanced data for interpretation or
mapping of geological attributes.

2.2.3. Digital Elevation Model

Two digital elevation model (DEM) data sets were used for terrain characterization (Figure 4).
The first was the 1:50,000 scale Canadian Digital Elevation Data (CDED) rasterized to 30 m resolution.
The second data set was from the Arctic DEM project, which is a National Geospatial-Intelligence
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Agency-National Science Foundation public-private initiative to automatically produce a
high-resolution, high quality, digital elevation model of the Arctic using optical stereo imagery. For the
current research, the 8 m spatial resolution product was acquired and used [33].
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Digital Elevation Data 1:50,000 scale rasterized to 30 m and image (b) shows the 8 m Arctic digital
elevation model.

2.2.4. Surficial Materials Reference Data

The surficial materials reference data used includes ground truth observations acquired during
field campaigns and a surficial geology map generated by expert interpretation. The surficial material
labels for ground truth samples (Figure 5a) were defined using in situ field records. Secondary
reference samples were defined by interpretation of photographs (Figure 5b) taken from the helicopter
during flights between ground truth sites. The reference surficial geology map (Figure 5c) from [34],
produced by expert interpretation of air photos and fine resolution WordView2 satellite images, remote
observations and ground truth data, was used as a main source of reference data for the majority of
training and testing samples.
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Figure 5. Surficial materials reference data sets: (a) ground truth; (b) aerial photographs from helicopter;
and (c) surficial geology map [34].

The percent area of each surficial material unit in the reference map, shown in Figure 5c, is given
in Table 1. The main surficial materials are tills, organics, water, and exposed rock. There are several
glaciofluvial sediment units covering a small percentage of the total area. Only units highlighted in
bold in Table 1 were considered for mapping in this analysis. Other units did not cover a sufficiently
large area to be used for training and testing models.
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Table 1. Surficial geology units and distribution within an National Topographic System (NTS) map
sheet 75B.

Value Percent Area Code Description

1 8.8 Tv Glacial sediments: till veneer
2 18.9 Owb Organic deposits
3 34.1 Tb Glacial sediments: till blanket
4 4.4 R Bedrock: undifferentiated
5 9.9 Th Glacial sediments: hummocky till
6 1.3 GFh Glaciofluvial sediments: hummocky
7 0.7 GFt Glaciofluvial sediments: terraced
8 1.2 GFr Glaciofluvial sediments: esker
9 0.1 GLr Glaciolacustrine sediments: beach

10 0.02 At Alluvial sediments: terraced
11 0.03 Ap Alluvial sediments: floodplain
12 0.00 Af Alluvial sediments: fan sediments
13 0.00 GFf Glaciofluvial sediments: outwash fan
14 0.00 GLd Glaciolacustrine sediments: deltaic
15 0.00 GFv Glaciofluvial sediments: veneer
16 0.01 GLb Glaciolacustrine sediments: blanket
17 0.01 GFb Glaciofluvial sediments: blanket
18 0.00 GFp Glaciofluvial sediments: outwash plain
19 20.53 H2O Water

2.2.5. Data Cubes

To simplify processing and analysis, data were organized over five subareas as data cubes
(Figure 6). Each data cube contained all data layers used in the analysis, including Landsat bands,
DEM, TCT, mosaicked air photos, surficial material classes, vegetation indices, land cover, etc. Data
cubes were resampled into a common georeferencing framework with the same spatial resolution of
2 m. Initial exploratory analysis showed that the use of air photo data with 2 m spatial resolution was
one of the more critical inputs to mapping accuracy. Landsat pixels (30 m) were replicated into 15 by
15 pixels with the same value. No resampling was applied because CNN convolution and pooling
operations would achieve the optimal resampling for this application. Locations of the data cubes
are depicted in Figure 5. They are referred to as North (N), Northwest (NW), South (S), Southwest
(SW) and Southeast (SE). Based on this data structure, software was developed for efficient data
manipulation such as creating training or testing samples with different sample sizes and features,
evaluating and applying RF and CNN models, comparing classified images and deriving statistics.
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Figure 6. Example of the data cubes for National Topographic System map 075B Abitau study: these
data sets are for the South subarea.

2.3. Methods

To evaluate both CNN and RF methods, we followed the procedure presented in Figure 7. The
upper three rows present steps regarding data and data preparation. These steps were described in
the previous sections. The bottom part of the Figure 7 shows steps involved in assessment of the RF
and CNN for two scenarios, first when models were trained and applied over the same area, second
when models were trained over one area and evaluated in a different area. The latter is referred to as
independent test area. The following sections provide other relevant elements of the analysis including
features used, RF parametrization, CNN architecture and the sampling and training approach.



Remote Sens. 2018, 10, 307 11 of 19Remote Sens. 2018, 10, 307  11 of 19 

 

Figure 7. Assessment of Random Forest and Convolution Neural Networks for mapping surficial 
materials. 

2.3.1. Generation of Training and Testing Data 

An initial analysis and evaluation revealed that accuracy of the classification with the full 
thematic legend was not satisfactory. Thus, we developed a reduced legend with more generalized 
surficial material classes by merging some of the classes for the legend given in Table 1. In order to 
get a better spatial depiction of eskers and glaciolacustrine beaches, these two classes where added. 
Table 2 shows the generalized legend with 8 classes used in the assessment.  

Table 2. Merged legend referred to as Legend 2. 

Value Class
1 Tills (merged Tv and Tb) 
2 Organic deposits (Owb)
3 Bedrock (R) 
4 Hummocky till (Th) 
5 Undifferentiated glaciofluvial sediments (GFr, GFh, GFt): sand and gravel 
6 Eskers (interpreted from high resolution imagery): sand and gravel 
7 Glaciolacustrine beaches (interpreted from high resolution imagery): sand 
8 Water (H2O) 

For each class, we used all available in situ samples, samples generated by interpretation of aerial 
photographs and samples extracted from the reference surficial geology map. The majority of 
samples came from the reference map; they were selected as randomly stratified samples from each 
subarea. The surficial geology map (Figure 5c) was used for sampling where a 20-pixel erosion 
operator was applied to avoid including samples at the edges of classes. Samples for eskers and 

Figure 7. Assessment of Random Forest and Convolution Neural Networks for mapping surficial
materials.

2.3.1. Generation of Training and Testing Data

An initial analysis and evaluation revealed that accuracy of the classification with the full thematic
legend was not satisfactory. Thus, we developed a reduced legend with more generalized surficial
material classes by merging some of the classes for the legend given in Table 1. In order to get a better
spatial depiction of eskers and glaciolacustrine beaches, these two classes where added. Table 2 shows
the generalized legend with 8 classes used in the assessment.

Table 2. Merged legend referred to as Legend 2.

Value Class

1 Tills (merged Tv and Tb)
2 Organic deposits (Owb)
3 Bedrock (R)
4 Hummocky till (Th)
5 Undifferentiated glaciofluvial sediments (GFr, GFh, GFt): sand and gravel
6 Eskers (interpreted from high resolution imagery): sand and gravel
7 Glaciolacustrine beaches (interpreted from high resolution imagery): sand
8 Water (H2O)

For each class, we used all available in situ samples, samples generated by interpretation of aerial
photographs and samples extracted from the reference surficial geology map. The majority of samples
came from the reference map; they were selected as randomly stratified samples from each subarea.
The surficial geology map (Figure 5c) was used for sampling where a 20-pixel erosion operator was
applied to avoid including samples at the edges of classes. Samples for eskers and glaciolacustrine
beaches were manually digitized from the high-resolution aerial photos. Thus, the sample set size
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for each subarea was 8 classes × 5000 samples = 40,000 samples. For training and testing models
for each subarea, the sample was split to 90% for training and 10% for testing. Due to differences
of the input data requirements for the RF and CNN, training and test data features were prepared
differently. A number of different features combinations, spatial resolution, sampling unit size, and
number of samples were assessed for each method. Final selection of the sampling design and model
parametrization is described in the following Sections 2.3.2 and 2.3.3.

2.3.2. Convolution Neural Network

A number of different CNN configurations were tested ranging from simple two-layer networks
to more complex configurations based on Alexnet [14] and residual convolution networks (RESNETs),
respectively [15]. The best results were achieved with a 34 layer RESNET, which is consistent with
published research. It consists of an initial convolution layer followed by blocks structured for residual
learning and a final average pooling, overall 2.1 M parameters. Residual networks have been shown to
be more robust to overfitting than other architectures. The sample unit size i.e., input image size was
96 by 96 pixels, and the selected number of input layers was seven including the air photo mosaic,
Landsat TCT components brightness, greenness, and wetness, 8 m DEM, slope, and elevation variance.
We tested input image windows of various sizes and found the selected size 96 × 96 the best suited to
capture the main spatial properties of the desired classes. Using a smaller input window size improves
delineation between class boundaries, but, if too small, the distinct spatial patterns can be missed.
In exploratory analysis, we tried using Landsat pixel size 30 m as base resolution by resampling
air photo and DM, but the achieved accuracy was very low when compared to the case with 2 m
spatial resolution. We trained a new model using only data from this study because we used nine
non-standard input features, and most widely available pretrained models are based on three band
true color images. To train the model, we used 100 epochs run on a Tesla K20c GPU with batch size of
50. The training rate for the first 20 epochs was set at 0.01 and remaining 50 at 0.001.

2.3.3. Random Forest

For Random Forest classification, we used the Open Source Computer Vision Library [35].
The following values of the hyper-parameters were selected: the maximum possible depth of the
tree (maxDepth = 30), the number of samples in a node to be split (MinSampleCount = 0.1%),
the size of randomly selected features at each tree node that were used to find the best split(s)
(ActiveVarCount = 3) and the number of trees (TC = 100). The values for maxDepth, TC and
MinSampleCount were defined by varying one parameter at a time while keeping other two fixed
and comparing the model performance with accuracy. We used the same input layers sets as in CNN,
but the window size was reduced to 15 × 15 to be consistent with past RPM research using machine
learning approaches in [9,12]. In these studies, entropy measures within 7 × 7 pixel windows were
used derived from Landsat. However, more recent work only used the entropy from a 30 m DEM.
Thus, for each data feature, the mean was computed within the 15 × 15 window, which is equivalent
to a Landsat pixel. However, for the air photos, we also computed the standard deviation to provide a
texture measure. DEM entropy would be captured by the mean of the DEM variance calculated at the
down sampled 2 m resolution. In initial trials, we tested different window sizes and number of trees
and found little overall differences. We could have used the CNNs to identify features and fed those
into the RF, but this would be little different from the CNN itself. Thus, we elected to compare with
current common practice.

3. Results

3.1. Assessment of CCN (RESNET) vs. RF Methods for Surficial Materials Mapping

To evaluate both CNN and RF methods for surficial materials prediction over the study area,
we extracted samples from all subareas (Figure 5c), trained models, applied these to generate maps
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and compared these to holdout samples over each subarea. The overall accuracies for this scenario
are shown in Table 3. To evaluate independent test sets for each subarea, the models were trained on
four subareas and applied to the held-out fifth subarea. Table 3 shows the accuracies for this analysis.
Accuracy with training samples inside the mapped area is generally the same between the methods
with an accuracy of ~76%. However, the results over independent test sets were higher with RESNET.

Table 3. Results of accuracy assessment for different scenario and legends.

Method Subarea
Sample
from All
Subareas

Independent
Test Sets

Independent Test Sets
(with Merged Tv and

Tb Classes)

Independent Test Sets
(with Merged Tv, Tb, GFr,

GFh, GFt Classes)

Independent Test
Sets with Legend
Shown in Table 2

RESNET 18

N 0.76 0.61 0.64 0.65 0.66
NW 0.77 0.49 0.51 0.55 0.59

S 0.75 0.49 0.61 0.63 0.7
SE 0.74 0.64 0.66 0.68 0.63
SW 0.83 0.52 0.66 0.68 0.66

Average 0.77 0.55 0.62 0.64 0.64

RF

N 0.77 0.58 0.60 0.61 0.60
NW 0.78 0.48 0.50 0.54 0.52

S 0.76 0.50 0.62 0.62 0.63
SE 0.76 0.60 0.62 0.63 0.61
SW 0.78 0.50 0.63 0.63 0.64

Average 0.77 0.53 0.59 0.61 0.60

The results in Table 3 do not suggest a large improvement with RESNET. Overall accuracy is
rather low reflecting difficulty of separating classes. This is due to the nature of the class distribution
where the majority of the area consists of classes not strongly defined by spatial properties. These
include organics, water, and till making up ~84% of the area. If we examine class specific accuracies
(computed as the average of the user’s and producer’s accuracy), we see a greater improvement in the
classes that are more defined by spatial structure such as hummocky till, eskers, and beaches, which
improve on RF by 16% on average for the independent test sets results (Figure 8).
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3.2. Assessment of RESNET Surficial Materials Mapping and Spatial Extension

Subsets of the surficial materials maps generated by RF and RESNET are shown in Figure 9. Visual
examination of the RESNET results with the surficial geology reference map suggests a reasonable
general agreement that is consistent with the accuracy assessment (Table 3). In general, the spatial
structure and main classes are reasonably well captured (Figure 9). The map generated by RF shows
less agreement, particularly for the classes strongly defined by spatial properties.



Remote Sens. 2018, 10, 307 14 of 19

Remote Sens. 2018, 10, 307  14 of 19 

 

the spatial structure and main classes are reasonably well captured (Figure 9). The map generated by 
RF shows less agreement, particularly for the classes strongly defined by spatial properties.  

 
Figure 9. Example area of reference surficial geology map, RF and RESNET result. 

In Figure 10 NW cube, the glaciolacustrine beach class was added and is fully predicted in the 
result image only. It is a source of the differences observed as only a small area in the training maps 
was modified to include the beach class. There is confusion between thin and thick till and 
glaciofluvial subclasses. However, due to the uncertainty associated with the initial mapping, these 
results appear reasonable. Surficial geology mapping by air photo interpretation can be subjective 
and somewhat generalized spatially. Comparing surficial geology maps along map boundaries 
generated by different interpreters often reveals the difficultly of consistently mapping detailed 
classes between experts. This is largely a function of the thematic detail of the map products where 
generalization to simpler classes reduces the problem. For example, differences can exist between 
rock outcrop and thin till, but confusion between rock and thick till would be rare. Another factor to  

Figure 9. Example area of reference surficial geology map, RF and RESNET result.

In Figure 10 NW cube, the glaciolacustrine beach class was added and is fully predicted in the
result image only. It is a source of the differences observed as only a small area in the training maps
was modified to include the beach class. There is confusion between thin and thick till and glaciofluvial
subclasses. However, due to the uncertainty associated with the initial mapping, these results appear
reasonable. Surficial geology mapping by air photo interpretation can be subjective and somewhat
generalized spatially. Comparing surficial geology maps along map boundaries generated by different
interpreters often reveals the difficultly of consistently mapping detailed classes between experts.
This is largely a function of the thematic detail of the map products where generalization to simpler
classes reduces the problem. For example, differences can exist between rock outcrop and thin till,
but confusion between rock and thick till would be rare. Another factor to consider is the spatial
generalization of the reference surficial geology maps. The mapping process carried out by geological
experts comprise careful analysis of data and knowledge of geological processes; an expert generalizes
the region by depicting polygons that mostly contain a single class. However, often patches of other
classes can exist within the polygon. For example, a polygon labeled as thin till is likely to contain
areas of exposed rock. The use of the expert-based surficial geology maps is challenging for training
machine learning algorithms and the accuracies are likely higher then what was reported here due to
these factors.
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Overview results for three of the subareas are shown in Figure 10 for the RESNET results. These
are independent test area results, which generally produced good agreement. They contain greater
spatial variation than the reference maps, which is one of the larger differences in the comparisons. The
Northwest (NW) subarea (Figure 10) has the lowest agreement with the reference map and appears to
overestimate glaciofluvial and hummocky till classes due to complex terrain in the area. The South (S)
subarea strongly overestimates rock outcrop (Figure 10). Converting this to thin till greatly improves
the agreement between the reference and predicted results by approximately 10%. The Southeast (SE)
subarea overestimated organics relative to the reference map (Figure 10). However, examination of the
Landsat data suggests an underestimate of organics in the reference map.

4. Discussion

Deep learning is gaining increasing interest in remote sensing as an approach for development and
enhancement of mapping applications [36]. Remote sensing presents some new challenges for deep
learning because it aims at retrieving geo-physical or bio-chemical quantities rather than detecting
or recognizing objects. Much of the knowledge of deep learning CNN performance is based on
benchmark databases such as CIFAR-100 [37] or ImageNet [38]. These databases generally contain
objects with distinct spatial structure and thus the objective is ultimately to capture and encode that
structure in the network. In this research, the surficial geology classes are more variable existing over
a large range of scales with weakly distinct spatial structure between some classes. In addition, the
subjective nature of expert geological interpretation causes some conflicts in the training dataset that
would not be seen to the same degree in benchmark databases. Thus, this analysis is unique in that
it presents a significant deep learning challenge to separate classes with strong spectral and spatial
confusion in the presence of training data error.

From this analysis, we can summarize some of the main considerations for the use of CNNs for
remote sensing applications that are consistent with other research. Deep learning approaches require
large and consistent training datasets to work well, as well as the infrastructure to train them in a
reasonable time. The lack of sufficient training samples might cause severe overfitting and, therefore,
greatly limit the capability of generalizing the model. It requires data with much finer spatial resolution
to be able to extract high-level, hierarchical, and abstract features, which are generally more robust.
Data augmentation is a common approach to train a CNN with a small sample. In this research,
we did not use data augmentation as large samples were extracted. However, because of the strong
dependence on sample quality, an improvement for future work would be to work with the geological
expert to select and carefully quality control a small sample to be used in a data augmentation scheme.
In addition, deep learning algorithms require much more experience. Setting up a network is much
more tedious than using off-the-shelf classifiers such as random forests, as an in-depth knowledge of
network architecture is needed. The architecture is important to achieve top performance, but, like
most machine learning algorithms, the quality of the input data is generally more critical than the
specific algorithm used. This was the case for the set of CNN architectures tested in this research.

Another important aspect of CNNs is that they develop features from the inputs that are directly
optimized for the specified object recognition task. Thus, only features that cannot be obtained from
convolution filters should be used as inputs to the CNN. This also suggests that the classifier should
be more robust to input feature sets than other approaches, provided steps to avoid overtraining are
undertaken. In initial experimentation, we tested several features set modifications without major
changes in the accuracy.

Apart from the potential performance advantage, the ability to use and adapt a pre-trained
model is considered a potential unique advantage of CNNs. A CNN can be trained from an initial
large training dataset and model weights can be updated for a specific region with a new training
sample. For surficial geology mapping, we see deep learning CNNs as providing initial predictions
that are refined by geologist and fed back into the model in an ongoing cycle reducing error and
adapting to new or local conditions. This integrates the advanced knowledge of geological experts and
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ideally reduces subjectivity in the final products. It also can greatly reduce sampling requirements, as,
theoretically, a smaller sample would be required to retrain an existing model to new areas. Evaluating
this aspect for surficial geology mapping is planned for future work. However, in this research, the
objective was to first determine that CNNs can perform as well or better than other machine learning
methods currently in practice and that a model can be spatially extended over short distances. This is
referred to as within landscape extension and is a key requirement for operational implementation
over large regions.

5. Conclusions

CNNs are an interesting advancement in machine learning combining spectral and spatial
properties, feature optimization for the specific classification task, and the ability to adapt pre-trained
models to new tasks. However, understanding CNN performance for moderate resolution remote
sensing classification has not been widely undertaken. In this research, we assessed CNNs for surficial
geology mapping. A surficial materials classification map generated using a CNN could be considered
as a first iteration in map production followed by geological expert refinement in a recursive process.
Accuracies in this analysis were ~77% for holdout samples and 64% for extended i.e., model trained
using samples from one area and applied on other adjacent areas. We see these results as reasonable for
the more difficult case of independent testing area and the challenges associated with using existing
surficial geology maps as training reference. We do believe that the presented mapping approach
is worth improving by building an accurate reference database and testing different configurations.
Future research will seek to improve training data to better evaluate accuracy for various network
architectures. The study indicates that use of CNNs would improve remote predictive mapping as an
effective tool for remote regions.
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