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Abstract: The extraction of a valuable set of features and the design of a discriminative
classifier are crucial for target recognition in SAR image. Although various features and classifiers
have been proposed over the years, target recognition under extended operating conditions
(EOCs) is still a challenging problem, e.g., target with configuration variation, different capture
orientations, and articulation. To address these problems, this paper presents a new strategy for
target recognition. We first propose a low-dimensional representation model via incorporating
multi-manifold regularization term into the low-rank matrix factorization framework. Two rules,
pairwise similarity and local linearity, are employed for constructing multiple manifold regularization.
By alternately optimizing the matrix factorization and manifold selection, the feature representation
model can not only acquire the optimal low-rank approximation of original samples, but also capture
the intrinsic manifold structure information. Then, to take full advantage of the local structure
property of features and further improve the discriminative ability, local sparse representation
is proposed for classification. Finally, extensive experiments on moving and stationary target
acquisition and recognition (MSTAR) database demonstrate the effectiveness of the proposed strategy,
including target recognition under EOCs, as well as the capability of small training size.

Keywords: synthetic aperture radar; target recognition; sparse representation; locality constraint;
low-rank approximation; regularized manifold

1. Introduction

Synthetic aperture radar (SAR) has been widely applied in civilian and military applications due
to its capability of providing all-weather, all-day, high-resolution images. Automatic target recognition
(ATR) is an essential topic for SAR image interpretation. Generally, target recognition is divided into
two parts: feature extraction and classification. Over the past several decades, various features and
classifiers [1–3] have been studied; however, target recognition remains a difficult problem. The major
challenge is robustness for recognizing targets under extended operating conditions (EOCs) since
targets are classified under EOCs in the presence of variations in configuration, articulation, occlusions
and different capture orientations.

Feature extraction is essentially a signal processing procedure for reducing the dimensionality
of the target image. Thus, the main objective of feature extraction is to find a low-dimensional
representation of a SAR image that could distinguishably represent the target. Different features
have been explored to characterize the target signal [4,5], such as scattering centre features [6,7],
filter bank features [3,8], pattern structure features [9,10] and statistical features [1,11]. Recently,
low-rank matrix factorization (LMF), a particularly useful technique for data representation, has been
developed for SAR ATR [12,13]. Specifically, LMF aims to find two matrices Z and H or more
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lower-dimensional matrices whose product provides a good low-dimensional approximation to
the original matrix X such that X ≈ ZH. From a feature extraction perspective, H denotes the
low-dimensional representation of original samples X, and Z represents the mapping between X and
H. Truncated singular value decomposition (TSVD) and non-negative matrix factorization (NMF)
are two common LMF techniques. Based on these techniques, some methods have been proposed
for characterizing SAR images. Cui et al. [12] proposed L1/2-norm regularized NMF for sparsely
representing SAR images. Dang et al. [13] used incremental NMF with an Lp-norm constraint to further
improve performance. Babaee et al. [14] introduced two NMF variants, i.e., variance-constrained
NMF and centre map NMF, to describe SAR images in an interactive system. However, these matrix
factorization methods fail to discover the intrinsic geometric structure of samples, which is essential
for real-world applications, particularly in the area of feature extraction.

To preserve local geometric structures embedded in the original space, a number of manifold
learning approaches have been reported in the literature, such as Laplacian eigenmap (LE) [15],
locally linear embedding (LLE) [16], local tangent space alignment (LTSA) [17] and t-distributed
stochastic neighbour embedding (t-SNE) [18]. However, these methods are non-parametric techniques,
and it is infeasible to directly apply such methods for target recognition. To solve this problem,
some works have been devoted to finding parametric extensions of these non-parametric techniques,
e.g., locality preserving projection (LPP) [19], neighbourhood preserving embedding (NPE) [20] and
parametric supervised t-SNE [10]. It has been shown that the discriminative ability can be enhanced
if the intrinsic manifold structure is considered. Motivated by manifold learning methods, manifold
regularized LMF techniques have been developed to learn a low-rank approximation that explicitly
takes the local geometric structure of samples into account. Cai et al. proposed graph regularized NMF
(GNMF) [21], in which a nearest neighbour graph is constructed to model the manifold structures.
Zhang et al. [22] demonstrated that the manifold regularized TSVD framework could preserve
the nonlinear structure of the sample space more effectively, as the global optimal solution can be
reached. However, the selection of the optimal manifold is generally difficult. Moreover, the targets of
SAR images consist of multiple variations, such as configuration variation and articulation variation.
In particular, the appearance of the same target would vary obviously under different imaging
conditions, e.g., the different depression variation. Hence, a single optimal manifold cannot well
describe the intrinsic structure of the original space. Although some studies exploited the intrinsic
manifold structure by constructing the neighbour graph with different weighting schemes (i.e., 0–1,
heat kernel and dot product) [23,24], the representation is relatively weak without considering the
property of local neighbours. Consequently, the discriminative ability of the learned features is weak,
which further influences the performance of target recognition.

In the classification stage, the classifier makes the final class decision by matching a query sample
and the training samples in the specific feature space. The choice of classifier is crucial for achieving
a desired classification performance as consensus has evolved that no single feature or classifier
is optimal for target recognition. There are many traditional classifiers, such as nearest neighbour
(NN) [25], support vector machine (SVM) [26] and adaptive boosting (AdaBoost) [27]. In recent years,
the sparse representation-based classification (SRC) [28] technique has achieved some impressive
performances on face recognition. Jayaraman et al. [29] reported that the classification of SAR images
based on SRC is equivalent to finding the manifold that is closest to the query image. The sparse signal
representation can be applied in SAR target classification, as verified in [8,30].

Inspired by the aforementioned works, this paper proposes a new strategy, named local
sparse representation of multi-manifold regularized low-rank approximation (MLA-LSR), for target
recognition in SAR images. To obtain the low-dimensional representation of SAR images,
multi-manifold regularized low-rank approximation (MLA) is proposed by incorporating a multiple
manifold regularization term into the TSVD framework. The manifold selection and low-rank
approximation are alternately optimized. Specifically, two construction rules, pairwise similarity
and local linearity, are utilized for the multi-manifold regularization term. Rather than the traditional
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norm graph, the pairwise similarity is described by the joint probabilities, which could capture much
of the local structure of the sample space. The local linearity rule considers the local structure property
of the samples. Hence, the learned features can well preserve the intrinsic geometric structures and
discriminating structures. To predict the identity, local sparse representation (LSR) based on MLA
is designed for classification. In contrast to the traditional SRC, LSR constructs the dictionary by
local, rather than all, samples in the training set. On the one hand, the locality constraint in LSR
takes full advantage of the local structure property of samples obtained by MLA. On the other hand,
locality is more essential than sparsity [31]. To optimize the sparse representation, the query sample is
represented as a linear combination of class-specific galleries, by which the discriminative ability can
be promoted. Finally, the identify of the query sample is reached corresponding to the class with the
minimum reconstruction error. A flowchart of the proposed strategy is shown in Figure 1.

The reminder of this paper is organized as follows. In Section 2, a brief review of related works is
given, including the LMF and manifold regularized LMF. In Section 3, a multi-manifold regularized
low-rank approximation is proposed to learn the low-dimensional representation of SAR images.
In Section 4, a local sparse representation for target classification is presented. The effectiveness of the
proposed strategy is verified in Section 5. Conclusions are drawn in Section 6.
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Figure 1. Overview of the target recognition procedure based on the proposed strategy. The proposed
strategy consists of two phases: low-dimensional feature representation and classification. The first
phase uses a multi-manifold regularized low-rank approximation to obtain the low-dimensional
feature representation of training samples H and mapping matrix Z. The feature of the query
sample can be obtained by Z. The second phase uses the local sparse representation for classification.
The query sample is represented as a linear combination of class-specific dictionaries. According to
the representation coefficients, the identify of the query sample is reached by evaluating the class of
samples, which could result in the minimal reconstruction residual.

2. Review of LMF and Manifold Regularized LMF

2.1. Low-Rank Matrix Factorization

Low-rank matrix factorization, which is an important data analysis method, has attracted
considerable attention for feature extraction [14], data compression [32] and clustering [33]. NMF and
TSVD are two specific LMF techniques. Given a data matrix X = [x1, x2, ..., xn] ∈ Rm×n with n samples
and m dimensions, NMF aims to find two non-negative matrices to approximate the original matrix.
The decomposition of matrix X can be mathematically formulated as

min
Z≥0,H≥0

‖X− ZH‖2
F (1)
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where Z = [z1, z2, . . . , zd] ∈ Rm×d and H = [h1, h2, . . . , hn] ∈ Rd×n are low-rank matrices, and the
Frobenius norm is a well-established proxy to impose similarity between X and ZH. If we view Z as
the mapping between the low-dimensional representation H and the original samples X, then hi ∈ H
represents the low-dimensional representation of sample xi.

In contrast to NMF, the factorized matrix Z is employed with an orthogonality constraint in TSVD.
The optimization problem of TSVD is defined as

min
ZTZ=Id ,H

‖X− ZH‖2
F (2)

It has been widely applied in data representation because TSVD achieves the best approximation
in the Frobenius norm. The two aforementioned optimization problems are generally solved by
alternating iterative methods.

2.2. Manifold Regularized Low-Rank Matrix Factorization

The techniques NMF and TSVD both fail to preserve the intrinsic geometric structure of data, but it
is crucial for actual applications. To overcome this issue, some researchers have incorporated the idea
of manifold learning into the LMF framework. Generally, these manifold learning methods are based
on the assumption that if two samples are close in the intrinsic manifold of the sample space, then the
low-dimensional representations of these two samples are close to each other [15,16]. To preserve the
neighbourhood relationships, GNMF is proposed by adding the manifold regularization term to the
NMF model. Specifically, a nearest neighbour graph based on heat kernel weight Wij is constructed to
model the manifold structure. The manifold regularization term can be formulated as

1
2

n

∑
i,j
‖hi − hj‖2Wij =

n

∑
i=1

hT
i hjDii −

n

∑
i,j=1

hT
i hjWij

= tr(HDHT)− tr(HWHT)

= tr(HLHT)

(3)

If xi ∈ Nk(xj) or xj ∈ Nk(xi), then Wij = exp(− ‖xi−xj‖2)
σ ); otherwise, Wij = 0, where Nk(xj)

denotes the set of k nearest neighbours of xi, σ is a constant value, Dii = ∑j Wij, and L ∈ Rn×n is
the graph Laplacian defined as L = D−W. GNMF utilizes the graph Laplacian to represent the
characteristics of the manifold. The GNMF is formulated as

min
Z≥0,H≥0

‖X− ZH‖2
F + λtr(HLHT) (4)

where λ is a regularization parameter. The optimization problem is solved by an alternating iterative
method with a multiplicative rule. Although GNMF has shown good performance on low-dimensional
representations of data, it has been verified that the optimal solutions cannot be obtained [22].
Afterwards, a new model, MMF, was proposed to incorporate the manifold regularization term
into the TSVD framework. The performance of MMF is superior to that of GNMF. This is because NMF
retains the neighbourhood relationship, and the optimal solutions can be reached. The optimization
problem of MMF is written as

min
ZTZ=Id ,H

‖X− ZH‖2
F + λtr(HLHT) (5)

To obtain the optimal solution of Equation (5), a direct algorithm or alternating iterative algorithm
can be employed to solve the optimization problem.
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3. Feature Extraction via Multi-Manifold Regularized Low-Rank Approximation

By incorporating the manifold regularization term into the LMF framework, the manifold structure
of the original space is preserved in the low-dimensional representation. However, the selection of
the optimal manifold structure is generally difficult. Although some scholars exploit an approximate
manifold structure through a union of different weighting schemes (i.e., 0–1, heat kernel and dot
product), the representation of the manifold structure is relatively weak without taking the property
of local neighbours into account. To address these problems, a new model, named multi-manifold
regularized low-rank approximation (MLA), is proposed in this section.

3.1. Multi-Manifold Regularization Term

It is known that SAR images of a given class lie in a manifold, whose dimensions are much
lower than the actual dimensions of the image [34]. Without loss of generality, suppose that
X = [x1, x2, ..., xn] ∈ Rm×n are sampled from an underlying manifold M. H = [h1, h2, ..., hn] ∈
Rd×n(d � m) denotes their low-dimensional representations. To obtain the discriminative
low-dimensional representations, the intrinsic manifold structure of samples X should be preserved
by H. Recently, Geng et al. developed an approach for the automatic approximation of the intrinsic
manifold with an ensemble manifold regularizer (EMR) [35]. It assumes that the intrinsic manifold
approximately lies in the convex hull of some pre-given manifold candidates. Therefore, the intrinsic
manifold could be approximated by the linear combination of these candidate manifolds. Motivated
by EMR, we select the optimal manifold by fusing multiple manifolds.

Ψ =
r

∑
i=1

ηiΨi ; subject to
r

∑
i=1

ηi = 1, ηi ≥ 0 (6)

where Ψ is an affinity matrix that characterizes the manifold of samples and η = [η1, . . . , ηr] is a
weight vector for basis manifolds. Since the manifold learning problem can be uniformly written as
minH tr(HΨHT), the intrinsic manifold structure of the sample space can be preserved by optimizing
the following objective function:

min
H

tr
r

∑
i=1

ηi(HΨiHT); subject to
r

∑
i=1

ηi = 1, ηi ≥ 0 (7)

With the development of manifold learning theory, the affinity matrix Ψi of the basis manifold
can be produced with many manifold learning techniques, including, but not limited to, LE, LLE,
and TLSA. Hence, the selection of a suitable basis manifold is important for acquiring the optimal
manifold of SAR images. Generally, in the manifold learning techniques, the construction of the
affinity matrix typically consists of two rules: pairwise similarity and local linearity. At present,
some works [23,24] about the multiple manifold regularizer only consider the construction of basis
manifolds through pairwise similarity, which provides a relatively weak representation of the local
manifold structure without the local linearity. In the following, we model the basis manifolds taking
these two rules into account, which allows the learned low-dimensional representation to preserve the
intrinsic and discriminating structure of the sample space.

(1) Based on the pairwise similarity. The manifold learning naturally assumes that if two samples
xi and xj are close in the intrinsic geometry of the sample distribution, then the low-dimensional
representations of two samples, hi and hj, are also close to each other. This assumption can be
employed in terms of similarity. In GNMF and MMF, pairwise similarity measurements based on
LE are performed to select k neighbourhoods for each sample. The heat kernel weight scheme is
commonly used for the similarity measurement of SAR images. According to previous works [10],
pairwise similarity defined in t-SNE with probability distribution will capture much of the local
structure of the sample space in SAR images because the relationships of the samples are calculated by
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integrating over all the paths of the neighbourhood graph. The pairwise similarity Sij is measured by
means of Gaussian density and re-normalized

Sij =
exp(‖xi − xj‖2

2/2σi)

∑k 6=l exp(−‖xk − xl‖2
2/2σi)

(8)

where Sij = Sji and Sii = 0. The σi is the variance parameter of Gaussian that is centered over each
sample xi. Since the density of the sample is likely to vary, it is unreasonable to use a single value of σi
for all the samples. Let Pi be the probability distribution over all other given sample xi. To obtain a
suitable value of σi, a binary search is performed with a perplexity. The perplexity is written as

Perp(xi) = 2−∑j Pilog2Pi (9)

where the perplexity can be taken as a smooth measure of the effective number of neighbours [18].
With the defined pairwise similarity matrix S ∈ Rn×n, the basis manifold regularization term is

used for measuring the smoothness of the low-dimensional representation.

1
2

n

∑
i,j
‖hi − hj‖2

2Sij = tr(H(M− S)HT) (10)

where Mii = ∑j Sij, and the affinity matrix based on pairwise similarity is defined as M− S.
(2) Based on the local linearity. Although a local manifold structure is artificially designed by

exploiting the pairwise similarity, the limitation is obvious, namely, the relatively weak representation
of the local manifold without considering the property of local neighbours [16]. Hence, to describe the
manifold structure more accurately, the LLE is utilized to construct the basis manifold because the
property of local neighbours is fully taken into account in LLE. Specifically, LLE exploits the fact that a
nonlinear high-dimensional sample can be linearly reconstructed by its neighbour samples. The linear
reconstruction coefficient A ∈ Rn×n indicates the local manifold structure that should be retained in
the low-dimensional space. A is obtained via the minimization

arg min
A

n

∑
i=1
‖xi − ∑

j∈Nk(xi)

Aijxj‖2
2; subject to ∑

j∈Nk(xi)

Aij = 1, ∀i (11)

where Aij denotes the reconstruction weight between xi and xj, if j ∈ Nk(xi); otherwise, Aij = 0.
The smoothness of the low-dimensional representation is measured through the basis manifold

regularization term as follows:

n

∑
i=1
‖hi −∑ Aijhj‖2

2 = tr(H(I−A)(I−A)THT) (12)

where I ∈ Rn×n is a unit matrix, and the affinity matrix based on local linearity is defined as
(I−A)T(I−A).

A large amount of basis manifolds can be obtained by the different parameters for the construction
of affinity matrices in Equations (10) and (12). To avoid over-fitting to the single manifold in the
manifold regularization term in Equation (7), the multi-manifold regularization term can be rewritten as

min
H,η

tr
r

∑
i=1

ηi(HΨiHT) + λ‖η‖2; subject to
r

∑
i=1

ηi = 1, ηi ≥ 0 (13)
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3.2. Multi-Manifold Regularized Low-Rank Approximation

Compared with the NMF framework, the TSVD framework acquires a smaller approximation
error in the Frobenius norm because TSVD relaxes the non-negativity constraint to the orthogonal
constraint for the factor Z. In our model, a low-rank matrix factorization should preserve the intrinsic
manifold structure to the greatest extent possible while the optimal approximation to the sample
matrix is also reached. Therefore, we incorporate the multi-manifold regularization term into the
TSVD framework, which is formulated as

min
Z,H,η

‖X− ZH‖2
F + λ1 tr

r

∑
i=1

ηi(HΨiHT) + λ2‖η‖2

subject to ZTZ = Id,
r

∑
i=1

ηi = 1, ηi ≥ 0
(14)

The objective function, Equation (14), is not convex with respect to Z, H and η. Therefore,
it is unrealistic to find the optimal solution by the simultaneous optimization of all the variables.
To address this problem, the technique of alternating iterations is adopted. The variables are optimized
and updated alternately with other variables fixed. In this way, the objective function, Equation (14),
can be broken down into two sub-optimization problems as follows.

(1) Update rule for the mapping matrix Z and low-dimensional representation matrix H. We fix
the weight vector η and minimize the cost function with respect to (Z, H). That is, the optimization
problem in Equation (14) is rewritten as

min
Z,H
‖X− ZH‖2

F + λ1 tr(HΨHT)

subject to ZTZ = Id

(15)

This optimization problem shares the same model as MMF. Hence, the global optimal solution of
this problem can be calculated directly or iteratively according to MMF. The detailed solving procedure
can be found in [22]. We use the iterative method for this problem. The specific iterative steps for
updating Z and H can be given as

Z = UVT

H = ZTX(I + λ1Ψ)−1 (16)

where XHT = UDVT is the SVD of XHT , and D is a diagonal matrix of positive diagonal entries.
Note that the updating of H can be transformed to solve the linear systems H(I + λ1Ψ) = ZTX with
an iterative method, i.e., preconditioned conjugate gradient method.

(2) Update rule for the weight vector η. By fixing the matrices Z and H, the optimization problem
in Equation (14) can be transformed as follows

min
η

λ1tr
r

∑
i=1

ηi(HΨiHT) + λ2‖η‖2

subject to
r

∑
i=1

ηi = 1, ηi ≥ 0
(17)

This problem is a constrained quadric optimization problem, which can be solved easily via the
Lagrangian multiplier method. When the parameters are renewed, the next round of update is pursued.
The iteration is terminated if the convergence condition is met. The procedure of multi-manifold
regularized low-rank approximation can be summarized as in Algorithm 1.
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Algorithm 1 Multi-manifold regularized Low-rank Approximation (MLA)

Input: training sample matrix X = [x1, x2, ..., xn] ∈ Rm×n; regularization parameters λ1 and λ2;
r candidate basis manifolds; maximum iterations T and threshold ξ.

Output: mapping matrix Z and low-dimensional representation matrix H.
Initialization:
Initialize (Z, H) with TSVD;
Initialize η = [1/r, 1/r, . . . , 1/r].
Repeat for t = 1 to T do
Update mapping matrix Z and low-dimensional representation matrix H by Equation (16).
Update ηt according to Equation (17).
Calculate objective function Ot by Equation (14), if |Ot −Ot−1| < ξ, break.
End

4. Target Classification via Local Sparse Representation of MLA

Denote ni training samples from the ith class as Xi = [xi,1, xi,2, . . . , xi,ni ] ∈ Rm×ni .
Let H = [H1, H2, ..., HC] ∈ Rd×n(d� m) be the low-dimensional feature representation of the training
samples X = [X1, X2, ..., Xn] ∈ Rm×n obtained by MLA, where C is the number of the classes, d is the
dimension of the feature vector, and n = ∑C

j=1 nj. Given a query sample y ∈ Rm, the low-dimensional

feature representation T ∈ Rd of the query sample is acquired as follows:

T = ZTy (18)

where Z ∈ Rm×d is the projection matrix in MLA.
Recently, sparse-representation-based classification has received considerable attention for target

classification in SAR images. It tends to find the sparse representation of the query sample in a
dictionary composed of all training samples, and then it assigns the query sample to the class with
the minimum reconstruction error. In contrast to the traditional SRC, we propose a novel sparse
representation-based method to calculate the representation coefficients by local, rather than all,
samples in the training samples. The main reason is that the low-dimensional feature obtained by MLA
preserves the local structure property of the sample space, and a query sample can be approximately
linearly represented by their local neighbours in the feature space. In addition, locality is more essential
than sparsity, as the locality must lead to sparsity but not necessarily vice versa [19]. Specifically,
the sparse representation with locality constraint is defined as

min
α
‖ZTy−Hα‖2

2 + γ‖p� α‖2
2

subject to
ni

∑
j=1

αij = 1, ∀i
(19)

where α = [α1, α2, . . . αc] ∈ Rn, αij ∈ αi are the representation coefficients, γ is a regularization
parameter, and � denotes the componentwise multiplication. The constraint ∑ni

j=1 αij = 1 aims to
follow the shift-invariant requirements of the reconstruction. p ∈ Rn is the locality adaptor, which is
used to measure the similarities of features between training samples and the query sample. Specifically,

p = [ exp(‖ZTy− h1,1‖2)/δ, exp(‖ZTy− h1,2‖2)/δ, . . . , exp(‖ZTy− hc,nc‖2)/δ ]T (20)

The discriminative representation of the query sample can be achieved by Equation (12) when the
subspaces spanned by different classes are less correlated. However, in real SAR target recognition
scenarios, SAR images of different targets collected under the same conditions show higher similarities
than those of the same target with different conditions. Hence, the targets from different classes may
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obtain similar features, which will result in the representation of the query sample by training samples
from different classes. To avoid the limitation of unsupervised optimization of sparse representation,
we introduce the class labels into the model in Equation (19). Specifically, the query sample is sparsely
represented by each class independently.

For the kth target class, suppose that there are nk training samples; we compute the
low-dimensional representation features Hi = [hk,1, hk,2, . . . , hk,nk

] ∈ Rd×nk . It is utilized to learn
the representation coefficients

min
αk
‖ZTy−Hiαk‖2

2 + γ‖pk � αk‖2
2

subject to
nk

∑
j=1

αkj = 1
(21)

where αk = [αk1, αk2, . . . , αnk] ∈ Rnk are the representation coefficients with regards to the kth target
class. The optimal problem can easily be solved via the Lagrangian multiplier method.

According to the optimal representation coefficients α, the reconstruction error with respect
to each class is computed. The inference is reached by evaluating the class with the minimal
reconstruction error

identity(y) = arg min
i
‖ZTy−Hiαi‖, i = 1, 2, . . . , c (22)

In fact, the low-dimensional representation features of the kth target class Hk lie in the manifold
Mk, and the ‖ZTy−Hkαk‖ can be regarded as the distance between the feature of the query sample ZTy
and the manifoldMk. Hence, the decision rule is actually to seek the minimum sample-to-manifold
distance. Figure 2 illustrates the basic idea of computing the distance between the sample and manifold.

1

2

T
Z y

1 1H α

2 2H α

1r

2r

1,1h

1,2h 1,3h

2,1h

2,2h
2,3h

1,1

1,2 1,3

2,1

2,2 2,3

Figure 2. Illustration of LSR by the view of the sample-manifold distance.

The implementation flow of target classification for the proposed strategy MLA-LSR is
summarized in Algorithm 2.
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Algorithm 2 Target recognition via MLA-LSR

Input: training sample matrix X = [x1, x2, ..., xn] ∈ Rm×n for C classes class labels of training samples;
query sample y.

Output: Identification of y.
Step 1: Learn mapping matrix Z and low-dimensional representation matrix H for training samples
following the detailed description in Algorithm 1.
Step 2: Obtain the low-dimensional feature representation of testing samples by Equation (18).
Step 3: Solve the sparse representation of query sample over the locality-constrained and
specific-class dictionary according to Equation (21).
Step 4: Predict the identity by calculating the class that could produce the minimal reconstruction
error by Equation (22).

5. Experiments and Discussion

In this section, we perform experiments on the publicly available MSTAR database, a gallery
collected with X-band and 1× 1 foot resolution. The target images cover the full 0◦ ∼ 359◦ aspect angles
at different depression angles {15◦, 17◦, 30◦, 45◦}. The target images are approximately 128× 128 pixels.
To exclude the redundant background, the target images are cropped 64× 64 pixels from the centre of
the images. To validate the efficacy of the proposed strategy, we first carry out a series of fundamental
experiments, comparing to various feature models and some popular classification models. Then,
we demonstrate the effectiveness of the proposed strategy to configuration variation, depression and
articulation variation, small sample size, and recognition with ten-class targets. In our experiments,
we empirically set the regularization parameters λ1 = 10 and λ2 = 5 in MLA and γ = 0.1 in LSR.
The typical parameter values of the basis manifolds are between 30 and 50 for perplexity in the pairwise
similarity rule and between 6 and 12 for k in the local linearity rule.

5.1. Fundamental Verifications

This paper develops a new strategy for target recognition in SAR images. To obtain the
intrinsic low-dimensional representation of a SAR image, the multiple manifold regularization term is
incorporated into the TSVD framework. Then, the local sparse representation is employed to make
the decision, by which the recognition performance can be further improved. To verify the proposed
strategy, we first perform two sets of experiments for different low-dimensional feature representation
models and different classification models. Four military vehicles, BMP2, BTR60, T72 and T62, are
used for conducting the experiments. The type and number of samples in different depression views
are listed in Table 1. The items in parentheses represent different configurations with structural
modifications, which will be explained in detail in Section 5.2.1.

Table 1. The type and number of samples in different depression views.

Type Depr. BMP2 BTR60 T72 T62 Total

Training 17◦ 233(SN_9563) 256 233(SN_132) 299 1020

Testing 15◦ 196(SN_9566) 195 195(SN_812) 273 1246196(SN_c21) 195(SN_s7)

5.1.1. The Comparison of Feature Representation Model

To assess the performance of the proposed feature representation model, the recognition
performance of the proposed method MLA is compared with PCA [36], NMF [37], GNMF [21]
and MMF [22]. We set the regularization parameters in GNMF and MMF as λ = 10 and use the
classical k-nearest-neighbour graph with k = 12. In previous reports [12,21,22], these baseline methods
are always combined with a linear SVM classifier for classification. To ensure a fair comparison,
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the recognition performances for different representation models, in conjunction with a linear SVM
classifier (with a cost function parameter c = 6), are shown in Figure 3.

Figure 3 shows the recognition performances versus the change in the feature space dimension.
When the dimension of the feature space exceeds 30D, the best performance of MLA is superior to
the best performance of the baseline methods at each individual feature dimension. Specifically,
the recognition performances of PCA and NMF are inferior to those of all the other methods.
The recognition performances of GNMF and MMF are significantly better since they preserve
the geometric structure of the sample space in the low-dimensional representation. By contrast,
the proposed method MLA does a much better job in preserving the intrinsic geometric and
discriminating structure of the sample space via multiple manifold regularization. Moreover,
the performances of NMF and GNMF strongly depend on a good choice of the optimal dimension.
In contrast, the other three methods retain relatively stable results above a certain feature dimension
since the best low-rank approximation H for PCA, MMF and MLA can be obtained via using
the orthogonality constraint for mapping matrix Z. The above experimental results confirm the
effectiveness of the proposed low-dimensional representation model for SAR images.

 

Figure 3. The recognition rates of different feature representation models across the range of the
dimension of feature space.

5.1.2. The Comparison of Classification Model

To improve the classification performance, this paper employs the local sparse representation
to make a decision. Since the manifold of given classes that is closest to the query sample could be
found by the sparse representation [29], SRC has been applied to separate features of different targets.
In contrast to SRC, in this paper, a local sparse representation model, LSR, is proposed to limit the
feasible set of representations. In this way, the sparsity can be harnessed, and the local structure
of features can be fully utilized. Meanwhile, a class-specific model is introduced to supervise the
optimization of the sparse representation, which can improve the discriminative ability. The class of
the query sample is assigned to the object class which results in the minimum reconstruction errors.
A practical example for LSR can be found in Figure 4. To validate the classification model LSR, a set of
comparative studies based on MLA with 100D are employed, where SVM and SRC are compared with
LSR. The experimental results are presented in Table 2.
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 1 Figure 4. A practical example for LSR: (a) a test sample is randomly chosen from BMP2;
(b) the representation coefficients for the test sample are plotted together with the four classes—in fact,
the representation coefficients with each class are obtained independently; and (c) the residuals of the
test sample with respect to the four classes.

Table 2. The comparison of classification models based on the feature representation model MLA.

Method SVM SRC LSR

MLA 0.9350 0.9390 0.9582

As shown in Figure 4, the representation coefficients are sparse, and the smallest residual
corresponds to the correct class (BMP2). In Table 2, we can see that the proposed LSR model achieves
the best performance. Specifically, the recognition accuracy of LSR is 0.9582, which is 1.72 percent
better than SRC and 2.32 percent better than SVM. This result reveals that LSR is much more effective
than the other two classification models for separating features of different target classes.

5.1.3. Influence of the Related Factors on Performance

(1) The validation of multi-manifold regularization term. In the proposed low-dimensional
representation model, MLA, the multiple manifold regularization term is used for preserving
the intrinsic manifold structure. To verify the effectiveness of the multi-manifold regularization
term in MLA, we perform an experiment and compare the recognition performance with different
single-manifold regularization terms. The recognition results are shown in Table 3.

Table 3. The recognition accuracies obtained using different regularizations.

Regularization Single Manifold1 Single Manifold2 Multi-Manifold

Accuracy 0.9398 0.9486 0.9582

In Table 3, single manifold1 and single manifold2 denote that only the pairwise similarity
rule and local linear rule are utilized, respectively, whereas both rules are used for multi-manifold.
As shown in Table 3, the low-dimensional representation model with the multi-manifold regularization
term achieves better recognition accuracy than those of single-manifold regularization terms.
The experimental results reveal that each single-manifold regularization could describe some
underlying manifold structure. Specifically, the single manifold1 preserves local neighbor structure
by exploiting approximately pairwise similarities. The single manifold2 represents the local manifold
structure by exploiting the local symmetries of linear reconstruction between each sample and its
neighbors. However, the performance can be improved by aggregating the manifold structures via
multiple manifold regularization.

(2) Setting of the regularized parameters. In the proposed MLA-LSR strategy, there are two
essential parameters, i.e., the multiple manifold regularization parameter λ1 and local constraint
regularization parameter γ, which are both empirically set in the experiments. To obtain the
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approximate optimal values for λ1 and γ, we evaluate the influence of λ1 and γ for target recognition.
The recognition performance is shown at different values of parameters in Figure 5.

In the experiments, we choose the values of λ1 and γ in the sets of { 0.1, 0.3, 1, 3, 10, 30, 100 }
and { 0.01, 0.05, 0.1, 0.5, 1 }, respectively. As shown, better recognition performances can be obtained
when the value of λ1 ranges from 1 to 100. Either small or large λ1 can degrade the recognition
performance. This result is because a small value for λ1 cannot well reflect the manifold structure in
the low-dimensional feature representation, whereas a large value for λ1 is likely to cause a potential
overfitting. For the parameter γ, the performance is affected by the selection of the parameter λ1 to
some extent. For example, if λ1 ranges from 1 to 30, the recognition performance is robust to the
change of γ from 0.01 to 1. By amount of the experimental analysis, the recognition performance of the
proposed method is relatively robust to changes in the λ1 and γ parameters, when the the value of
λ1 is between 1 and 50 and the value of γ is between 0.05 to 0.5. Hence, we empirically set the same
regularization parameter λ1 = 10 and γ = 0.1 in the all of our experiments.

 

Figure 5. The recognition accuracy across the range of the parameters.

5.1.4. Convergence Analysis

The technique of alternating iterations is used for minimizing the objective function of MLA.
Thus, it is necessary to analyse its convergence. To evaluate the convergence of MLA, the experiment
is performed with four military vehicles, BMP2, BTR60, T72 and T62. The type and number of
samples can be found in Table 1. Figure 6 shows the convergence curves of different manifold
regularization. It displays the changes of the value of the objective function with the number of
iterations. As shown, in general, the objective functions of all the methods can rapidly converge within
20 iterations. In particular, the methods with single-manifold regularized term have faster convergence
speed than MLA.

5.2. Recognition Performance Evaluation

In this section, the proposed strategy, MLA-LSR, is compared with several methods in terms of
recognition performance under different extended operation conditions. We compared it not only
against SRC [28], LSR, GNMF [21], MMF [22] and MLA-SR, but also against the newly developed
methods, i.e., joint sparse representation of monogenic signal (TJSR) [38], sparse representation on
Grassmann manifold (KSRM) [39], and all-convolutional network (A-ConvNets) [40]. Specifically,
SRC and LSR are employed with the PCA feature. MLA-SR stands for MLA features based on SRC.
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To perform a fair comparison, GNMF and MMF use the LSR for classification. Additionally, the same
dimension of 80D is selected in the following experiments.
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Figure 6. The convergence cure of different regularization. The single manifold1 and the single
manifold2 denote the methods with pairwise similarity rule and local linearity rule, respectively.
The multi-manifold represents the proposed MLA method.

5.2.1. Performance on Configuration Variation

Due to the physical difference and structure modifications for targets, the configuration variation
is not inevitable for target recognition in SAR images. To validate the efficacy of the proposed strategy
for configuration variation, four class targets are chosen from BMP2, BTR60, T72 and T62, as listed
in Table 1. BMP2 and BTR60 are armoured personnel carriers, while T72 and T62 are main battle
tanks. Example images are shown in Figure 7. In addition, BMP2 and T72 consist of multiple variants.
Only the standards (SN 9563 for BMP2 and SN 132 for T72) are available for training, and the other
variants are used for testing.

Figure 8 presents a detailed comparison of MLA-LSR with a variety of methods. The MLA-SR
and MLA-LSR methods outperform all the baseline SRC, LSR, GNMF and MMF methods. The results
indicate that the low-dimensional representation of SAR images obtained by MLA could be more
effective than those obtained by the single-manifold learning methods. In addition, the recognition
accuracy for MLA-LSR is 0.9582, which is 1.72% better than that of MLA-SR. This result demonstrates
that LSR produces more believable inference than SRC. MLA-LSR is also shown to have better
performance than the latest TJSR, KSRM and A-ConvNets methods. From the confusion matrices,
we can see that BMP2 and T72 are more likely to be misclassified, as different types of targets are
employed in the training and testing. However, MLS-LSR still maintains a higher recognition accuracy
than those of the other methods.
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 1 Figure 7. Illustration of four-class target: (a) BMP2; (b) BTR60; (c) T72; and(d) T62.
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Figure 8. Confusion matrices by different methods. For each method, the average recognition accuracy
is given on the top left corner of matrix.

5.2.2. Performance on Ten-class

Target recognition performed on all of the ten-class targets in the MSTAR database is a more
challenging problem. Details of the numbers and types of the ten-class targets are listed in Table 4.
Similarly, for BMP2 and T72 with multiple variants, the standards are employed for training, while the
others are utilized for testing. To analyse the misclassification of targets, confusion matrices of the
studied methods are shown in Figure 9.
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Table 4. The number of images for ten-class targets.

Depr. BMP2 BTR70 T72 2S1 BRDM BTR60 D7 T62 ZIL ZSU

17◦ 233(SN_9563) 233 233(SN_132) 299 298 256 299 299 299 299

15◦ 196(SN_9566) 196 195(SN_812) 274 274 195 273 273 274 274196(SN_c21) 191(SN_s7)
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Figure 9. The confusion matrices of SRC, LSR, GNMF, MMF, MLA-SR, A-ConvNets, and MLA-LSR.
For each matrix, the entry denotes the percentage of classifying the target in the row as the target in
column. The average accuracies are given in parentheses.

The results presented in Figure 8 show that the MLA-LSR method outperforms all the other
methods in terms of the recognition accuracy on the ten-class targets. Specifically, the proposed
MLA-LSR strategy achieves a high recognition accuracy of 0.9634. It outperforms SRC, LSR, GNMF,
MMF, A-ConvNets and MLA-SR by a margin of 3.7, 2.37, 1.47, 1.53, 0.82 and 1.18 percent, respectively.
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From these matrices in Figure 8, most targets without variants could be correctly identified in
MLA-LSR, which is attributed to the combination of MLA and LSR to improve the discriminative
ability. In addition, similar to the results shown in Section 5.2.1, the performance of MLA-LSR is also
consistently better than that of the other methods for the targets with variants, particularly for BMP2.

5.2.3. Performance on Larger Depression and Articulation Variation

Images collected under different depression angles would change drastically. Hence, the feature
extraction and classification methods should be robust to changes in depression angles. In this
subsection, the performance of the proposed strategy, MLA-LSR, is evaluated under different
depression angles. Three vehicle targets, 2S1, BRDM2 and ZSU234, are used in the experiments.
Images captured at a 17◦ depression angle are used for training, whereas the ones acquired at 30◦ and
45◦ depression angles are used for testing. In particular, BRDM2 and ZSU234 have articulated variants
in the testing, such as opening or closing hatch and straight or rotational turret. The examples with
depression and articulated variants are shown in Figure 10. The number and depression information
of these targets are listed in Table 5. The entry in parentheses means the number of targets with
articulated variants.

  

   
(a) 

    
(b) 

   
(c) 

   
(d) 

 1 Figure 10. Examples of BRDM2 and ZSU234 with depression and articulated variants: (a,b) display SAR
images of BRDM2 collected at 30◦ and 45◦ with hatch variation; and (c,d) display SAR images collected
at 30◦ and 45◦ with gun turret variation.

Table 5. The number of images for large depression and articulation variation.

Type Depression 2S1 BRDM2 ZSU234 Total

Training 17◦ 299 298 299 896

Testing 30◦ 288 287 (133) 288 (118) 1114
45◦ 303 303 (120) 303 (119) 1148

Table 6 shows the results of our experiments with MLA-LSR, as well as the confusion matrices.
The recognition accuracies of MLA-LSR compared with TJSR, KSRM, GNMF, MMF and MLA-SR are
given in Figure 11. When the depression angle for testing is 30◦, two targets, BRDM2 and ZSU234,
can easily be misclassified due to the articulation variation. When the depression angle has a drastic
changes of 28◦ from 17◦ for training to 45◦ for testing, the recognition accuracies of the three targets
are slightly degraded due to the abrupt change in the signatures of the same targets from different
depression angles. Regardless, the recognition accuracy of the proposed MLA-LSR strategy still
reaches 0.7778, compared to 0.7073 for TJSR, 0.7238 for KSRM, 0.6408 for GNMF, 0.6803 for MMF,
0.5763 for A-ConvNets and 0.73 for MLA-SR. In addition, the decrease of recognition accuracy for
MLA-LSR is 0.1351, which is 11%, 9.92% 10.74%, 7.94%, 23.13% and 4.33% better than its six competitors.
The experimental results prove that the proposed strategy is much more robust towards variations in
depression and articulation than the competitors, particularly for large depression variations.
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Figure 11. The recognition rates of various methods. The number on the right of the bar represents the
decrease in recognition performance across the range of depression variation from 30◦ to 45◦.

Table 6. Recognition accuracies of MLA-LSR on the depression and articulation variation database.

Target 30◦ Depression 45◦ Depression

2S1 BRDM2 ZSU234 2S1 BRDM2 ZSU234

2S1 0.9826 0.0069 0.0104 0.7492 0.1716 0.0792
BRDM2 0.0762 0.8333 0.0905 0.0804 0.6478 0.2719
ZSU234 0.0296 0.0246 0.9458 0.0308 0.0403 0.9289

Average 0.9129 0.7778

5.2.4. Performance on Small Sample Size

An important consideration in target recognition is the robustness to limited training samples.
Similar to the experiment set in Table 1, four-class targets are employed, but the number of training
samples is gradually decreased. Specifically, the sizes of the training samples are chosen to be 30%, 40%,
50%, 60%, 70%, 80%, 90%, and 100% of the size of the original training samples. Figure 12 plots the
recognition performances of MLA-LSR and its competitors as a function of the size of training samples.
The performances of all methods degrade when the number of training samples decreases. However,
the performance of the proposed MLA-LSR strategy is still superior to those of the other methods
under different training sizes. The results demonstrate that MLA-LSR is capable of performing well on
limited training samples.

  

 
(a) 

 
(b) 

 1 Figure 12. The recognition accuracy across the size of training.
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5.3. Computational Complexity

The computational cost of the proposed method consists of the calculation of MLA and LSR.
For MLA, the primary computational load is the alternative iteration of H, Z and η. The updating
rule in Equation (16) for H involves inverting a matrix I + λ1Ψ. Actually, it is equivalent to
solving d linear systems. Thus, the preconditioned conjugate gradient (PCG) [41] can address
the linear system efficiently, which needs 4n + n2 in each iteration. Combining with the cost
of dn2 for calculating d right-hand-side vectors, the computational complexity for updating H is
approximated as p(4n + n2)d + dn2, where p is the iterative times, typically p < 10. For updating
rule in Equation (16) for Z, the time cost is 2md2 + 20d3 + (m + d)d2, specifically, 2md2 for XHT ,
20d3 for SVD [42] and (m + d)d2 for forming Z. The remaining cost of MLA in each iteration
is r3 + nd for updating η in Equation (17). In addition, MLA requires O(rmn2) to construct the
affinity matrices of multiple manifolds. Hence, the overall computational complexity of MLA
is approximately O(t((p + 1)dn2 + md2) + rmn2), where t is the number of iterations. For LSR,
the computational complexities for obtaining the low-dimensional feature representation of a query
sample in Equation (18) and the sparse representation for each class in Equation (21) are md and O(nc

2).
Since we need to calculate c local sparse representation systems, the total workload of LSR is
approximately O(md + cn2

c ). Therefore, the cost of the proposed MLA-LSR method is approximated as

O(t((p + 1)dn2 + md2) + rmn2) + O(md + cnc
2) (23)

Figure 13 shows the runtime of MLA-LSR and its four competitors under different experimental
conditions, i.e., target recognition under configuration variation, depression (both 30◦ and 45◦) and
articulation variation, as well as ten-class targets.From the results in Figure 13, some conclusion can be
drawn. (1) The construction of optimal manifold based on multiple manifolds would moderately add
computational load of MLA-LSR. For example, the runtime of MLA-LSR is higher than that of MMF,
as MMF only utilizes a single-manifold. However, the MLA-LSR iteration converges fast. Therefore,
the computation cost of the proposed method is still acceptable under the realistic applications.
(2) The locality constraint would improve the computation efficiency of sparse representation. For all
the experiments in Figure 13, the runtime of MLA-LSR is lower than that of MLA-SR. The results
verify that the computation cost of LSR is low. (3) The computation efficiency of MLA-LSR is much
higher than that of TJSR. According to the order of experiments in Figure 13, the runtime of MLS-LSR
is 12.44 s, 22.05 s, 22.94 s and 56.62 s lower than TJSR, respectively.
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Figure 13. Comparison of the runtime of MLA-LSR with GNMF, MMF, TJSR and MLA-SR under
different experimental conditions.

6. Conclusions

In this paper, a new strategy, MLA-LSR, is proposed for SAR target recognition. In the proposed
method, MLA refers to obtaining a low-dimensional representation of SAR images. LSR refers to



Remote Sens. 2018, 10, 211 20 of 22

using a local sparse representation for classification. In the proposed MLA model, a multi-manifold
regularization is incorporated into the TSVD framework. In this way, MLA can not only acquire
the optimal low-rank approximation of the original samples but also capture the intrinsic manifold
structure. In the proposed LSR classification method, a locality constraint and class-specific model
are used to form the dictionary, by which the query sample is sparsely represented. The inference
is reached corresponding to the class with the minimum reconstruction error. Compared to the
traditional sparse-representation-based classification method, LSR improves the discriminative ability.
Extensive experiments are performed on the MSTAR database to evaluate the performance of MLA-LSR.
From these experimental results, some conclusions can be drawn. (1) The multi-manifold regularization
term employed in the low-dimensional representation is more effective than a single-manifold term
for capturing the intrinsic manifold structure of samples. (2) The locality constraint in the sparse
representation model is more appropriate to discriminate the features obtained by MLA than the
sparsity constraint. (3) The proposed strategy is a contender for establishing a firm foothold on territory
from which stronger invariances for configuration variation, depression and articulation variation can
be built. (4) The proposed strategy achieves a significant improvement compared to competitors with
small training sizes.
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