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Abstract: This study developed a retrieval algorithm for reflected shortwave radiation at the top of the
atmosphere (RSR). This algorithm is based on Himawari-8/AHI (Advanced Himawari Imager) whose
sensor characteristics and observation area are similar to the next-generation Geostationary Korea
Multi-Purpose Satellite/Advanced Meteorological Imager (GK-2A/AMI). This algorithm converts the
radiance into reflectance for six shortwave channels and retrieves the RSR with a regression coefficient
look-up-table according to geometry of the solar-viewing (solar zenith angle, viewing zenith angle,
and relative azimuth angle) and atmospheric conditions (surface type and absence/presence of
clouds), and removed sun glint with high uncertainty. The regression coefficients were calculated
using numerical experiments from the radiative transfer model (SBDART), and ridge regression for
broadband albedo at the top of the atmosphere (TOA albedo) and narrowband reflectance considering
anisotropy. The retrieved RSR were validated using Terra, Aqua, and S-NPP/CERES data on the 15th
day of every month from July 2015 to February 2017. The coefficient of determination (R2) between
AHI and CERES for scene analysis was higher than 0.867 and the Bias and root mean square error
(RMSE) were −21.34–5.52 and 51.74–59.28 Wm−2. The R2, Bias, and RMSE for the all cases were
0.903, −2.34, and 52.12 Wm−2, respectively.

Keywords: Himawari-8/Advanced Meteorological Imager (Himawari-8/AHI); Geostationary Korea
Multi-Purse Satellite/Advanced Meteorological Imager (GK-2A/AMI); broadband albedo at the top
of the atmosphere (TOA albedo); reflected shortwave radiation at the top of the atmosphere (RSR);
Clouds and the Earth Radiant Energy System (CERES)

1. Introduction

Reflected shortwave radiation at the top of the atmosphere (RSR) is affected by the surface
characteristics (15%); atmosphere gases such as aerosols, vapors, etc. (20%); and clouds (65%) [1].
In particular, a clear-sky area is greatly influenced by short-wavelength ultraviolet and near-infrared
rays depending on surface characteristics, whereas a cloudy-sky area is affected more by the cloud
properties [2]. In addition, aerosols such as particulate matter not only affect cloud distribution and
characterization [3], but also increase the planetary albedo in relation to absorption and reflection of
RSR [4], causing energy imbalance and global cooling [5,6]. RSR and broadband albedo at the top
of the atmosphere (TOA albedo) retrieved from high-resolution satellite data can be used to analyze
temporal and spatial changes in the atmosphere due to climate change and aerosols.

Since the 1970s, many studies have been measuring and analyzing RSR using radiative transfer
models and satellite-based broadband or narrowband sensor data. However, radiative transfer models
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require prioritization of numerical experiments based on input data, and they are time consuming
because calculation for each lattice is inevitable [7,8]. In addition, studies using broadband sensor data
are limited to those on local radiation budget studies because broadband sensors such as National
Aeronautics and Space Administration (NASA)’s the Earth Radiation Budget Experiment (ERBE) [9]
and Clouds and the Earth Radiant Energy System (CERES) [10], which are mounted on polar orbiting
satellites, provide data at resolutions over 20 km. These sensors are not suitable for analyzing
the spatial and temporal distribution of RSR [11] because air pollution (natural or anthropogenic),
urbanization, and forest fires in small areas cannot be easily detected using their data. In general,
the RSR method using a radiation transfer model and broadband sensor data from polar orbit satellites
provide higher accuracy than narrowband sensors, but the analysis of spatial and temporal changes is
limited. In contrast, narrowband sensor data from geostationary satellites provide superior temporal
and spatial continuity. For narrowband sensor data, the reflectance for each channel (CH) is assumed to
be isotropic, which means the ratio of shortwave radiation is incident to the atmosphere and irradiance
observed from the satellite. However, because isotropy is not satisfied in actual atmospheric conditions
(surface type, water vapor, etc.), it is corrected using a radiative transfer model and a broadband
sensor [12]. The relationship between the reflectance of a narrowband sensor and TOA albedo [11] and
the narrowband reflectance and the RSR are affected [13] by solar zenith angle (SZA), viewing zenith
angle (VZA) and relative azimuth angle (RAA) [14], surface type [15], and anisotropy [16,17].

Investigating RSR retrieval using the reflectance of narrowband sensors, Viollier [17] retrieved
RSR using the narrowband reflectance of Meteosat data from 20 January to 31 March 1999, assuming
that the sun glint (SG) removal method, isotropic only method, and ERBE anisotropy corrected method
were comparable. As a result, when the assumptions of isotropy of Meteosat data and SG removal
were considered, the coefficient of determination (R2) with ScaRaB data was 0.880, which was larger
than R2 values of 0.845 and 0.863 in the case of only isotropy and ERBE anisotropy correction. In March,
April, June, and September 2014, Vazquez-Navarro et al. [18] retrieved RSR through artificial neural
network based on the narrowband reflectance (0.6, 0.8, 1.6 µm) of Meteosat-8/Spinning Enhanced
Visible and Infrared Imager (SEVIRI) and input data (SZA, VZA, RAA, land/sea mask). In their study,
the Bias compared with CERES Single Scanner Footprint (SSF) data were −15.99, −16.81, −30.88,
and −7.48 Wm−2, respectively, and R2 was over 0.921. To evaluate the accuracy of long-term RSR, Niu
and Pinker [12] retrieved RSR using the narrowband reflectance (0.6–0.8 µm) of Meteosat-8/SEVIRI
and anisotropy data from April to July 2004. They calculated anisotropy using the radiative transfer
model (MODTRAN 3.7) [19] and CERES broadband sensor data. The results of RSR calculation using
the reflectance of Meteosat-8/SEVIRI and anisotropy were compared with CERES SRBAVG data in
time-space agreement (4 month average, 100 km resolution). Statistical analysis showed that R2 was
0.960 and the Bias and root mean square error (RMSE) were 2.5 and 5.9 Wm−2, respectively.

In previous studies on retrieving RSR from the radiance of satellites, anisotropy is calculated using
a radiative transfer model or broadband sensor data, but input variables required for retrieving the
anisotropy of these narrowband reflectances are either missing or inaccurate [2]. Comparing the results
of the RSR retrieval with the CERES data, Niu and Pinker [12] used long-term averaged data at 100 km
resolution. Their validation results were good, but in evaluating the accuracy of the algorithm, they did
not consider problems that may occur in other situations (such as seasons) and specific phenomena
(such as precipitation and typhoon) [20]. Vazquez-Navarro et al. [18] produced high spatial-temporal
resolution data for a single case over a specific time period and compared it with CERES data, but it is
difficult to judge the accuracy of the long-term algorithm.

Considering the above-mentioned issues, this study was conducted to develop an RSR algorithm
from the outputs of the next generation Geostationary Korea Multi-Purpose Satellite/Advanced
Meteorological Imager (GK-2A/AMI) [21], and is a preliminary study for the RSR retrieval algorithm
using Himawari-8/AHI (Advanced Himawari Imager) [22] data, which is similar to GK-2A/AMI data.
That is, unlike previous studies using input data of atmospheric elements (clouds, aerosols, water
vapor, etc.), Lee et al. [23] retrieved TOA albedos using narrowband reflectance of each CH and the
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regression coefficient look-up-table (LUT) according to geometry of the solar-viewing (SZA, VZA,
and RAA) and atmospheric conditions (surface type and absence/presence of clouds). In this process,
the narrowband reflectances was assumed isotropic using radiative transfer model (Santa Barbara
DISORT Atmospheric Radiative Transfer, SBDART) [24]. However, in this study, we considered the
anisotropy of the geometry of the solar-viewing and atmospheric conditions when retrieving RSR,
thereby removing solar reflection regions with high uncertainties, i.e., SG. The retrieved results were
compared with those of Terra, Aqua, and Suomi National Polar-orbiting Partnership (S-NPP)/CERES
data. Section 2 describes input data and validation data. In Section 3, the theoretical background and
retrieval algorithm of RSR are presented. Sections 4 and 5 discusses the output and validation results.
Section 6 summarizes the conclusions.

2. Materials

2.1. Input Data

This study is a preliminary investigation of the RSR retrieval algorithm using GK-2A/AMI
(128.2◦E, 0.0◦N), which will be launched in 2018. The algorithm is based on Himawari-8/AHI (140.7◦E,
0.0◦N) whose sensor characteristics are similar to that of GK-2A/AMI. The Himawari-8 satellite was
launched on 7 October 2014 and has 16 CHs [25]. It can retrieve more meteorological factors than the
existing MTSAT satellites with five sensors [26]. It has temporal and spatial resolutions of 10 min and
0.5–2.0 km, respectively, as shown in Table 1. In this study, six shortwave CHs of Himawari-8/AHI
were used for high-resolution RSR retrieval. Because of the varying spatial resolutions, they were
averaged to a spatial distance of 2.0 km. Cao et al. [27] reported that the absolute radiometric calibration
accuracy of S-NPP/VIRS is less than 2% for CH1-CH6 and the calibration accuracy of this data and
Himawari-8/AHI was reported to be within 6–8% of CH1-CH4 and CH6 except for CH5 (5%) [28].

Table 1. Shortwave channel (CH) data from Himawari-8/AHI for retrieving RSR.

Channel Wavelength (µm)
Resolution

Main Purpose of Use
Spatial Numbers of Pixels Temporal

CH1 (Blue) 0.47 (0.43–0.48) 1.0 km 11,000

10-min
Full Disk

Weather forecasting
Climate modeling

CH2 (Green) 0.51 (0.50–0.52) 1.0 km 11,000
CH3 (Red) 0.64 (0.63–0.66) 0.5 km 22,000
CH4 (NIR) 0.86 (0.85–0.87) 1.0 km 11,000
CH5 (NIR) 1.61 (1.60–1.62) 2.0 km 5500
CH6 (NIR) 2.26 (2.25–2.27) 2.0 km 5500

2.2. Validation Data

In this study, data from CERES SSF level 2 edition (Terra, Aqua: 4A; S-NPP: 1A) with a resolution
of 20 km within the field of view were used for validation. CERES sensors are mounted on low
orbiting satellites (TRMM: 1997/12–2015/4, Terra: 1999/12–Present, Aqua: 2002/5–Present, S-NPP:
2011/10–Present) [5,10] and provide long-term radiometric data for shortwave (0.3 to 5.0 µm),
atmospheric window (8 to 12 µm), and total-wave (0.3 to 200 µm) region as part of the NASA Earth
Observing System (EOS) satellite project [27,29]. Su et al. [30] compared the all-sky flux from the CERES
retrieval (along-track observation) with that from the MODIS retrieval and reported uncertainties
in the CERES data of 3.3% (9.0 Wm−2) and 2.7 % (8.4 Wm−2) for ocean and land areas, respectively.
They further reported that the direct integration test revealed the monthly Bias and RMSE of CERES to
be less than 0.5 and 0.8 Wm−2, respectively.

The results of this study, retrieved using AHI, were averaged at intervals of 10 km and coincided
with the CERES data because Himawari-8/AHI and CERES have different temporal and spatial
resolutions. Based on the results of the study, CERES data within ±5 min were used [20,23]. Then, since
the 15th day of each month is the point in time that can represent the whole month in terms of
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atmospheric conditions (clear fraction, atmospheric transmissivity, etc.) and surface characteristics
(albedo, vegetation index, etc.) [31,32], a comparison of Himawari-8/AHI and with Terra, Aqua,
and S-NPP/CERES data was conducted on the 15th day of each month from July 2015 to February 2017.

3. Methods

3.1. Theoretical Background

The theoretical background of RSR is shown in Figure 1. In this figure, the solid line is the
primary absorption and reflection path of the shortwave radiation (extraterrestrial solar irradiation)
incident on the atmosphere, and the dotted line shows the multiple scattering process by the surface
and atmosphere [33]. RSR is green-shadowed in this schematic. It was approximated by using an
infinite geometric series, as shown in Equation (1), because atmospheric reflection (R) times surface
albedo (α) is less than 1 (αR < 1) [34]. In Equation (1), the solar constant (=1361 Wm−2) [35] and the
SZA [36] are calculated by the theoretical equation in the previous study, however, TOA albedo can be
retrieved using the narrowband reflectance of each CH and regression coefficients, as expressed by
Equation (2) [11,13–15].

RSR = RS + αS(1 − R − A)2 + α2SR(1 − R − A)2 + · · ·
= RS + S(1 − R − A)2[α + α2R + · · · ]

≈ S ×
(

R + (1−R−A)2

1−αR

)
≈ S0 cos(SZA)d2

0/d2 × (TOA albedo)

(1)

TOA albedo =
6
∑

i=1
ci(SZA, VZA, RAA, Surface type, Absence/Presence of clouds) ρi

= c1ρ0.47µm + c2ρ0.51µm + c3ρ0.64µm + c4ρ0.86µm + c5ρ1.61µm + c6ρ2.26µm

(2)

In Equations (1) and (2), A, R, and α are atmospheric absorption, scattering, and surface albedo,
respectively; S0, and d0

2/d2 are solar constant, and earth-to-sun distance in astronomical units; c1–6 is
the regression coefficient according to geometry of the solar-viewing and atmospheric conditions; and
ρ0.47µm, ρ0.51µm, ρ0.64µm, ρ0.86µm, ρ1.61µm, and ρ2.26µm are the narrowband reflectance of each CH.
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Figure 1. Schematic representing the RSR (green area) in the one-layer solar radiation model. The line 
at the top of the atmosphere represents the atmospheric contribution (red) associated with cloud 
reflection, and the dotted line indicates the surface contribution (blue area) associated with surface 
reflection. The variables A, R, and α are atmospheric absorption and scattering of extraterrestrial solar 
irradiation, reflection by clouds, and surface albedo, respectively. 

 

Figure 1. Schematic representing the RSR (green area) in the one-layer solar radiation model. The line
at the top of the atmosphere represents the atmospheric contribution (red) associated with cloud
reflection, and the dotted line indicates the surface contribution (blue area) associated with surface
reflection. The variables A, R, and α are atmospheric absorption and scattering of extraterrestrial solar
irradiation, reflection by clouds, and surface albedo, respectively.
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3.2. Reflected Shortwave Radiation Retrieval Algorithm

The step-by-step algorithm is shown in Figure 2. As shown in this figure, Himawari-8/AHI was
converted into reflectance for each CH using radiance (Process 1). As shown in Equation (2), TOA
albedo was retrieved by the narrowband reflectance and the regression coefficient LUT according to
geometry of the solar-viewing and atmospheric conditions. Finally, SG was removed and RSR was
retrieved using Equation (1). The regression coefficient used in this study was simulated, as shown
in Table 2, using the SBDART according to the geometry of the solar-viewing and atmospheric
conditions. More specifically, the SBDART simulation was performed under the following conditions:
12 SZAs, 18 VZAs, 19 RAAs, six atmospheric profiles, and five surface types in the 3.3 µm range
at 0.2. Additionally, four aerosol types and four aerosol visibilities in the clear-sky area, and eight
cloud heights and five cloud optical thicknesses in the cloud-area were included when configuring
the simulation conditions. The regression coefficients can be obtained with a multiple linear
regression model or ridge regression model, based on the simulation results (independent variables:
reflectance of each CH taking into account anisotropy; dependent variable: TOA albedo). When
a multiple linear regression model is used to determine the regression coefficient with the least
square method [11,13], multicollinearity arises because of the high correlations between the shortwave
CHs [37,38], thus lowering the accuracy of the regression coefficient; therefore, we used a ridge
regression model [39,40]. Lee et al. [23] compared the accuracy of TOA albedos estimated by a multiple
linear regression model and a ridge regression model with the Himawari-8/AHI data of 20 August
2015, by checking their respective results against the corresponding CERES data. The comparison
revealed that the ridge regression model outperformed the multiple linear regression model in terms
of R2 and RMSE (0.914 and 0.055 vs. 0.856 and 0.191).
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Figure 2. Flow chart of the retrieval algorithm for RSR. Reflectance converted from radiance from each
shortwave channel (CH) (Process 1) is used to retrieve RSR using regression coefficients look-up-table
(LUT) according to geometry of the solar-viewing (SZA, VZA, and RAA) and atmospheric conditions
(surface type and absence/presence of clouds) (Process 2). These regression coefficients were
calculated using results from the radiative transfer model (SBDART), which considered geometry of
the solar-viewing and atmospheric conditions, and a ridge regression model.
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Table 2. Numerical experiments of SBDART for creating regression coefficient look-up-table (LUT).

Parameter Values Used for Look-Up-Table Number

Spectral range 0.2 to 3.3 at 0.005 µm 620
Solar zenith angle 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 75◦, 80◦, and 85◦ 12

Viewing zenith angle 0◦ to 85◦ at 5◦ increments 18
Relative azimuth angle 0◦ to 180◦ at 10◦ increments 19

Atmospheric profiles Tropical, Mid-latitude summer, Mid-latitude winter
Subarctic summer, Subarctic winter, and US62 standard 6

Surface types Ocean, Lake, Vegetation, Snow, and Sand 5
Aerosol types Rural, Urban, Marine, and Tropospheric 4

Aerosol visibilities 5, 10, 15, and 20 km 4
Cloud height 2, 4, 6, 8, 10, 12, 14, and 16 km 8

Cloud optical thickness 8, 16, 32, 64, and 128 5

3.2.1. Anisotropy Consideration

The TOA albedo retrieved by previous studies [23] was calculated assuming the narrowband
reflectance to be isotropic. However, in this study, RSR was retrieved considering anisotropy. In other
words, in Lee et al.’s [23] algorithm, the radiance of each CH was converted into the reflectance of
each CH. As in Equation (2), the regression coefficient LUT were produced according to geometry of
the solar-viewing and atmospheric conditions to retrieve the TOA albedo. The regression coefficients
used in their study were based on the results of numerical experiments using the SBDART, in which
simulations were performed according to atmospheric conditions, and a ridge regression (independent
variables: narrowband reflectance of each CH assuming isotropy as in Equation (3); dependent
variables: TOA albedo integrated from 0.2 to 3.3 µm using SBDART). In this process, the narrowband
reflectance of each CH is assumed to be isotropic as shown in Equation (3). However, to retrieve
TOA albedo accurately, the narrowband reflectance should be expressed as anisotropy, as shown
in Equations (4) and (5). The anisotropy of the reflectance for each CH varies depending on the
atmospheric conditions (surface type, absence/presence of clouds, etc.) [17,41–44]. Moreover, in the
process of converting radiance into irradiance using Equation (3), the error in the mean dispersion was
found to be higher when the Lambertian assumption (i.e., no anisotropic correction) was adopted than
when anisotropy was considered (16.9% vs. 2.2%) [45].

ρi =
πLi(SZA, VZA, SAA, VAA)

S0,i cos(SZA)d2
0/d2 , i = CH 1, 2, 3, 4, 5, 6 (3)

ρi =
Fi

S0,i cos(SZA)d2
0/d2 , i = CH 1, 2, 3, 4, 5, 6 (4)

Fi = πLi(SZA, VZA, SAA, VAA)/ADM (5)

In Equations (3)–(5), Li and S0,i are the radiance at the top of the atmosphere and the solar
constant of each CH, respectively; SAA, and VAA are solar azimuth angle, and viewing azimuth
angle, respectively; and Fi and ADM are irradiance at the top of the atmosphere of each CH [46] and
anisotropy [16], respectively.

Considering the abovementioned factors, in this study, the regression coefficient LUT and the
TOA albedo were calculated by considering the anisotropy of reflectance for each CH, as shown in
Equations (4) and (5). The results were compared with those of Lee et al. [23]. Himawari-8/AHI,
Terra, Aqua, and S-NPP/CERES data on the 15th day of each month from July 2015 to February
2017 (all 60 cases) were used. TOA albedo considering isotropy and anisotropy using narrowband
reflectance is shown in Table 2.
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3.2.2. Sun Glint Removal

SG is a phenomenon in which sunlight reflected from the Earth’s surface is incident on the field
of view of the satellite sensor depending on the geometry of the solar–viewing. The measured value
becomes greater than the originally measured value, and therefore the reflection appears brighter [47].
Previous studies have reported that SG removal or correction is necessary because it can cause serious
errors in ocean-related satellite output [48]. In this study, SG was calculated using information of the
SZA, VZA, and RAA (Equation (6)), and statistical analysis was performed using Himawari-8/AHI
and Terra/CERES data for proper SG removal (Figures 3 and 4).

SG = cos−1[cos(SZA) cos(VZA) + sin(SZA) sin(VZA) cos(RAA)] (6)

1 
 

 
3 

 
(a)                                (b) 

 

(c)                                (d) 

Figure 3. Relative bias (%Bias), mean percentage error (MPE in percent), coefficient of determination
(R2), and number in Himawari-8/AHI and Terra/CERES data sets as a function of sun glint (SG) angle
(15 October 2015).
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Figure 4. Red–Green–Blue (RGB) composite imagery (a–c); and RSR (d–f) of Himawari-8/AHI at 0000,
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areas where sun glint (SG) ≤ 20◦. Spatio-temporal matched RSR (Wm−2) of: AHI (g); and CERES (h)
on this date; and percentage error (%) of: two dataset sets (i); and sun glint (SG) angle (j).

4. Results

4.1. Evaluation of the Reflected Shortwave Radiation Algorithm

4.1.1. Anisotropy Consideration

Table 3 compares the results of isotropic and anisotropic assumptions using Himawari-8/AHI
and the TOA albedo of Terra, Aqua, and S-NPP/CERES for this study. R2 values between isotropic and
anisotropic Terra, Aqua, and S-NPP/CERES were similar. However, relative Bias (%Bias) and relative
RMSE (%RMSE) were −1.14% and 21.04%, respectively, for anisotropic cases, which were improved
from the isotropic case (%Bias = 5.16%; %RMSE = 22.67%), and the mean percentage error (MPE) was
also improved. The cases of 15 July 2015, 15 May 2016, 15 June 2016, and 15 July 2016 showed better
isotropy than the anisotropy, and the cause will be further discussed in Figure 6.



Remote Sens. 2018, 10, 2 9 of 25

Table 3. Statistical results of TOA albedo using Himawari-8/AHI and Terra, Aqua,
and S-NPP/CERES data.

Date
Isotropy Anisotropy

N
R2 %Bias %RMSE MPE R2 %Bias %RMSE MPE

15 July 2015 0.892 1.07 21.61 2.34 0.892 −4.77 21.78 −3.56 382,868
15 August 2015 0.881 3.99 22.99 4.98 0.882 −2.80 21.98 −1.72 765,902
15 September 2015 0.896 7.54 23.44 7.96 0.897 0.66 20.86 1.25 748,431
15 October 2015 0.894 8.17 24.55 8.65 0.889 1.27 21.94 2.60 769,128
15 November 2015 0.907 7.63 23.23 8.33 0.897 −0.43 21.80 0.95 346,584
15 December 2015 0.894 4.08 21.94 5.37 0.885 −1.74 21.56 0.00 318,051
15 January 2016 0.908 1.76 20.52 3.35 0.905 −0.79 20.47 1.03 209,119
15 February 2016 0.904 8.13 22.09 9.47 0.899 1.39 19.73 3.56 700,569
15 March 2016 0.906 6.93 21.49 7.53 0.902 0.23 19.56 1.53 608,431
15 April 2016 0.900 4.43 22.57 4.63 0.900 −1.18 21.15 −0.54 622,010
15 May 2016 0.910 −0.06 20.18 −0.98 0.910 −4.58 20.24 −5.43 457,664
15 June 2016 0.895 −0.91 20.07 −0.98 0.897 −6.11 20.33 −6.32 414,194
15 July 2016 0.889 0.45 21.73 1.14 0.887 −4.56 21.94 −4.18 350,007
15 August 2016 0.880 4.25 23.00 4.54 0.891 −2.65 20.73 −2.47 673,663
15 September 2016 0.874 5.69 24.20 5.88 0.892 −0.69 20.63 −0.57 729,884
15 October 2016 0.900 5.59 22.04 5.78 0.900 −0.81 20.05 −0.12 769,781
15 November 2016 0.892 4.28 22.79 4.89 0.885 −1.29 22.19 −0.28 585,544
15 December 2016 0.900 3.49 21.33 4.86 0.892 −0.59 21.17 0.92 451,665
15 January 2017 0.900 5.85 22.22 5.99 0.887 −0.77 21.40 0.29 626,594
15 February 2017 0.887 9.59 25.63 8.82 0.878 0.94 22.14 1.36 578,772

All 0.893 5.16 22.67 5.58 0.893 −1.14 21.04 −0.33 11,108,861

Note: R2 is the coefficient of determination; %Bias is the relative Bias of (Bias/CERESMean) × 100 in percent;
%RMSE is the relative RMSE of (RMSE/CERESMean) × 100 in percent; MPE is the mean percentage error of
((AHI-CERES)/CERES) × 100 in percent; and N is the number of pairs.

4.1.2. Sun Glint Removal

Because RSR significantly varies from clear skies to deep convective clouds (0 to 80%) [18], the case
of 15 October 2015 was selected, with the accompanying precipitation and typhoons (KOPPU: 16.0◦N,
138.8◦E, and CHAMPI: 13.3◦N, 158.2◦E). Figure 3 shows the result of statistical analysis of R2, %Bias
and MPE according to SG as an example of 15 October 2015 for the calculation of a proper angle for
SG removal. As shown in this figure, R2 between Himawari-8/AHI and Terra/CERES was changed
from 0.919 to 0.923 and %Bias from 3.11% to 2.53%. The MPE of Himawari-8/AHI and Terra/CERES
decreased with increasing sun reflection angle, which was less than 0.74% when the SG was 20◦. In this
study, sun reflection angles less than 20◦ were considered as SG.

Figure 4 shows Red–Green–Blue (Blue: CH1, Green: CH2, Red: CH3, RGB) composite images
(Figure 4a–c) and RSR (Figure 4d–f) of Himawari-8/AHI analyzing scene error according to SG.
In this figure, the black circles (transparency = 50%) represent SG areas (≤20◦). Figure 4g–j shows the
RSR, percentage error, and SG of Himawari-8/AHI and Terra/CERES, respectively, with space-time
agreement. In the RGB composite images in Figure 4a–c, SG appears brighter than the surrounding
pixels of the mid-latitude ocean. This corresponds to the RSR pictures in Figure 4d–f. The MPE of
Himawari-8/AHI and Terra/CERES was more than 45% (Figure 4i) and the SG angle was less than
20◦ (Figure 4j). In other words, when the SG area is removed, R2 between AHI and CERES is 0.919,
which is larger than 0.923, and this result is consistent with the result of [17].

4.1.3. Reflected Shortwave Radiation

Lee et al. [23] retrieved TOA albedo assuming narrowband reflectance to be isotropic. In this
study, RSR was retrieved by considering anisotropy of the narrowband reflectance by the surface
and the atmosphere, and by removing SG. The results are shown in Figure 5. This figure shows the
results of RSR of this study. Isotropic, anisotropic, and SG effects of narrowband reflectance were
analyzed using the Himawari-8/AHI data (all data: 3,411,624 pixels). Figure 5a is a two-dimensional
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histogram (2D histogram) of the Terra/CERES data, with RSR retrieved assuming the narrowband
reflectance to be isotropic Lee et al. [23] (OLD). Figure 5b,c shows the RSR considering anisotropy of the
narrowband reflectance (OLD2)and the case of removing SG (OLD3), respectively. Figure 5d considers
Figure 5b,c together; similar to Figure 5a, Figure 5b–d shows scatter plots along with Terra/CERES
data. R2 between RSR retrieved using the Himawari-8/AHI and Terra/CERES data was 0.910 when
the narrowband reflectance was assumed to be isotropic as shown in Figure 5a. The Bias and RMSE
were 15.13 and 53.94 Wm−2, respectively. However, in this study, R2 between Himawari-8/AHI and
Terra/CERES considering narrowband reflectance as anisotropy was 0.912, which is higher than that
in Figure 5a. Furthermore, the Bias and RMSE were 2.80 and 50.14 Wm−2, respectively, showing
improvements compared to Figure 5a. Comparing Figure 5a,c, R2 values are similar, but Bias and
RMSE improved slightly. The narrowband reflectance was considered to be anisotropic and SG was
removed simultaneously (NEW). Comparing Figure 5a,d, R2 (0.914), Bias (2.07 Wm−2) and RMSE
(49.22 Wm−2) were significantly improved. These results are in good agreement with the results of [17],
where R2 values between Meteosat RSR and ScaRaB RSR were found to be 0.845 and 0.863, respectively,
for isotropic and anisotropic calculations.

1 
 

 
(a)                                (b) 

 
(c)                                (d) 

Figure 5. Two-dimensional histograms of RSR from Himawari-8/AHI and Terra/CERES for: OLD
(a) OLD2 (+ anisotropy) (b); OLD3 (+ sun glint (SG) ≥ 20◦) (c); and NEW (+ anisotropy, sun glint (SG)
≥ 20◦) (d) on the 15th day of every month from July 2015 to February 2017. The colors represent the 2D
histogram (or density) of coincident pairs using a bin size of 1. The solid red line is a linear fit to the
data. The black line corresponds to the 1:1 line.

4.2. Validation of Reflected Shortwave Radiation Algorithm Using CERES Data

The narrowband radiance of Himawari-8/AHI and the regression coefficient LUT were
applied to the algorithm in Figure 2, and the RSR was retrieved and compared with Terra, Aqua,
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and S-NPP/CERES data (Figure 6). For validating the method, scalar accuracy measurement and
linear relationship analysis were performed. For the scalar accuracy measurement, Bias, relative
Bias (%Bias = Bias/CERESMea × 100%), root mean square error (RMSE), relative RMSE (%RMSE =
RMSE/CERESMean × 100%) and mean percentage error (MPE = ((AHI-CERES)/CERES) × 100%) of
Terra, Aqua, and S-NPP/CERES were calculated [49]. In addition, Pearson correlation coefficients [50]
and significance level [51] were calculated through correlation analysis and Monte Carlo simulation to
determine the linear relationship between the two data sets. For this purpose, SZA and VZAs less than
80◦ were used and SG angles less than 20◦ were excluded. 

2 

 

6 

 
7 
 

Figure 6. Statistical analysis of RSR using Himawari-8/AHI and Terra, Aqua, and S-NPP/CERES data
for the 15th day of each month from July 2015 to February 2017 (%Bias: blue dotted line; %RMSE:
red dotted line; MPE: magenta dotted line; R2: cyan dotted line; Number: green bar chart). The legend
shows the statistical results for the all case.

Figure 6 shows a comparison of Terra, Aqua, and S-NPP/CERES with RSR from Himawari-8/AHI.
Excluding May–July 2016 cases, %Bias was −4.18–2.49% and MPE was −4.66–3.12%. Between May
and July 2016, %Bias and MPE were much lower at −6.20 and −8.31%, respectively, on 15 June 2016,
which is consistent with the results of TOA albedo statistical analysis in Table 3 (%Bias, MPE). To clarify
the reason for such a result, clouds were subdivided according to the clear fraction (0–100%) used for
the RSR retrieval. At this time, overcast was classified as 0–5%, mostly cloudy 5–50%, partly cloudy
50–95%, and clear 95–100% [46].

Figure 7 shows Bias, standard deviation (Stdev), RMSE, and R2 according to the clear fraction,
and the bar chart means the number of data. Except for clear (95–100%) and cloudy fractions (0–5%),
R2 (0.571–0.815) and RMSE (25.09–64.61 Wm−2) of Terra, Aqua, and S-NPP/CERES were not suitable
for partly cloudy and mostly cloudy fractions (5–95%). The reason is that averaging the RSR of
AHI in the process of spatial resolution matching can generate large errors when the averaged
area characteristics (surface or cloud) are different from the CERES observations [20]. In particular,
these errors were large in the cloudy area. The number of data in clear area (95–100%)/cloudy area
(0–95%) was compared with the all data in each case. On 15 June 2016, the value was 5.94%/94.06%
and, compared to other cases (8.71–14.15%/85.85–91.29%), there were less clear areas and too much
cloud. Therefore, the results of this study and CERES statistical analysis were unsatisfactory. In the
case of RSR retrieval, for error analysis in cloudy areas (<95%), Terra, Aqua, and S-NPP/CERES data
were analyzed according to land, ocean, and clear fractions (partly cloudy, mostly cloudy, overcast,
and all). Table 4 shows the results. For the ocean area, results of the statistical analysis (R2, Bias, MPE)
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were relatively better than that for the land, but both land and ocean area were partly or mostly cloudy,
and this tendency was also consistent with MPE.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 25 
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Table 4. Statistical analysis of RSR retrieval results according to land, ocean, and clear fractions
(all: 0–100%; partly cloudy: 50–95%; mostly cloudy: 5–50%; overcast: < 5%).

Clear Fraction Land & Ocean
Statistics

R2 Mean RMSE
(%RMSE) MPE NAHI CERES

Cloudy 0.869 302.70 313.46 56.02 (17.87) −2.34 2,006,927
–Partly 0.639 195.27 198.39 38.17 (19.24) −0.25 574,000

Land –Mostly 0.657 270.61 277.79 59.52 (21.42) −1.66 630,676
–Overcast 0.861 404.78 423.82 64.4. (14.97) −4.36 802,251
All 0.880 274.26 282.03 51.29 (18.29) −0.51 2,632,865

Cloudy 0.902 256.18 256.59 54.14 (21.10) −0.60 7,417,530
–Partly 0.429 105.49 111.12 30.62 (27.56) −5.25 1,864,210

Ocean –Mostly 0.625 192.29 183.33 57.95 (31.61) 3.98 1,999,843
–Overcast 0.874 371.19 374.14 61.12 (16.34) −0.74 3,553,477
All 0.909 243.16 244.24 52.39 (21.45) −1.37 8,000,530

Note: R2 is the coefficient of determination; Mean is the average in Wm−2; RMSE is the root mean square error in
Wm−2; %RMSE is the relative RMSE of (RMSE/CERESMean) × 100 in percent; MPE is the mean percentage error of
((AHI-CERES)/CERES) × 100 in percent; N is the number of pairs.

To analyze the detailed results according to the validation data of the Figure 6, the statistical
analysis results of the three data sets (Terra, Aqua, and S-NPP) are shown in the Figure 8. Bias (%Bias),
RMSE (%RMSE), and MPE were improved in the order of Terra, Aqua, and S-NPP. In the case of Terra,
%Bias, %RMSE, and MPE were 0.83%, 19.82%, and 0.13%, respectively, while those for Aqua were
−1.40%, 20.24%, and −1.59%, and −1.92%, 21.44%, and −1.85% for S-NPP. For further analysis of these
results, the data for Terra, Aqua, and S-NPP were compared to those for the overall case according
to the clear fraction (Figure 9). As shown in Figure 9, the number of data for clear areas in Terra was
approximately 0.24% higher than that of Aqua and S-NPP but about 0.96%, 1.40%, and 1.89% less for
cloudy areas (partly cloudy, mostly cloudy, and overcast). In the previous analysis, Terra’s error was
smaller than that of Aqua and S-NPP because Terra had a slightly larger cloudy area and fewer clear
areas than Aqua and S-NPP.
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Figure 8. Similar to Figure 6 but for validation data in: Terra (a); Aqua (b); and S-NPP (c).
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Figure 9. Number of Terra, Aqua and S-NPP data compared to all data according to the clear fraction.
Clouds were subdivided according to clear fraction (all: 0–100%; cloudy: 0–95%; clear: ≥ 95%; partly
cloudy: 50–95%; mostly cloudy: 5–50%; overcast: < 5%).

Figure 10 shows the results of scene analysis of S-NPP/CERES (36.08%) with the largest number
of data among Terra, Aqua, and S-NPP for 20 cases because the S-NPP satellite observes at an altitude
of 840 km, which is higher than the Terra and Aqua (705 km) [52]. Figure 10 shows the RSR of
Himawari-8/AHI (left) and S-NPP/CERES (middle left), the percentage error of the two data sets
(middle right), and the clear fraction of CERES (right). In this figure, RSR differs depending on the
absence or presence of clouds and surface types, and the SZA increases as the latitude increases.
We analyzed SZA and VZAs of less than 80◦ with approximately 3–5 scan line for each case. However,
some cases had only 1–2 scan line due to the absence of Himawari-8/AHI data. In this figure, R2

and Bias between Himawari-8/AHI and S-NPP/CERES were 0.867–0.922, and −21.34–5.52 Wm−2,
respectively, and the RMSE was 51.74–59.28 Wm−2, similar to the results of [18]. Regarding land surface
albedo (0.12–0.36) for the clear area (95–100%), the RMSE of S-NPP/CERES was 14.33–41.65 Wm−2.
This value is somewhat less accurate than that for the ocean (0.03–0.06, RMSE = 14.39–24.17 Wm−2),
which was relatively small and constant. During the preparation of the regression coefficient LUT,
surface was classified into five types (vegetation, desert, snow, ocean, and lake), whereas CERES
data were classified into 20 types [46], leading to some inaccuracies. In addition, in the cloud area,
the RMSE varied between 54.08 and 61.52 Wm−2, depending on the cloud properties (cloud optical
thickness, cloud fraction, cloud type, etc.). Partly and mostly cloudy areas showed larger errors
compared with overcast areas, particularly with increasing SZA and VZA. This can be attributed to the
generation of the regression coefficient LUT using SBDART [11,53] and the actual atmospheric error
assuming plane-parallel atmospheres [18]. In addition, the inability to refine the LUT according to the
atmospheric conditions was considered to lead to an error; SZA (12 including 0◦, 10◦, 20◦, 30◦, 40◦,
50◦, 60◦, 65◦, 70◦, 75◦, 80◦, and 85◦), VZA (18 from 0–85◦ at 5◦ intervals), and RAA (19 from 0–180◦ at
10◦ intervals) [53]. Vermote and kotchenova [54] reported an error of 0.002 for 22 SZA and VZAs and
73 RAAs.
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Figure 10. RSR (Wm−2) of Himwari-8/AHI (left) and S-NPP/CERES (middle left) retrieved using
data from the 15th day of every month between July 2015 and February 2017; percentage error (%)
(middle right) and clear fraction (%) (right) between Himawari-8/AHI and S-NPP/CERES data sets;
R2, Bias, and RMSE (top) between the two data sets.



Remote Sens. 2018, 10, 2 19 of 25

Figure 11 shows the results of averaging the data of Terra, Aqua, and S-NPP in the same manner
averaging the RSR retrieved for these 20 cases with a resolution of 20 km for CERES. Figure 11 shows
the averaged RSR (20 km) of AHI (Figure 11a) and CERES (Figure 11b) from 15 July 2015 to 15 February
2017, and the percentage error (Figure 11c) and the clear fraction (Figure 11d) of the two data sets.
Figure 11e,f shows averaged results with respect to latitude and longitude, and RSR of AHI and
CERES and the percentage error of both data sets, respectively. The results of this study, as shown in
Figure 11a, are similar to the CERES average, as shown in Figure 11b. However, as shown in Figure 11c,
the SZA and VZAs increases as sunrise or sunset approaches. In Figure 11e, the error between AHI
and CERES for the latitude averages were within ±4%. However, the average longitude of Figure 11f
had larger inaccuracies as bifurcations increased to 95 and 180◦ based on 140◦. Then, in Figure 11d,
the RSR of CERES above the Australian desert area shows a lower value than that of the AHI. This
may be explained by the fact that RSR is greatly reduced by vapors, although the effects can vary in
clear-sky areas depending on the surface type and absorption gases [55]. Since the CERES observes in
the broadband shortwave range, RSR is greatly reduced in the range sensitive to vapor absorption
(0.89–0.97 µm), whereas less attenuation occurs in the shortwave CHs of the Himawari-8/AHI used in
this study because they are relatively transparent, compared to CERES. Similarly, the total precipitable
water observed in this area during the study period was approximately 2.00 cm, indicating a MPE of
approximately 3.81% in comparison to CERES. Therefore, the attenuation effect of vapors must be
considered when retrieving RSR using a narrowband sensor. Figure 12 shows the results of this study
(AHI) and Terra, Aqua, and S-NPP/CERES from 60 studies. In this figure, R2 is 0.903 and Bias and
RMSE are −2.34 and 52.12 Wm−2, respectively.
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5. Discussion

In this study, the narrowband reflectance that had been assumed to be isotropic in Lee et al. [23]
was considered to be anisotropic and the RSR was retrieved by removing the sun reflection region that
caused a large error. Because the anisotropy of the atmosphere differs depending on the geometry
of the solar-viewing, as well as the characteristics of the Earth’s surface, the results improved in
comparison with the CERES data when anisotropy was considered; the errors are listed in Table 3.
Furthermore, SG below 20◦ was removed through statistical analysis (Figure 3) because strong sun
reflection appears in a specific direction compared to the theoretical value and causes large errors in
ocean areas [47,56]. After the SG was removed, the R2 between the AHI and CERES was 0.923, which
is higher than the value when SG was not removed (R2 = 0.919). Furthermore, the Bias and MPE
decreased from 3.11% and 2.43% to 2.53% and 0.74%, respectively. Based on these results, either the
narrowband reflectance was assumed to be anisotropic or the SG was removed, as shown in Figure 5.
The case where the narrowband reflectance was considered to be anisotropic and the SG was removed
showed better results than the other cases, i.e., the case where the narrowband reflectance was assumed
to be isotropic or considered anisotropic, or SG removed. In other words, consideration of anisotropy
and removal of SG at the time of retrieving the RSR can reduce the error, as suggested by [17].

We compared the RSR retrieved using Himawari-8/AHI with the RSR observed in Terra, Aqua,
and S-NPP/CERES. In this process, errors were generated by differences in spatial resolution and
discrepancies in observation time (validation of ±5 min data, i.e., 0010 UTC vs. 0005-0015 UTC)
between AHI (2 km) and CERES (20 km) (Figure 7). To solve this problem, it is desirable to select
and analyze a spatiotemporal resolution that shows good results by performing statistical analysis
according to spatial resolution (0.5◦, 1◦, 2◦, 5◦, and 10◦) for each daily or monthly average, as suggested
by [2]. In addition, instead of analyzing data from only one satellite, all the Terra, Aqua and S-NPP
data should be used together to carry out relatively continuous validation because polar-orbiting
satellites equipped with broadband sensors perform observations only for specific time periods.
Furthermore, when all the 60 cases and satellite data used in this study were averaged, relatively
large errors were generated at SZA and VZAs above 70◦, as shown in Figure 11. This is because
several satellite-based data are error-prone due to the lack of accuracy in sunrise and sunset times [57].
Furthermore, the refraction effect at a SZA of 85◦ or less is negligible between the apparent SZA and
the real SZA but produces significant errors at sunrise or sunset [58].

Even though errors were due to the difference between the spatiotemporal resolution and the
SZA and VZAs, the validation results in Figure 12 show a similar trend to results presented in [1,18].
However, since the spatial resolution of the averaged satellite data was greater and more long-term
analysis was performed in the current study, the R2 [59], Bias and RMSE [2,60] all improved. Therefore,
the results of this study are improved in comparison to those of other studies [2,12,60].
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6. Conclusions

This study used Himawari-8/AHI data to develop an algorithm for retrieving RSR.
Himawari-8/AHI data have characteristics similar to those of the next-generation geostationary
orbit meteorological satellite (GK-2A/AMI), which is to be launched in 2018. This algorithm converts
the radiance of narrowband sensor into reflectance and then into TOA albedo through a regression
coefficient LUT according to geometry of the solar-viewing (SZA, VZA, and RAA) and atmospheric
conditions (surface type and absence/presence of clouds). The regression coefficients used in this
study were calculated through numerical experimental using the SBDART and ridge regression for
the TOA albedo and narrowband reflectance of sensor channels considering anisotropy. In addition,
statistical analysis was performed to remove SG because SG can cause serious errors. For this purpose,
reflection angles less than 20◦ were removed. Terra, Aqua, and S-NPP/CERES data were used to
validate this RSR.

The results of this study (Himawari-8/AHI) showed improved performance of the algorithm,
and the validation with Terra, Aqua, and S-NPP/CERES data also showed good results, except from
15 May to 15 July 2016. In particular, on 15 June 2016, comparing all data, the number of data in
the clear areas and the cloudy area was influenced, and therefore the statistical analysis results were
unsatisfactory. R2 (0.571–0.815) and RMSE (25.09–64.61 Wm−2) of the partly and mostly cloudy areas
were large, which could be attributed to a space-time mismatch between AHI and CERES in the spatial
resolution matching process. To further analyze these results, we divided the data into three sets
(Terra, Aqua, and S-NPP). The results were better in the order of Terra, Aqua, and S-NPP, because
Terra accounted for a larger number of data in the clear area and less cloud area than Aqua and S-NPP.
This implies that the validation results are affected by the number of data in the clear and cloudy areas.

The analysis of the scan line showed an RMSE of 14.33–41.65 Wm−2 on the land for the
clear area, which slightly differs from that of the ocean (RMSE = 14.39–24.17 Wm−2) due to the
classification difference of the surface type of AHI and CERES. In addition, because SBDART assumes
a plane-parallel atmosphere in the cloud region, the error increases as the SZA and VZAs increase
in the real atmosphere and the plane-parallel atmosphere. Nevertheless, R2 in this study was higher
than 0.867 and Bias and RMSE were −21.34–5.52 and 51.74–59.28 Wm−2 for scan line, respectively.
R2 between AHI and Terra, Aqua, and S-NPP/CERES for all case was 0.903, showing significance of
approximately 0.001, and Bias and RMSE were −2.34 and 52.12 Wm−2, respectively.

High temporal and spatial resolution data, such as the next-generation geostationary
meteorological satellites (Himawari-8/AHI, GK-2A/AMI, etc.), are used to conduct research on
understanding the effects of aerosols [61] and clouds [62], which have large temporal and spatial
variabilities, on radiation [18]. It can also be applied as basic input for numerical prediction and climate
models, which will contribute to improving the accuracy of the calculation [63] and further monitoring
of radiation balance to understand the mechanism of climate change [64]. As a preliminary study for
the radiative element output of GK-2A/AMI, the successor satellite of the Republic of Korea, this study
will guide future research and development of the sensor. Nevertheless, the algorithm cannot classify
surface types [65] in clear areas and the RSR error is generated because cloudy areas do not reflect
cloud properties (cloud optical thickness, cloud fraction, cloud type, etc.) in detail. Future studies will
require a recalculation LUT that reflects the characteristics of the surface and clouds and should be
periodically corrected by long-term observed broadband radiation [5,66].
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