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Abstract: Empirical methods based on band ratios to infer chlorophyll-a concentration by satellite
do not perform well over the optically complex waters of the St. Lawrence Estuary and Gulf.
Using a dataset of 93 match-ups, we explore an alternative method relying on empirical orthogonal
functions (EOF) to develop an algorithm that relates the satellite-derived remote sensing reflectances
to in situ chlorophyll-a concentration for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS).
Results show that an accuracy of 41% at retrieving chlorophyll-a concentration can be reached using
the EOF method compared to 140% for the widely-used Ocean Chlorophyll 4 (OC4v4) empirical
algorithm, 53% for the Garver-Siegel-Maritorena (GSM01) and 54% for the Generalized Inherent
Optical Property (GIOP) semi-analytical algorithms. This result is possible because the EOF approach
is able to extract region-specific radiometric features from the satellite remote sensing reflectances
that are related to absorption properties of optical components (water, coloured dissolved organic
matter and chlorophyll-a) using the visible SeaWiFS channels. The method could easily be used with
other ocean-colour satellite sensors (e.g., MODIS, MERIS, VIIRS, OLCI) to extend the time series for
the St. Lawrence Estuary and Gulf waters.

Keywords: chlorophyll-a concentration; satellite remote sensing reflectance; St. Lawrence Estuary
and Gulf; empirical orthogonal function analysis; coastal ocean; ocean colour

1. Introduction

The St. Lawrence Estuary and Gulf (SLEG), in Eastern Canada, is a large (250,000 km2) and
complex coastal ecosystem where the biological, physical and chemical features are highly dynamic as
a result of strong tides, winds, a high volume of freshwater runoff, complex bathymetry and winter sea
ice [1,2]. Phytoplankton form the basis of this ecosystem. Their abundance is estimated by measuring
the concentration of chlorophyll-a (photosynthetic pigment contained by all phytoplankton), a proxy
for phytoplankton biomass [3]. Phytoplankton are primary producers [4,5] that transfer energy to
higher trophic levels and export carbon to the deep ocean [6]. Knowledge of phytoplankton standing
stock and distribution helps characterize the status of marine ecosystems, thereby facilitating their
protection through sustainable management practices [7]. Phytoplankton are also sensitive indicators
of changing chemical and physical conditions due to their short life cycles [8,9].
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To our knowledge, the only peer-reviewed paper presenting a SLEG chlorophyll-a (Chl)
climatology is based on a limited Coastal Zone Colour Scanner dataset (80 images) covering the
years 1979–1981 [10]. Even though that work described the major features of Chl distribution in the
SLEG (upwelling regions, mesoscale circulation), the results were based on a small number of images
for each month (see their Table 1) and did not cover the entire seasonal cycle, with no data after
September. Thus, there is a need to revise these results with a larger dataset covering a longer time
frame. Constructing such a climatology from in situ data is difficult due to the relatively sparse spatial
and temporal coverage of measurements over such a large extent. As shown by [10], satellite-derived
Chl concentration could provide important information on the ecological status of the SLEG. However,
this region is an optically complex marine environment [11] due to the presence of coloured dissolved
organic matter (CDOM) derived from decaying organic matter and composed of humic and fulvic
acids. Common CDOM sources include land runoff and the degradation products of phytoplankton.
CDOM distribution is driven by the interplay of hydrodynamic mechanisms at different spatial
and temporal scales and by exposure to ultraviolet (UV) light that causes photodegradation [12,13].
CDOM absorbs very strongly in the UV-blue region of the spectrum, competing with phytoplankton
for the absorption of blue photons. As a result, when CDOM is present and does not covary with
Chl, blue-green band ratio algorithms are confounded, causing overestimation of Chl by as much as
400% [14–18]. Previous studies that attempted to measure Chl using satellite ocean colour in these
optically complex waters [18–20] indicated the need for more accurate retrieval algorithms in order
to exploit this information for operational applications such as ecosystem and fisheries management.
Precise estimation of Chl can also be used to provide environmental indicators of ecosystem health,
to develop a response plan for ship-source oil pollution spill or detect changes related to climate
variability [21]. Considering the poor performance of the Ocean Chlorophyll 4 (OC4v4) algorithm [18],
the first step to derive robust seasonal climatologies, phytoplankton phenology, inter-annual trends
and phytoplankton functional types is to establish a better inverse model to estimate Chl from remote
sensing observations.

The goal of the current study is to develop a more accurate satellite-based regional Chl retrieval
algorithm for the SLEG using a statistical approach. Tailored to specific optical conditions, regional
models are a necessity to improve the interpretation of upwelling light from distinctively complex
water bodies and are thus regularly published (e.g., [22–24]). We selected a method based on principal
component analysis (also known as empirical orthogonal functions (EOF)) for its ability to capture
the essential information contained in satellite-derived remote sensing reflectance (Rrs) spectra and
relate it to Chl concentration [25]. The satellite-derived dominant information is related to coherent
variations in measured Chl concentration via a multilinear regression model. This study thus reinforces
the use of an easily-implementable PCA-type approach for inversion of geophysical variables [26–28].
Such an approach has the potential to significantly improve the reliability of Chl retrievals in the SLEG
as shown recently for the optically complex waters of the Bedford Basin, Canada [29].

2. Data and Method

The EOF-based model was developed using a dataset covering the entire Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) era, and its performance is compared against standard and
regionally-adapted Chl retrieval algorithms using an extensive in situ database. The use of SeaWiFS
over other sensors such as the more recent Moderate Resolution Imaging Spectroradiometer (MODIS)
was dictated by the large in situ measurement database that was assembled during the SeaWiFS era
(1997–2010). SeaWiFS was also the first ocean colour sensor with high quality measurements (higher
signal-to-noise ratio), precise calibration and improved spectral and spatial resolution that led to
improved geophysical products compared to its predecessor, the Coastal Zone Color Scanner (CZCS),
which operated between November 1978 and June 1986.
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2.1. In Situ Data

Surface measurements (2927 samples) of in situ Chl data collected by the Department of Fisheries
and Oceans Canada were obtained from the St. Lawrence Global Observatory (SGBD) repository [30]
for the years encompassing the SeaWiFS mission (1997–2010) and sampled in a region bounded from
45.5–50.5◦N and 59.0–71.0◦W. The water samples were processed using fluorometric methods [31,32].
Samples were either processed onboard or frozen to be processed later in the laboratory. Usually,
high-pressure liquid chromatography (HPLC) measurements are preferred over fluorometric methods
to perform satellite validation exercises. Unfortunately, HPLC samples in the SLEG are too few to
obtain a large enough match-up dataset. HPLC and fluorometric measurements are however very
well correlated, with a log-linear regression R2 of 0.88, a slope of 0.995 and an intercept of 0.12,
N = 161. Figure 1 shows that the dataset covers the entire ice-free season (April–November). The Chl
concentration range is [0.03, 76.2 mg chl m−3] with a mean (median) value of 2.81 (1.05) mg chl m−3.
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Figure 1. Frequency distribution of the 2927 original Chl measurements, 93 of which were considered
valid match-ups. (a) Chl concentration frequency distributions (inset presents the same data binned
by order of magnitude). Temporal distributions of Chl concentration for (b) the original and
(c) match-up datasets.

2.2. Match-Up Dataset

The complex and dynamic SLEG ecosystem requires the use of the highest available spatial and
temporal resolution images to capture small-scale and short-term events and minimize errors when
applying non-linear models. We used SeaWiFS Level-1A MLAC (Merged Local Area Coverage, 1.1-km
spatial resolution at nadir) data downloaded from NASA’s Ocean Biology Processing Group (OBPG)
website [33], which were processed using the SeaWiFS Data Analysis System (SeaDAS, Version 7.3.2)
software to derive Rrs. A window of ±3-h between in situ data collection and satellite overpass was
used to perform the match-up effort as recommended [34]. This time window represents a good
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compromise between maximizing the number of match-ups and minimizing the spatio-temporal
variability of the SLEG when comparing satellite and in situ measurements. A 3 × 3 pixel matrix
centered on each in situ sample in the database was extracted from each concomitant satellite pass.
This area (9 km2) was considered large enough to average out small-scale variability in the SLEG [35].
It also reduces potential satellite navigation errors. Any spectrum with negative values was removed,
as these likely presented pixels where the atmospheric correction process failed. Match-ups were kept
when 6 out of 9 pixels were valid. For each match-up, we used the median of the positive Rrs spectra
with non-flagged pixel values. All SeaDAS default flags were used during the processing, including
atmospheric correction failure, stray light, sun glint and possible sea ice or cloud contamination.
The final dataset was composed of 93 valid match-ups from 67 overpasses out of the initial 2927 samples.
This comparatively small set of valid data points emphasizes the impact of cloud cover on satellite
ocean colour potential and the challenges of atmospheric correction in the validation of geophysical
products in coastal zones.

Figures 1 and 2 show that despite the small number of data, the match-up dataset retains
similar properties to the original larger SGDB dataset in terms of concentration distribution, temporal
distribution and spatial coverage of the Chl. The match-up dataset is spatially homogeneous, but
biased towards the June period (typically bloom or post-bloom conditions). Compared to the initial
dataset, fewer match-ups were found for November as a result of cloud cover and low sun elevation,
which limits the number of good images. The range of Chl concentration for the match-up dataset is
[0.14, 22.4 mg chl m−3] with a mean (median) value of 1.20 (0.62) mg chl m−3. The maximum value of
22.4 mg chl m−3 was collected on 31 May 1999 at a station periodically sampled in the St. Lawrence
estuary (48.66◦N, 68.58◦W), which is known to reach high values during the spring bloom [36].
The match-up dataset therefore adequately represents the SLEG in terms of geographic coverage and
phytoplankton dynamics.

2.3. Atmospheric Correction

A critical step of ocean colour data processing is to generate the most accurate Rrs (sr−1) defined as:

Rrs(λ) =
Lw(λ, 0+)
Ed(λ, 0+)

(1)

where Lw is the water-leaving radiance (µW cm−2 m−1 sr−1), Ed is the downwelling irradiance
(µW cm−2 m−1) at the sea surface (0+) and λ (nm) is the wavelength of interest.

Ocean colour sensors measure the radiant energy reflected by the Earth-atmosphere system,
so the contribution from the atmosphere to the total signal reaching the sensor must be removed.
Because this correction depends not only on illumination conditions and atmospheric composition, but
also on the water-type, we characterized the optical signature of the SLEG waters using the approach
from [37]. This method uses the relation between a proxy for the relative abundance of CDOM to Chl
(Rrs(412)/Rrs(443)) and a proxy for Chl concentration (Rrs(555)/Rrs(490)), as these two quantities
are very well correlated in Case-1 waters (black line in Figure 2a). Applying that method on the
SeaWiFS climatological Rrs data available from the OBPG website [38], it is clear that almost all the
SLEG data fall outside the area considered by [37] as representative of Case-1 waters (Figure 2a, purple
interval) and for which the optical properties are solely determined by Chl. Figure 2b maps the
normalized distance between a point and the perfect Case-1. In Figure 2 the colours represent the
distance between the retrieved climatological Rrs value and the black line (i.e., Rrs(412)/Rrs(443),
theoretical perfect case-1), normalized by the width of the purple interval for this Chl concentration.
This colour coding does not present absolute quantitative information, but rather a guide to illustrate
the spatial contrast in the division of the relative abundance of CDOM to Chl, an indicator of the
water type. It is clear from this figure that Rrs is influenced by CDOM to a far greater degree than by
phytoplankton, such that the SLEG cannot be considered Case-1 water. This result is consistent with
the optical classification of coastal waters performed by [11] where the SLEG Rrs spectral shapes were
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classified as waters dominated by CDOM absorption. According to [39], the standard NIR-iteration
atmospheric correction (AC) procedure [40–42] is more suited to CDOM-dominated waters than the
Management Unit of the North Sea Mathematical Models (MUMM) AC [43], which was developed
for turbid waters dominated by mineral particles. Considering the low concentration of suspended
particulate matter (SPM) measured over most of the SLEG [44], the standard NIR-iteration AC was
used to process the SeaWiFS images.
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Figure 2. Representation of the different water-types. (a) Classification of the SLEG climatological
Rrs using the methodology of [37]. The black line represents the perfect Case-1 relation between
Rrs(412)/Rrs(443) and Rrs(555)/Rrs(490). (b) Map of the normalized difference between the
climatological SeaWiFS Rrs spectra and the perfect Case-1 line (see the text), with black crosses
representing the location of the original Chl samples and grey dots representing the retained Chl
samples. The same colour scale applies to both panels.

2.4. Performance Evaluation

To assess agreement between measured and predicted Chl, the mean bias (a measure of the
systematic error; Equation (2)), the root mean squared error (RMSE, a measure of accuracy; Equation (3))
and the absolute mean percentage difference (APD, a measure of accuracy as a percentage; Equation (4)),
similar to the relative error (RE, a measure of accuracy of each estimate as a percentage; Equation (5)),
were calculated using the following equations:

Bias = ∑ (log10Chlestimated − log10Chlmeasured)

N
(2)

RMSE =

√
∑ (log10Chlestimated − log10Chlmeasured)

2

N − 2
(3)
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APD =
100
N ∑

| Chlestimated − Chlmeasured |
Chlmeasured

(4)

RE = 100
| Chlestimated − Chlmeasured |

Chlmeasured
(5)

We also used the slope, intercept and R2 values of the calculated log-linear relationships to
evaluate the performance of the various algorithms. We applied a reduced major axis (RMA) regression
model of Type II (R package lmodel2, [45]) to derive the slopes and intercepts of the regressions.

3. Results

3.1. Performance of Generic Algorithms

Prior to developing a new algorithm, we tested three Chl algorithms (OC4v4, GSM01, GIOP),
which are readily available in SeaDAS. Figure 3a shows that the SLEG dataset is very different from
the global dataset used to develop the OC4v4 algorithm, which attests to the strong impact of CDOM
absorption on the remote sensing signal (Figure 2). Several studies showed that global empirical
relationships do not perform well when external sources of organic and inorganic compound are
present [20,46,47]. As expected, the OC4v4 algorithm overestimates Chl in the SLEG with an APD
of 140% (Table 1). This value can be compared to validation exercises carried out in other coastal
environments such as the Baltic Sea (≈159 to 201% overestimation) [16,48], the southeastern Beaufort
Sea (188%) [49], the La Plata estuary (106–250%) [50] and the Black Sea (≈400%) [51]. Many site-specific
empirical relationships between ratios of Rrs at different wavebands and in situ measurements of Chl
have been derived in previous studies [16,48,49,52,53]. Local tuning methods have the great advantage
of being very simple to implement with the model parameters being optimized for a given dataset.
This type of approach removes or decreases systematic bias in the Rrs due to other components than
phytoplankton because the fit provides the average trend of the data. An attempt was thus made to use
the band-ratio approach using the SLEG match-up dataset. Figure 3a shows that the distribution of the
93 match-ups contains both low and high Chl values for a given band ratio. Tests showed that fitting
the data with higher order polynomial functions (quadratic, cubic, fourth and fifth order) did not
yield significantly better performance than the simple linear regression (p > 0.05). Similar conclusions
were drawn by [54] for the Beaufort and Chukchi seas and by [48] for Baltic waters. The band-ratio
algorithm that resulted in the best performance (RMSE, APD and R2, Figure 3b and Table 1) for the
SLEG is therefore the linear regression:

log10Chlestimated = a0 + a1X (6)

where a0 = 0.047, a1 = −2.1 and X is the log10 of the maximum of Rrs(443)/Rrs(555), Rrs(490)/Rrs(555)
or Rrs(510)/Rrs(555). The Ocean Chlorophyll 4 Linear (OC4L) algorithm provides better estimates of
Chl than the OC4v4 (Table 1) with an RMSE of 0.29 log10 mg chl m−3, an APD of 56% and an R2 of 0.35.
Yet, the results suggest that even a local optimization process for the SLEG does not lead to satisfactory
results in assessing the status of ocean biota since this approach does not provide the ability to remove
the contribution from other components than Chl concentration to the total reflectance signal.
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Figure 3. Band ratio algorithms. (a) Comparison of the St. Lawrence Estuary and Gulf (SLEG)
match-ups (black dots) and SeaBASS [55] datasets (light grey dots). The grey line corresponds to the
OC4v4 polynomial fit, and the black line is the linear regression of in situ Chl and corresponding SLEG
remote sensing reflectances ratios, with R443/555 = Rrs(443)/Rrs(555), R490/555 = Rrs(490)/Rrs(555)
and R510/555 = Rrs(510)/Rrs(555). (b) Scatterplot of in situ versus satellite-derived Chl using the
OC4L algorithm.

Table 1. Performance of the various algorithms tested. OC4v4, OC4L, GSM01, GIOP and EOF are the
Ocean Chlorophyll 4, Ocean Chlorophyll 4 Linear, Garver-Siegel-Maritorena, Generalized Inherent
Optical Property and empirical orthogonal function algorithms.

Method R2 Bias (log mg m−3) RMSE (log mg m−3) APD (%) N %N < 50% Error Slope Intercept

OC4v4 0.36 0.24 0.38 140 93 34 0.72 0.2
OC4L 0.35 ≈0 0.29 56 93 66 0.59 −0.059

GSM01 0.27 −0.073 0.33 53 58 59 1.1 −0.065
GIOP 0.22 −0.083 0.38 54 64 52 1.2 −0.041
EOF 0.65 ≈0 0.22 41 93 71 0.8 −0.028

Two semi-analytical algorithms available in SeaDAS were also tested. The Garver-Siegel-
Maritorena version 1 (GSM01) [56] algorithm was mostly developed using an oceanic dataset, and the
Generalized Inherent Optical Property (GIOP) [57] algorithm has been recently developed to provide
better performances in coastal waters. Unlike OC4-type algorithms, the GSM01 and GIOP algorithms
use Rrs absolute values rather than band ratios. A semi-analytical reflectance model is coupled to an
optimization algorithm (e.g., Levenberg–Marquardt method) to find the best set of Chl concentration,
yellow substance absorption and particulate backscattering that will minimize the quadratic difference
between measured and modeled Rrs. In theory, this type of algorithm decouples the contribution from
CDOM and phytoplankton, making it suitable for coastal waters. Nevertheless, it requires a priori
knowledge of the spectral shape of absorption and backscattering of the marine components, which
can lead to increased errors in the retrieved information when the spectral dependence contains bias.
Table 1 shows that both semi-analytical approaches (GSM01 and GIOP) perform relatively well in the
SLEG with an APD of 53% and 54%, respectively. In other coastal environments, results obtained from
the GSM01 algorithm [49,50,52] indicated significant overestimation of Chl (96–121% in the La Plata
estuary, 49% in the Chesapeake Bay, 101% the Beaufort Sea). Both GSM01 and GIOP did not performed
well in the South China Sea even when using in situ Rrs [58]. Together, the results obtained with the
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OC4v4, OC4L and the two semi-analytical algorithms indicate that there is still room for improvement
in the precision of Chla estimation in the SLEG and justifies the need to develop a SLEG-specific
algorithm that relies on a different approach.

3.2. Development of a Chlorophyll Algorithm Using EOF

The approach of [29] (hereafter referred to as EOF) demonstrated two important results when
applying non-parametric statistical methods to inversion of the ocean colour signal. First, it is
possible to build a stable model to derive Chl concentration from a small training set of remote
sensing reflectances (<30), and second, multispectral resolution (SeaWiFS-like channels) shows similar
capability as hyperspectral resolution when inferring Chl concentration from Rrs.

The 93 Rrs match-ups for the six SeaWiFS wavelengths were aggregated into a single matrix
(93 × 6), which was log-transformed to avoid a skewed distribution. No spectral normalization was
performed as this did not improve the results. A principal components analysis was performed on this
matrix with the principal function from the psych package in R [59]. The log-linearized and correlated
visible channels were transformed into linearly-independent principal components (also called modes
of oscillation) that represent the global covariance structure of the Rrs. The primary mode of oscillation
accounts for maximum variability of Rrs and each successive (subordinate) mode accounts for as much
of the remaining variability as possible.

A full linear model was first constructed using all of the available six modes. The model was
then constructed by performing the Akaike information criterion (AIC)-based stepwise regression
(MASS package in R, [60]), which attempts to find the best variable selection by adding and removing
modes, keeping the model as simple as possible. A minimum AIC value is a balance between model
data fit and a penalty based on the number of dependent variables [61]. Chl estimates were thereby
derived by performing a multilinear regression with the smallest AIC value using the scores from the
selected modes:

log10Chlestimated = B0 +
N

∑
i=1

BiSi (7)

where Bi are the coefficients, N is the number of retained modes (N ≤ 6, corresponding to the number
of visible channels of SeaWiFS) and Si are the score vectors. For our complete dataset (Section 2.2),
the final model is the same as the full one, meaning all modes parsimoniously explain variance in
Chl within the training dataset [62]. Besides, all predictors of the regression are significant (p <0.05).
To validate the approach of [29] where the subordinate modes are sometimes removed, we carried
out a cross-validation exercise where the full scores were divided into a training sample to define a
multilinear regression and a test sample to evaluate the method. Minimum and maximum training
data were 20 and 80%, respectively. This exercise was performed 1000 times for each sample size, with
1% increments, choosing the most important modes generated from the stepwise AIC criterion-based
procedure (generally between two and six). For every iteration, the fewest number of modes was
balanced against the prediction power, using a combination of forward selection and backward
elimination of the potential predictors [60]. The Bi coefficients of the selected models were used
with all Rrs-derived score vectors to predict Chl estimates. Figure 4a shows the stepwise regression
method (selection of the lowest AIC model) and its performance improvements as a function of the
training data size (%). Stable performance was reached once 50% of the training dataset was used (i.e.,
∼47 match-ups). This cross-validation exercise allows insight into the stability of the model when it
comes to the number of match-ups needed to represent temporal and spatial Chl sampling constraints
shown in Figures 1 and 2.

The performance of the EOF algorithm is shown in Figure 4b and Table 1. There is a good
improvement over the OC4L and the two semi-analytical algorithms with an RMSE of 0.22 log10

mg chl m−3, an APD of 41% and a R2 of 0.65. The slope and intercept values are also better than
the OC4L.
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Figure 4. Features of the EOF method: (a) stability of the EOF; (b) scatter plot of in situ Chl versus
satellite-derived Chl using the EOF, with the dashed line as the 1:1 ratio; (c) all modes of oscillation
(solid coloured lines are linear interpolation over wavelengths of the discrete spectral data and are
used as a guide to aid visualizing the spectral signature).

4. Discussion

In the optically complex SLEG region, the EOF model has considerable advantages over band
ratio algorithms. Valuable information is retained by using the six SeaWiFS channels. In the dataset,
the further apart the channels, the less correlated they are (correlation matrix not shown), meaning
a higher variance should emerge from incorporation of the marginal channels. The blue channel
(412 nm) probably records variations that are not directly related to Chl concentration variations, but
rather to CDOM absorption, which should partly blend with the usual phytoplankton blue dominant
absorption peak at 443 nm. At the other end of the spectrum, although the added red channel (670 nm)
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is dominated by water absorption, a smaller, but interesting contribution can also appear from the
chlorophyll-a absorption band centered at 675 nm.

Figure 4c shows the six modes of oscillation derived from the Rrs matrix. Rrs being a function of
both absorption and backscattering, its variations are thus regulated by spectral variations of inherent
optical properties [63]. Backscattering should not show strong variations in the SLEG due to very low
SPM concentrations [44], leaving absorption as the primary source of spectral variability. The work in
[47] showed the contributions from different optical components to the absorption spectrum based
on 371 in situ surface absorption measurements from all the major ocean basins. According to these
results, our principal modes of oscillation can be attributed to the fraction of contribution to the
total absorption by CDOM (Mode 1, 66% of variance explained), water (Mode 2, 29% of variance
explained) and phytoplankton (Mode 3, 4.1% of variance explained), while Mode 4 (0.5% of variance
explained) mostly represents SeaWiFS variations in the red channel and, to a lesser extent, the green
channel. The spectral behaviour of the red phytoplankton absorption peak is known to vary for
different species [64,65]. The minor variations in the red could therefore be caused by different species
and provide a very slight, but superior prediction ability when this variance is integrated with the
model. Considering the weak visible absorption of detrital particles in the SLEG (anap(440) = 0.031,
N = 148, [13]), it is unclear if subordinate modes should be associated with a definitive variation of
optical property (Modes 5 and 6 together account for <0.3% of the variance).

The EOF model is a superior predictor for Chl concentration retrieval in the SLEG for the SeaWiFS
data, as it separates the misleading spectral effects from the other major optically-active component
(CDOM). Overall, EOF statistics show a better performance than all the other tested algorithms.
The log-based bias and RMSE of the EOF method highlight its ability to operate well across the
dynamic range of our Chl match-ups (∼2 orders of magnitude). Considering the small magnitude
of the values involved in the calculation of the APD and the precision of the in situ fluorometric
measurements, these results are encouraging. As shown in Figure 5, the model performance was
further evaluated by examining the relative error (1) as a function of the Chl concentration, to assess
whether the algorithm was consistent for the entire range of variation of Chl concentration and (2) as a
function of the geographical location of the match-ups.
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Figure 5. Relative error as a function of (a) Chl concentration and (b) spatial distribution.

Chl concentrations used to develop the EOF model span over a limited range with few values
above 3 mg m−3 (Figure 5a). The EOF model may thus not adequately capture the magnitude of the
Rrs spectra variations for more eutrophic waters. This is a limit inherent to any empirical method that
will only perform well in the range of data that were used to develop it. Figure 5a also shows that the
largest relative errors (>100%) are mostly limited to Chl concentrations lower than 0.5 mg m−3. Table 1
shows that most (71%) of the EOF predictions remain under 50% relative error. Figure 5b shows that
no obvious large-scale spatial pattern appears in the geographic relative error distribution. In the St.
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Lawrence Estuary where there is a high density of match-ups, only two of the 21 retrievals yield a
relative error above 80%. The EOF approach does not appear to have major geographical bias over
SLEG waters.

Previous attempts at estimating Chl in the SLEG from satellite remote sensing showed the
difficulty in achieving reasonable accuracy. The work in [18] tested several models using fluorometric
Chl values and a wide variety of band ratios and band differences. Their results showed that an
algorithm based on two band-ratios (Rrs443/Rrs510 and Rrs443/Rrs555) yielded an estimation error of
70% using in situ radiometric measurements and 95% when using SeaWiFS-derived Rrs. Other studies
in optically complex coastal waters showed that it is often necessary to avoid band-ratio-based
algorithms to better reflect the specificity of the local/regional biophysical characteristics [66–70].
As part of the CoastColor validation program, the accuracy of a neural network approach was applied
to MERIS to estimate Chl. When evaluated with a network of moored buoys (Larouche, unpublished)
it was shown inadequate for the SLEG, yielding accuracies of about 300%. The EOF method is thus
the most appropriate Chl algorithm developed for the SLEG to date and is a major improvement over
operational or other past regional algorithms.

Figure 6 shows the application of the EOF method on an L2 image acquired in the fall of 2003.
Values below 0.1 and above 10 mg chl m−3 (representing <0.07% of the Chl estimates) were removed
to effectively depict Chl patterns. The image displays strong spatial variability of Chl concentration in
the SLEG, including mesoscale features in the estuary part.

0          100km

Figure 6. SLEG chlorophyll for 12 October 2003, as predicted by the EOF algorithm.

One of the reasons why our dataset was limited to 93 match-ups is atmospheric correction (AC)
failures. Addressing the AC challenge in the SLEG should provide a major improvement in future
algorithm development for these optically complex waters. Local measurements for developing such a
regionally-specific AC scheme were recently derived by [71].

5. Conclusions

A method based on empirical orthogonal functions was used to improve the accuracy at which
chlorophyll-a (Chl) concentrations can be retrieved for the optically complex St. Lawrence Estuary
and Gulf. The main strength of the method lies in its ability to decouple the different contributors
(i.e., water, yellow substances, phytoplankton) to the total reflectance signal. The Chl concentration
retrieval accuracy was greatly improved from 140% using the OC4v4 band-ratio approach to 41%.
In addition, the EOF method did not show any spatial bias, making it applicable to the entire region of
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interest. The third report from the International Ocean-Colour Coordinating Group [72] stresses the
need for new algorithms and a fresh approach to derive information from optically complex waters.
A major impediment for such an endeavour is the lack of in situ data publicly available for research.
With the increasing popularity of the SeaBASS dataset, the EOF method could easily be applied to
global data. Conjointly, water-type tuning could also help improve algorithm performance. Our work
using the SeaWiFS ocean colour satellite was a proof of concept. The same approach could in fact be
applied to other satellite sensors (MODIS, MERIS, VIIRS, OLCI) given that a sufficiently large match-up
dataset is assembled. This would extend the time series from 2010 to present day. Implementing
the method using data from several ocean colour satellites would also help overcome some of the
temporal limitations by taking advantage of different equatorial crossing time, filing inter-orbit gaps
and limiting sun glint effects.
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