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Abstract: In this paper, we present a novel method for ship classification in synthetic aperture radar
(SAR) images. The proposed method consists of feature extraction and classifier training. Inspired by
SAR-HOG feature in automatic target recognition, we first design a novel feature named MSHOG
by improving SAR-HOG, adapting it to ship classification, and employing manifold learning to
achieve dimensionality reduction. Then, we train the classifier and dictionary jointly in task-driven
dictionary learning (TDDL) framework. To further improve the performance of TDDL, we enforce
structured incoherent constraints on it and develop an efficient algorithm for solving corresponding
optimization problem. Extensive experiments performed on two datasets with TerraSAR-X images
demonstrate that the proposed method, MSHOG feature and TDDL with structured incoherent
constraints, outperforms other existing methods and achieves state-of-art performance.

Keywords: ship classification; task-driven dictionary learning; structured incoherent constraints;
sparse representation; manifold learning; histogram of oriented gradients (HOG)

1. Introduction

Synthetic aperture radar (SAR) plays an indispensable role in maritime surveillance for its
independence of meteorological conditions [1]. As one of the most important steps, ship classification
has attracted much interest. Early ship classification research is usually based on simulative SAR ship
samples [2]. Subsequently, relatively medium resolution SAR images appeared. Margarit et al. [3]
identified ships’ classes in ENVISAT 30 m resolution SAR images.

With the launching of high-resolution SAR sensors, SAR images with high resolution make it
possible to extract discriminative features. Zhang et al. [4] explored geometric features, focusing on
width ratio of minimum enclosing rectangle (MER), and the ratio of ship and non-ship points on
the principal axis. Jiang et al. [5] and Xing et al. [6] tried to present a deep understanding of ship
properties from superstructure view. 2D comb feature was proposed by Leng et al. [7] based on
scattering distributions of ship target. Hierarchical structure was introduced in Lang et al. [8] to further
improve the performance of scattering features. However, geometric features may fail when the ships
from different classes share similar geometric shape. Superstructure and scattering features can be
disturbed by the imaging incident angle. One possible way to solve this problem is to adopt feature
selection strategy, and then combine the selected features. Lang et al. [9] proposed a joint feature and
classifier selection method, and Chen et al. [10] developed a two-stage feature selection approach.
Obviously, the performance of the methods can be limited by the feature set for selection, which means
that, if the feature set is not friendly to classification task, we cannot get the desired effect through
selection. Another drawback comes from convergence property of the method, as there is a chance
that the solution is trapped around the local optima during the selection. With the development of
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deep learning, researchers employed deep neural networks to extract features for SAR images [11,12].
Bentes et al. [13] proposed a multiple input resolution convolution neural network model (CNN-MR)
and demonstrated its effectiveness. However, its application is limited, because we cannot afford
the large amount of data required by this method in most cases. Recently, local statistical features
were applied to SAR images and showed great potential [11,14]. Song et al. [15] proposed a HOG
like feature named SAR-HOG for target classification in SAR images, which improved classification
performance greatly. Nevertheless, SAR-HOG feature suffers high dimensionality, which brings great
obstacles to feature computation and classifier training. Manifold learning [16–22], as a nonlinear
dimensionality reduction method, reveals low dimensional manifolds that are not detected by classic
linear method, such as principle component analysis (PCA) [23]. Inspired by this idea, we propose a
manifold-learning SAR-HOG feature (MSHOG) by improving SAR-HOG feature for ship classification
task and employing manifold learning to implement dimensionality reduction.

With respect to the classifier, sparse representation [24,25] has achieved great success on
face recognition [26,27], hyperspectral image classification [28,29] and automatic target recognition
(ATR) [30]. Xing et al. [31] applied sparse representation in feature space, and developed a classification
method based on the sparse codes, achieving high accuracy in TerraSAR-X images. In the original
sparse representation, the dictionary is constructed by simply stacking the whole training samples.
Subsequently, dictionary learning methods were proposed to achieve better representation, such as
online dictionary learning [32], and K-SVD [33]. Class-specific dictionary was further proposed
in Ramirez et al. [34] to capture the difference of categories. The classical dictionary learning
approach concerned reconstruction error. As research moved along, researchers realized that a lower
reconstruction error in dictionary learning does not necessarily lead to better classification performance
and classification performance can even be improved by sacrificing some signal reconstruction
performance [35–37]. It was pointed out that better results could be obtained when the dictionary
was tuned to the specific task (and not just data) it is intended for. Mairal et al. [38] presented a
general formulation for supervised dictionary learning adapted to a wide variety of task, which was
referred to as task-driven dictionary learning (TDDL). However, training a universal dictionary for all
classes limited the performance of the original TDDL, as shown in Section 5.4. In this paper, we train
the dictionary and classifier jointly in TDDL framework. To amplify the difference between classes
and suppress the common features, we design class-specific sub-dictionaries, and impose intrinsic
incoherent constraints [34,39]. To further encourage sub-dictionaries associated to different classes to
be as independent as possible, we enforce direct incoherent constraints on TDDL method, which is
proposed for the first time. Finally, corresponding algorithm for solving the optimization problem is
developed based on fixed point differentiation and gradient descent (GD) algorithm.

The main contributions of this paper can be summarized as follows: (1) We present a novel
local feature named MSHOG for SAR image by fusing improved SAR-HOG with manifold learning.
(2) We propose a new dictionary learning algorithm for TDDL with structured incoherent constraints
to increase discriminability between different classes of ships. (3) We also describe an optimization
algorithm for solving sparse recovery problem with structured incoherent constraints. (4) We show
experimentally that the proposed method obtains state-of-art results and has a significantly better
performance than other existing methods.

The remainder of this paper is organized as follows. In Section 2, a brief review of SAR-HOG
and TDDL is given. In Section 3, we improve SAR-HOG feature, combine the improved one with
manifold learning, and propose a novel feature named MSHOG. TDDL with structures incoherent
constraints and corresponding algorithm are detailed in Section 4. In Section 5, we show that the
proposed method is superior to other ship classification methods in SAR image. Finally, we conclude
our work in Section 6.
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2. Related Work

In this section, we briefly introduce the original SAR-HOG feature, followed by the modeling and
expression of TDDL method. Implementation details can be found in Song et al. [15] and Mairal [38].

2.1. SAR-HOG

SAR-HOG computation includes three steps: gradient computation, orientation binning, and
normalization [15].

In gradient computation, ratio-based gradient definition is used, and horizontal and vertical
gradient are defined as

GH = log(
Mle f t

Mright
), GV = log(

Mup

Mdown
) (1)

where M denotes the local means on corresponding side of the current pixel. Furthermore, the gradient
magnitude and orientation can be computed by:

Gm =
√

G2
H + G2

V , Gθ = atan(
GV
GH

) (2)

where the atan(·) denotes the inverse tangent function.
Then, orientation binning is employed. Concretely, the SAR image is divide into small regions

(called cells). For all the pixels within a cell, the orientations are quantized into a fixed number of
angular bins, and the magnitudes are accumulated into orientation bins. The cells are grouped into
larger blocks, and the histogram entries of cells in each block are concentrated to be a vector. The vector
normalization can be expressed as:

vi ←
vi

max(||vi||2, ε)
(3)

where vi denotes the vector corresponding to the ith block; and ε is a small number, whose value is
always 0.2-times the mean value of ||vi||2 in all of the blocks.

The effectiveness of SAR-HOG has been verified in Song et al. [15]. However, its dimensionality
is usually very high, especially for large SAR images.

2.2. TDDL

Consider a pair of training samples (x, y), where x ∈ RM is the some feature extracted from
SAR image, and y ∈ RK is a binary vector representation of corresponding class label. Given some
dictionary D ∈ RM×P, x can be represented as a sparse vector α(x, D) ∈ RP, defined as the solution of
an elastic-net problem [40]:

α(x, D) = arg min
α∈RP

1
2
||x − Dα||22 + λ1||α||1 +

λ2

2
||α||22 (4)

where λ1 and λ2 are the regularization parameters.
For classification task, TDDL uses the sparse vector α(x, D) in a classical expected risk

minimization formulation:

min
D,W

L(D, W, x) = min
D,W

f (D, W, x) +
µ

2
||W||2F (5)

where W is the parameter matrix of the classifier, µ is a classifier regularization parameter to avoid the
overfitting of classifier [41], and f (D, W, x) is a convex function defined as

f (D, W, x) = Ey,x[ls(y, W, α(x, D))]. (6)
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In this equation, Ey,x denotes the expectation taken relative to the probability distribution p(x, y),
ls is a convex loss function that measures how well one can predict y by observing α(x, D) given the
parameter matrix W, which can be the square, logistic, or hinge loss from SVM [42].

Stochastic gradient descent (SGD) algorithm is used to update the dictionary D and the parameter
matrix W. The update rules are as follows.{

Dt+1 = Dt − ρt· ∂Lt

∂D
Wt+1 = Wt − ρt· ∂Lt

∂W
(7)

where t is the iteration index and ρ is the step size. The equation for updating W is straightforward
since L(D, W, x) is both smooth and convex with respect to W. We have

∂L
∂W

= (Wα− y)αT + µW. (8)

According to the chain rule, we have

∂L
∂D

=
∂L
∂α
· ∂α

∂D
. (9)

The main difficulty comes from ∂α/∂D, since the optimization problem in Equation (4) is not
smooth [43]. Mairal [38] used fixed point differentiation to solve the problem [44]. The detailed
derivation of the algorithm can be found in the Appendix of Mairal et al. [38]. We put the main
propositions as follows. {

∇W f (D, W, x) = Ey,x[∇Wls(y, W, α)]

∇D f (D, W, x) = Ey,x[−DβαT + (x−Dα)βT ]
(10)

where β is a vector in RP that depends on y, x, W, D with

βΛc = 0 and βΛ = (DT
ΛDΛ + λ2I)

−1∇αΛ ls(y, W, α) (11)

where Λ and Λc denote the indices of the nonzero and zero coefficients of α(x, D), respectively.

3. MSHOG Feature

In this section, a novel feature named MSHOG is proposed and analyzed. We introduce the
structures of ships first, as a motivation of proposing MSHOG feature. Then, the details of MSHOG
feature are described.

The bulk carrier, container ship and oil tanker are the study object in this paper, which constitute
approximately 70%–80% of the ships worldwide [4]. The bulk carrier has shorter hull, compared with
container ship and oil tanker. The cargo hold is a flat deck with a wide hatch, and the hatch coaming is
tall. The container ship has a slender shape, a single plate, and a double or three row of cargo port,
and the cabin is grid structure. As for the oil tanker, there is an oil pipeline, along the fore-and-aft line
on the upper deck, which is designed for oil handling. Optical images and SAR images of these three
ship types are shown in Figure 1.

Unique structures result in unique features, as shown in the second column of Figure 1. For bulk
carriers, we can see two bright lines along the fore-and-aft orientation, produced by the tall hatch
coaming. The area related to the flat deck is much darker. For container ships, duplicate texture
can be noticed, as a result of the grid structure of the cabin. Additionally, container ships maintain
high length-width ratio. For oil tankers, we can observe a bright line produced by the pipeline,
and darker areas produced by the deck. Classical features, such as geometric feature, structure
features and scattering features, are mainly based on the image characteristic mentioned above,
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obtaining good performance in previous work [4–9]. However, interaction of strong scatters on
board and electromagnetic reflection between hull and sea surface blur the imaging, making the
effective information in SAR images unavailable, as shown in the third and fourth column of Figure 1.
This phenomenon is very common in our datasets. It fails the classic features, promoting us to design a
more compact and effective feature. Faced with this dilemma, we use SAR-HOG feature as a prototype
and adapt it to our classification task, since SAR-HOG reliably captures the structures of targets in
SAR images [15]. Considering the high dimensionality in SAR-HOG feature, we employ manifold
learning to achieve dimensionality reduction. Finally, we obtain a compact and effective feature
named MSHOG.

MSHOG computation includes four steps: gradient computation, orientation binning,
normalization and descriptor blocks, and dimensionality reduction.
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TerraSAR-X images.

3.1. Gradient Computation

Theoretically, speckle in SAR image can be characterized by a multiplicative noise model. In this
step, we use the ratio-based gradient definition, introduced in SAR-HOG feature. The horizontal and
vertical gradient are defined as in Equation (1). Then, the gradient magnitude Gm and orientation Gθ

can be computed by:

Gm =
√

G2
H + G2

V (12)

Gθ = angle(
GV
GH

) (13)

where GH and GV are the gradient matrices in horizontal and vertical direction, respectively.
The function angle(·) returns the phase angles, ranging from 0◦ to 360◦. The division, square and
square root of the matrices should be understood as element-by-element operations.

3.2. Orientation Binning

Divide the SAR image into small regions (called cells) similar to that in Dalal et al. [45]. We divide
the angular space into bins, and then choose the magnitude itself as the weight to vote in the orientation
bins corresponding to gradient orientation at each pixel over the cells.

SAR-HOG claims that smaller cells work better, and angular bins should be a bit bigger, which is
also identified in MSHOG. The difference between SAR-HOG and MSHOG in orientation binning is
that the orientation bins of MSHOG are spaced over 0◦ to 360◦ (“signed” gradient) to extract more
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structure information, while those of SAR-HOG are spaced over 0◦ to 180◦ (“unsigned” gradient).
The reason the “signed” gradient cannot improve the performance in Song et al. [15] may lie in the wide
range of target attitude and background which probably makes the signs of contrast uninformative.

3.3. Normalization and Descriptor Blocks

Several cells constitute a block. The normalization in SAR-HOG is also used in MSHOG, which is
described in Equation (3). Next, we concentrate the normalized vectors over blocks and obtain the
candidate of MSHOG.

3.4. Dimensionality Reduction

All HOG-like features suffer high dimensionality. For instance, given a SAR image with a size of
128-by-64, we gain a vector with 3780 dimensions with the following parameters setting:

block_size = 16× 16, block_stride = 8,
cell_size = 8× 8, num_bins = 9.

(14)

High dimensionality can bring overfitting, when the number of samples is insufficient to
support high dimensional classification task. Besides, much computation power is necessary for
high dimensionality computation problem. Thus, dimensionality reduction is urgent in small-sample
condition. PCA is a classic linear dimensionality reduction method, widely used in image processing.
However, PCA has a limited performance when dealing with the data which lie on low dimensional
manifolds. That is to say, PCA cannot reveal the nonlinear structure hidden in data. Manifold learning
was proposed for this situation. In this paper, maximum variance unfolding (MVU) [16] is employed as
the manifold learning method to reveal low dimensional manifolds. PCA aims to preserve Euclidean
distances between all pair of vectors, while MVU considers only preserving the geometric properties of
local neighbors. MVU claims that low dimensional manifold can be obtained by spectral decomposition
of the inner product matrix K, which is given by a semidefinite programming (SDP) problem [16].
The SDP problem can be expressed as follows.

Maxmize trace(K) subject to
(1) K ≥ 0.
(2) ∑ij Kij = 0
(3) Kii − 2Kij + Kjj =

∣∣∣∣si − sj
∣∣∣∣2for all (i, j) with

ϕij = 1

where {si}N
i=1 is the high dimensional input dataset, and ϕij ∈ {0, 1} indicates whether there is an edge

between si and sj in the graph formed by pairwise connecting all q-nearest neighbors. The problem
above is a classic instance of SDP and can be solved by many mature algorithms as well as several
general-purpose toolboxes. We use the CSDP v4.9 toolbox in MATLAB to solve it [46]. The low
dimensional output {xi}N

i=1 of MVU is given by the eigenvalues and eigenvectors of the inner product
matrix K. We have

xαi =
√

ξαVαi (15)

where xαi denotes the αth element of xi, and Vαi denotes the ith element of the αth eigenvector, with
eigenvalue ξα.
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To compare PCA and MVU intuitively, we apply PCA and MVU to TerraSAR-X images (DS1,
introduced in Section 5), and visualize the three-dimensional results and eigenvalues in Figure 2 (higher
dimensional results cannot be visualized easily). The top and middle panel present the dimensionality
reduction results, including the three-dimensional results and their projection on two-dimensional
subspaces. The blue, red and green dots represent bulk carrier samples, container ship samples, and oil
tanker samples, respectively. We can notice that the distinctiveness of the three-dimensional results in
MVU is more pronounced and three-dimensional results in PCA themselves lie on a two-dimensional
manifold. Besides, just as the eigenvalue spectrum of the covariance matrix in PCA indicates the
dimensionality of a subspace, the eigenvalue spectrum of the inner product matrix in MVU reflects
the dimensionality of an underlying manifold. Dominant eigenvalues indicate dominant components
in dimensionality. We sort the eigenvalues from the matrices of PCA and MVU in descending order,
and visualize them as a fraction of the traces in the bottom panel of Figure 2. The first three eigenvalues
in PCA account for 65.71% of the total, whereas the first three eigenvalues in MVU account for
96.15%, which means that MVU more reliably captures the generalized principle components than
PCA. Furthermore, we find that the first 20 eigenvalues in MVU account for 99.99% and the first
20 eigenvalues in PCA account for 85.32%. Therefore, we can conclude that MVU outperforms PCA
for HOG-like features.

Considering the compactness and effectiveness, we set the dimensionality of the low dimensional
manifold as 20. Then, we obtain MSHOG feature by unfolding the low dimensional manifold
through MVU.
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4. TDDL with Structured Incoherent Constraints

4.1. Basic Intuition

TDDL method provides us a supervised dictionary learning framework to learn dictionaries
adapted to various tasks instead of only adapted to data reconstruction [38]. For classification
task, TDDL method can learn discriminative dictionary and improve classification performance.
Ramirez et al. [34] introduce class-specific dictionary learning and incoherent constraints, which can
further magnify the differences between classes, compared to a universal dictionary trained on all the
samples. The drawback of the method in Ramirez et al. [34] lies in the incoherent constraints, which are
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unsupervised constraints and are not enough to obtain expected structure on testing set (see Section 5.4).
Therefore, we combine the advantages of both methods and impose more effective constraints. First,
we design class-specific sub-dictionaries, concentrate them and obtain a big dictionary. Then, intrinsic
and direct incoherent constraints are imposed. Finally, we learn the dictionary and classifier jointly in
TDDL framework.

4.2. Formulation

Denote training samples of k classes as X = [x1, x2, · · · , xi, · · · , xN ] ∈ RM×N , where xi ∈ RM

is a SAR image feature. Denote the dictionary as D = [D1, D2, · · · , Dl , · · · , Dk] ∈ RM×P (P =

P1 + P2 + · · ·+ Pk), where Dl = [dl
1, dl

2, . . . , dl
j, . . . , dl

Pl
] ∈ RM×Pl is the lth sub-dictionary and dl

j is
the jth atom with M dimensions in lth sub-dictionary. The sample xi can be represented as a sparse
code αi(x, D) ∈ RP by solving the optimization:

αi(x, D) = arg min
αi∈RP

||xi −Dαi||22 + λ1||αi||1 +
1
2

λ2||αi||22 (16)

where λ1 and λ2 are the regularization parameters. λ1 controls the sparsity of αi(x, D), and λ2 is to
avoid poor convergence of algorithm.

The training samples can be represented by the linear combination of the sub-dictionaries, i.e.,

xi ≈ D1αi
1 + D2αi

2 + · · ·Dlα
i
l + · · ·+ Dkαi

k (17)

where αi
l ∈ RPl denotes the lth sub-sparse-code corresponding to the sub-dictionary Dl .

For classification task, it is desirable that class-specific samples are encoded as class-specific sparse
code on class-specific dictionary. That means that the samples from class l can be almost completely
represented by αi

l with respect to Dl , i.e.,
xl

i ≈ Dlα
i
l (18)

where xl
i denotes the SAR image samples from class l.

1. Intrinsic Constraints

Two sub-dictionaries Dl1 and Dl2 are assumed to be orthogonal, i.e.,

DT
l1Dl2 = 0, 1 ≤ l1 ≤ k, 1 ≤ l2 ≤ k, and l1 6= l2 (19)

where 0 denotes the matrix of all zeros, T denotes the transposition. Then, the linear space spanned by
the atoms of Dl1 is orthogonal with the space spanned by the atoms of Dl2 . In other words, if sample
xi ∈ RM can be represented by a linear combination of atoms of Dl1 , the projection of xi on the space
of Dl2 is zero. Therefore, we can achieve the purpose in Equation (18) by restricting the coherence
between class-specific sub-dictionaries to

min
D∈RM×P

k

∑
l=1
||DT

l D−l ||2F. (20)

2. Direct Constraints

The intrinsic constraints are unsupervised constraints. To explore the priori information in
class labels, we propose direct constraints as supervised constraints. The two kinds of constraints
complement each other, obtaining the ideal structure in Equation (18) and improving the classification
performance significantly.

Basically, the update of the dictionary should be driven by the minimization of the distance
between the ideal structure of sparse codes and the current structure of those. Since the sparsity of
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sparse codes is guaranteed by Equation (16), it is unnecessary to control the sparsity of αi
−l via L1-norm.

In addition, the smoothness of L2-norm can benefit the differentiation in the update of the dictionary.
Therefore, L2-norm, as an approximation of L1-norm, is chosen to characterize the distance. We have:

min
D
||αi
−l ||

2
2 (21)

where and αi
−l denotes the sub-sparse-vector by removing αi

l from αi. For the brevity of expression, let
si ∈ RP denote the supervising vector for sample xi ∈ RM from class l, i.e.,

si =
[

sT
i1 sT

i2 · · · sT
ij · · · sT

ik

]T
(22)

where sij = (1− δjl) · 1Pj×1 ∈ RPj(1 ≤ j ≤ k) is a sub-vector of si. 1Pj×1 is the vector of all ones whose
size is Pj × 1, and δjl is defined as:

δjl =

{
1 if j = l

0 else.
(23)

Thus, Equation (21) can be rewritten as:

min
D
||si. ∗ αi||22, s.t. αi(x, D) = arg min

z
||xi −Dz||22 + λ1||z||1 +

1
2

λ2||z||22 (24)

where .∗ denotes element-by-element multiplication.
Given the training samples X = [x1, x2, · · · , xi, · · · , xN ] ∈ RM×N and corresponding label vectors

Y = [y1, y2, · · · , yi, · · · , yN ] ∈ Rk×N , we update the dictionary D and the classifier’s parameters W
jointly in TDDL framework with the constraints introduced above. Mathematically, the objective
function can be formulated as follows:

min
D,W

L(D, W, X) = min
D,W

1
2 ||Y−WA||2F +

µ
2 ||W||2F +

η1
2

k
∑

l=1

1
P2

l
||DT

l Dl − IPl ||
2
F

+ η2
2

k
∑

l=1

1
2Pl(P−Pl)

||DT
l D−l ||2F +

ν
2 ||S. ∗A||2F

(25)

where µ, η1, η2 and ν are the regularization parameters; W ∈ Rk×P is the parameters of the linear
classifier; D−l is denoted as the sub-dictionaries by removing Dl from D; IPl is an identity matrix
whose size is Pl × Pl ; S = [s1, s2, . . . , si, . . . , sN ] ∈ RP×N is the supervising matrix associated with
training samples’ class labels; and A ∈ RP×N is the solution of the following problem:

A = argmin
A
||X−DA||2F + λ1

N

∑
i=1
||αi||1 +

λ2

2
||A||2F (26)

where αi is the ith column of A ∈ RP×N , λ1 and λ2 are the regularization parameters. In Equation
(25), the term

∣∣∣∣Y−WA
∣∣|2F describes the classification error, the term

∣∣∣∣W∣∣|2F is to avoid overfitting
of the classifier, the term

∣∣∣∣DT
l Dl − Il

∣∣|2F as self-incoherence is to stabilize the learned dictionary for
each class [47], term

∣∣∣∣DT
l D−l

∣∣|2F as cross-incoherence is to enforce class-specific sub-dictionaries
incoherency, and the term

∣∣∣∣S. ∗A
∣∣|2F is to enforce the sparse codes to ideal structure. The coefficients

1/P2
l and 1/2Pl(P− Pl) in Equation (25) are to reduce the influence of the sub-dictionary size and

make the learned dictionary more stable for classification, which was introduced by Gao et al. [48].
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Compared with Song et al. [15] and Remirez [34], we learn the dictionary and the classifier’s
parameter in a task-driven way. Unlike the original TDDL [38], we take structured incoherent
constraints to obtain abundant discriminability. We take TDDL-SIC as shorthand for TDDL with
structured incoherent constraints in the following. Related experiments will be performed and
discussed in Section 5.

4.3. Optimization

The objective function L(D, W, X) in Equation (25) can be further represented by two parts,
L1 and L2, which are defined as follows:

L1 =
1
2
||Y−WA||2F +

µ

2
||W||2F +

ν

2
||S. ∗A||2F (27)

L2 =
η1

2

k

∑
l=1

1
P2

l
||DT

l Dl − IPl ||
2
F +

η2

2

k

∑
l=1

1
2Pl(P− Pl)

||DT
l D−l ||2F. (28)

Gradient descent algorithm is used to update the classifier’s parameter W and the dictionary D.
It is simple to obtain the gradient with respect to W, i.e.,

∂L
∂W

= (WA− Y)AT + µW. (29)

We apply chain rule to compute the gradient with respect to the dictionary D:

∂L
∂D

=
∂L1

∂A
∂A
∂D

+
∂L2

∂D
. (30)

Since there is no explicit expression of D for the sparse codes A, it is difficult to compute the
derivative ∂A/∂D. Applying fixed point differentiation [38] to Equation (26), we have:

∂
∣∣∣∣X−DA

∣∣|2F
∂A

∣∣∣∣∣
A=Â

= −λ1

N

∑
i=1

∂||αi||1
∂A

− λ2

2
∂
∣∣∣∣A∣∣|2F
∂A

∣∣∣∣∣
A=Â

(31)

where Â is the optimal point of Equation (26). Then, we have:

2DT(X−DA)
∣∣∣
A=Â

= λ1 · sign(A) + λ2A|A=Â. (32)

We compute the differentiation when the element of A are non-zeros, since the function sign(·) is
non-differentiable at zero points.

∂AΛ

∂Dmn
= (DT

ΛDΛ)
−1

(
∂DT

ΛX
∂Dmn

−
∂DT

ΛDΛ

∂Dmn
AΛ) (33)

∂AΛc

∂Dmn
= 0 (34)

where Λ is defined as the active set of A,

Λ = {i : vec(A)i 6= 0, i ∈ {1, · · · , NP}}. (35)

vec(·) denotes vectorization operator. From Equation (27), we have:

∂L1

∂A
= WT(WA− Y) + νS. ∗A. (36)
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By uniting Equations (33), (34) and (36), we reach the analytic form of ∂L1/∂D.
Define E = [E1, · · · , El , · · · , Ek] ∈ RM×P, and F = [F1, · · · , Fl , · · · , Fk] ∈ RM×P. The lth

sub-matrix of E and F is defined as follows:

El =
1

2P2
l

∂
∣∣∣∣DT

l Dl − IPl

∣∣|2F
∂DT

l Dl

∂DT
l Dl

∂Dl
(37)

Fl =
1

2Pl(P− Pl)

∂
∣∣∣∣DT

l D−l
∣∣|2F

∂Dl
. (38)

Obviously, ∂L2/∂D can be expressed as

∂L2

∂D
= η1E + η2F. (39)

Expanding ∂DT
l Dl/∂Dl in Equation (37), we have

∂DT
l Dl

∂Dlmn

= (DT
l Umn

l ) + (DT
l Umn

l )
T

(40)

where Umn
l is defined as

Umn
l =

{
U ∈ RM×Pl

∣∣∣uij = δmiδnj, ∀i, j, 1 ≤ i ≤ M, 1 ≤ j ≤ Pl

}
. (41)

Based on Equations (37), (38), (40) and (41), we obtain the analytic form of El and Fl as follows:

El =
1

P2
l
(Bl − 2Dl) (42)

Fl =
1

Pl(P− Pl)
D−lD

T
−lDl (43)

where Bl is defined as

Bl = {B ∈ RM×Pl

∣∣∣∣bij = sum(DTD. ∗ (DTUij
l + (DTUij

l )
T
)), ∀i, j, 1 ≤ i ≤ M, 1 ≤ j ≤ P}. (44)

The function sum(·) computes the sum of matrix elements. Finally, we reach the analytic form
of ∂L2/∂D.

Here, we conclude the derivation results as follows:

∂L
∂D

= −DβAT + (X−DA)βT + η1E + η2F (45)

where β ∈ RP×N is defined as
vec(β)Λc = 0 (46)

vec(β)Λ = (IN ⊗DTD + λ2INP)
−1
Λ,Λvec(WT(WA− Y) + νS. ∗A)Λ (47)

and E and F are given by Equations (42), (43) and (44).
We summarize the overall optimization for TDDL-SIC in Algorithm 1.
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Algorithm 1: Gradient descent algorithm for TDDL with structured incoherent constraints

Input:

The feature vectors of k classes’ samples: X ∈ RM×N , the class labels: Y ∈ Rk×N .
Initial dictionary D ∈ RM×P and classifier W ∈ Rk×P.
Regularization parameter λ1, λ2, η1, η2, ν ∈ R.
Number of iterations T, parameter t0, learning rate parameter ρ

Repeat:

1: for t = 0 to T do
2: Compute sparse code A according to Equation (26).
3: Compute the active set Λ according to Equation (35).
4: Compute the matrix β, E and F according to Equations (42), (43), (44), (46) and (47).

5:
Choose the learning rate

ρt ← min(ρ, ρt0/t)
normally, set t0 = T/10.

6:

Update the dictionary D and classifier W
W←W− ρt((WA− Y)AT + µW)

D← D− ρt(−DβAT + (X−DA)βT + η1E + η2F)
and normalize each column of D with respect to L2-norm.

7: end for

Output: D and W

Initialization strategy for Algorithm 1: We initialize the dictionary D via unsupervised
dictionary learning method. Concretely, given feature vectors of lth class Xl , we compute the
class-specific sub-dictionary by solving

min
Dl ,A
||Xl −DlA||2F + λ1

N
∑

i=1
||αi||1 + λ2

2 ||A||2F
s.t. ||dl

j||2F = 1, ∀j, l, 1 ≤ j ≤ Pl , 1 ≤ l ≤ k
(48)

where Dl denotes the class-specific sub-dictionary, dl
j is the jth atom in Dl , and αi is the ith column of

A. Then, we concentrate the sub-dictionaries and obtain the initialization of D. Based on the initial
dictionary D, we compute the initial classifier by solving

min
W
||Y−WA||22 +

µ

2
||W||2F (49)

where Y is the class labels, and A is the solution of Equation (26). Hence, with the strategy above, (D,
W) is obtained as a pair of input parameters to initialize Algorithm 1. The SPAM software [32] is used
to implement the initialization in TDDL-SIC.

Variants of Algorithm 1: For large scale classification task, one can speed up of our algorithm
with a minibatch strategy—that is, by drawing Nbatchsize < N samples randomly at each iteration
instead of N samples. It should be noted that too small batch-size will affect the convergence of the
algorithm. In practice, the value Nbatchsize = 50 has given good results in our experiments.
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5. Experiments and Discussions

To demonstrate the effectiveness of the proposed method, we design and perform experiments on
two SAR datasets. The first dataset (DS1), which is provided by Xiangwei Xing and Kefeng Ji [6,10,31],
consists of image chips collected from six TerraSAR-X images of Hong Kong. The image acquisition
dates vary from 13 May 2008 to 4 December 2010. The other dataset (DS2) is collected from ten
TerraSAR-X images of Zhoushan, Zhejiang Province. The image acquisition dates vary from 1 May
2015 to 21 July 2017. The image details of DS1 and DS2 are shown in Table 1. With the aid of automatic
identification system (AIS), the samples in two datasets are labeled precisely. DS1 contains 150 bulk
carriers (BC), 50 container ships (CS) and 50 oil tankers (OT). The number of three types of ships in
DS2 are all 150.

Table 1. The image details of DS1 and DS2.

Dataset Sensor Model Polarization Azimuth Resolution Range Resolution

DS1 TerraSAR-X stripmap VV 2.0 m 1.0 m
DS2 TerraSAR-X spotlight VV 1.0 m 1.0 m

In the following, we first introduce the experiment setup and detail the parameter setting. Then,
the effectiveness of MSHOG feature will be discussed in Section 5.3. We demonstrate the effectiveness
of TDDL-SIC based on MSHOG feature in Section 5.4. In Sections 5.5 and 5.6, we evaluate the
classification performance of the proposed method on two datasets. Comparison between our method
and other existing methods will also be included. All experiments are performed by MATLAB,
using a common PC with the Intel Core i7 processor with a 3.60-GHz main frequency and 8.00-Gb
main memory.

5.1. Experiment Setup

We randomly divide the dataset into two parts: training set and testing set. The numbers of ship
samples in training set and testing set of DS1 and DS2 are listed in Table 2.

According to Lang et al. [9], image processing is necessary for feature extraction. In this paper,
we also take the preprocessing method in Lang et al. [9], which includes three steps. In the first step,
we transform SAR images (see Figure 3a) into binary images, estimate the angles through Radon
transform, and rotate the ships to horizontal direction (see Figure 3b). In the second step, we calculate
the accumulations in the x and y directions (see Figure 3c,e), set empirical thresholds to locate the
positions of the bounding boxes, and obtain the bounding boxes around the ships (see Figure 3d).
The size of bounding boxes is set uniformly as 30 pixels × 200 pixels. Finally, the ship image chips
are cut along the bounding boxes, which are used for subsequent experiments (see Figure 3f).

Table 2. The numbers of ship samples in training set and testing set.

DS1 DS2

BC CS OT BC CS OT

Training Set 75 25 25 75 75 75
Testing Set 75 25 25 75 75 75
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Figure 3. Image preprocessing by the three-step segmentation: (a) the original SAR image; (b) the
binary image after the binaryzation and rotation; (c) the cumulations curve along x direction; (d) the
bounding box around the ship; (e) the cumulations curve along y direction; and (f) the SAR image chip.

5.2. Parameter Setting

The parameters in the proposed method include the parameters of MSHOG and the parameters
of TDDL-SIC. Performing cross validation on the parameters would be cumbersome and we optimize
the parameters according to following strategies. The parameters in MSHOG actually depend on SAR
image resolution and the sizes of targets in the images. We refer to the method in Song et al. [15]
to optimize the parameters of MSHOG feature. We set the parameters according to parameters in
SAR-HOG [15], and then optimize each parameter by keeping others fixed. Although the method
in Song et al. [15] may be trapped by local optimum solution, it does work in our experiments. For the
parameters of TDDL-SIC, we use a few simple heuristics to reduce the search space, which are used in
many TDDL-like methods [38,49,50].

We list the parameters used in MSHOG feature in Table 3. Figure 4a,b gives the results of
classification accuracy versus the block stride and number of bins, respectively. It shows that relatively
small block stride can improve the classification accuracy slightly and the classification accuracy
reaches its maximum when the number of bins is set as 12. In addition, Figure 5 shows the optimal cell
size and block size. The dimension of MSHOG feature is given by the eigenvalues of the inner product
matrix, as mentioned in Section 3.4.

Table 3. The parameters used in MSHOG feature.

Parameter Cell Size
(Pixels)

Block Size
(Cells)

Block Stride
(Pixels) Number of Bins Dimensions

Value 7× 7 3× 3 9 12 20
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Figure 5. The classification accuracy versus the cell size and block size: (a) the classification accuracy
versus the cell size, where we set the cell size to be 3, 5, 7, 9, 11 and 13; and (b) the classification accuracy
versus the block size, where we set the block size to be 2, 3, 4, 5, 6 and 7. When the block size is bigger
than the image size, we decrease the corresponding cell size to adapt to the image size.

For TDDL-SIC method, we try the parameters λ1 = 0.35 + 0.05j, with j ∈ {−4, . . . , 4}, and λ2 is
chosen in

{
10−2, 10−3, . . . , 10−6}. The candidate parameters of µ and ν are {0.002, 0.004, . . . , 0.02} and

{0.1, 0.2, . . . , 1}, respectively. Additionally, the candidate parameters of η1 and η2 are {0, 0.1, . . . , 1}
and {0, 0.025, . . . 0.25}, respectively. The candidate sub-dictionary sizes are from 4 to 11 atoms.
The choice of the parameters depends on the classification performance. Figure 6 presents the
classification performance versus the regularization parameter λ1 and λ2. The classification
performance versus the regularization parameter µ and ν is demonstrated in Figure 7. Moreover,
Figures 8a,b and 9 record the classification performance as the regularization parameter η1, η2 and
the sub-dictionary size Pl change, respectively. Based on the figures, we obtain optimal parameters in
TDDL-SIC, which are listed in Table 4.
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Figure 6. The classification accuracy versus the regularization parameters λ1 and λ2: (a) the
classification accuracy versus λ1, where we set λ1 to be 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 and
0.55; and (b) the classification accuracy versus λ2, where we set λ2 to be 10−6, 10−5, 10−4, 10−3 and
10−2.
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Figure 7. The classification accuracy versus the regularization parameters µ and ν: (a) the classification
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accuracy versus ν, where we set ν to be 0.1, 0.2, . . . , 0.9 and 1.
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Figure 8. The classification accuracy versus the regularization parameters η1 and η2: (a) the
classification accuracy versus η1, where we set η1 to be 0, 0.1, . . . , 0.9 and 1; and (b) the classification
accuracy versus η2, where we set η2 to be 0, 0.025, . . . , 0.225 and 0.25.
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to be 4, 5, 6, 7, 8, 9, 10 and 11.

Table 4. The parameters used in TDDL-SIC.

Parameter λ1 λ2 µ ν η1 η2 Pl

Values 0.35 0.001 0.01 0.8 0.1 0.025 7

5.3. Effectiveness of MSHOG Feature

We evaluate the effectiveness of MSHOG feature by using SVM as the baseline classifier. MSHOG
feature is compared to the features in previous work, including 2D comb feature (2DC) [7], selected
features (SF) [10], superstructure scattering features (SS) [5], local RCS density features associated with
geometric features (LRCSG) [31], and SAR-HOG feature with PCA dimensionality reduction (PSHOG).
The parameters of these features are set up according to the original paper. Please refer to [5,7,10,31]
for more details. We conduct experiments of each feature twenty times to reduce the disturbance of
stochastic factors in single experiment and present the average performance of each feature.

Table 5 illustrates the comparison on classification accuracy of 2DC, SF, SS, LRCSG, PSHOG,
and MSHOG on DS1. We can see that all the methods provide high classification accuracy of bulk
carriers. The classification accuracy of oil tankers using MSHOG achieves 92.3%, which is significantly
higher than that of oil tankers using 2DC, SF, SS, LRCSG and PSHOG, indicating that MSHOG feature
can capture the discriminability of oil tankers, and distinguish oil tankers from bulk carriers and
container ships. It is also observed that MSHOG feature outperforms the other methods and yields
the best overall classification accuracy as high as 94.8%. This performance validates that the MSHOG
feature is an effective feature for ship classification.

Furthermore, Table 6 illustrates the comparison on classification accuracy of 2DC, SF, SS, LRCSG,
PSHOG, and MSHOG on DS2. The overall classification accuracy of MSHOG feature is 91.6%,
which is higher by 4.2%, 4.1%, 7.1%, 1.6%, and 2.1% than that of 2DC, SF, SS, LRCSG and PSHOG,
respectively. The improvement of the classification accuracy of oil tankers using MSHOG is 3.4% at
least, compared to using other methods. For the classification accuracy of bulk carriers and container
ships, MSHOG shows pretty good performance. Thus, we can conclude that MSHOG feature improves
ship classification performance and has remarkable merit.

Table 5. Comparison on classification accuracy (%) of 2DC, SF, SS, LRCSG, PSHOG and MSHOG on
DS1 with SVM classifier.

2DC SF SS LRCSG PSHOG MSHOG

BC 94.8 98.2 94.4 97.4 96.3 96.1
CS 92.1 80.5 91.8 92.3 91.1 93.5
OT 81.7 75.9 81.3 76.2 82.8 92.3

Total 91.6 90.2 91.2 92.1 92.5 94.8



Remote Sens. 2018, 10, 190 18 of 23

Table 6. Comparison on classification accuracy (%) of 2DC, SF, SS, LRCSG, PSHOG and MSHOG on
DS2 with SVM classifier.

2DC SF SS LRCSG PSHOG MSHOG

BC 96 96.7 90 100 96.3 98.1
CS 93.4 79.3 89.4 96.2 91.7 92.2
OT 72.8 77.6 81.2 73.8 80.4 84.6

Total 87.4 84.5 86.9 90.0 89.5 91.6

5.4. Effectiveness of TDDL-SIC

In this section, we first focus on the effectiveness of structured incoherent constraints by
visualizing the distribution of the sparse codes and comparing the performance of TDDL with different
constraints. Experiments are performed on DS1 with the parameters in Tables 3 and 4. Then we
illustrate the effectiveness of TDDL-SIC based on MSHOG feature by comparing the performance of
TDDL-SIC and other classifiers, including SVM, K-NN and SRC. For these reference classifier, SVM,
K-NN and SRC are implemented by LIBSVM software [51], Statistics and the Machine Learning Toolbox
of MATLAB and the SPAMS software [32], respectively. We conduct experiments of each classifier
twenty times on both datasets to reduce the disturbance of stochastic factors in single experiment and
present the average performance.

In Figure 10, we visualize the distribution of the sparse codes with respect to the dictionary, which
is learnt by TDDL (without incoherent constraints). The sparse codes of the training set are presented
in Figure 10a, while the sparse codes of the testing set are presented in Figure 10b. For each figure,
the X- and Y-axes stand for the sample number and atom number, respectively. We can see that the
sparse codes of both training and testing set in Figure 10 do not maintain the expected structure.
Figure 11 presents the distribution of the sparse codes with respect to the dictionary, which is learned
by TDDL with intrinsic constraints only. It can be noticed that the sparse codes of both sets show
better structure property compared with Figure 10. However, the sparse codes of the testing set still
do not maintain the expected structure. Figure 12 presents the distribution of the sparse codes with
respect to the dictionary, which is learnt by TDDL-SIC. Apparently, the sparse codes of both sets show
a good aggregation property. For the sparse codes of lth class’s samples, almost all nonzero elements
are associated to lth sub-dictionary.
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Figure 12. The distribution of sparse codes with respect to the dictionary, which is learnt by TDDL-SIC:
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testing set.

The comparison of classification accuracy of TDDL, TDDL with intrinsic constraints only and
TDDL-SIC are presented in Table 7. For container ships and oil tankers, TDDL with intrinsic constraints
only achieves higher classification accuracy than TDDL, and TDDL-SIC achieves higher classification
accuracy than TDDL with intrinsic constraints only. For bulk carriers, the classification accuracy of all
methods is 100%. The overall classification accuracy of TDDL-SIC is 98.4%, which is higher by 4.7%
and 2.4% than that of TDDL and TDDL with intrinsic constraints only, respectively. Similar results can
also be obtained on DS2. We will not repeat them here. Therefore, we can conclude that structured
incoherent constraints improve classification performance.

Table 7. Comparison of the classification accuracy (%) of TDDL, TDDL with intrinsic constraints only
and TDDL-SIC on DS1.

TDDL TDDL with Intrinsic
Constraints Only TDDL-SIC

BC CS OT BC CS OT BC CS OT
BC 100 0 0 100 0 0 100 0 0
CS 4.2 87.6 8.2 0 88.3 11.7 0 96.5 3.5
OT 3 15.9 81.1 0.4 7.8 91.8 0.1 4.2 95.7

Total 93.7 96 98.4

The comparison of classification accuracy of SVM, K-NN, SRC and TDDL-SIC are presented in
Tables 8 and 9. It can be noticed that TDDL-SIC achieve higher classification accuracy than other
classifiers for each class of ships on two datasets. The overall classification accuracy using TDDL-SIC is
higher than those using other classifiers by 3.5% at least on DS1. For DS2, the improvement of overall
classification accuracy is 4.1% at least. Therefore, we can conclude that TDDL-SIC is superior to other
classifiers on DS1 and DS2.

Table 8. Comparison on classification accuracy (%) of SVM, K-NN, SRC and TDDL-SIC with MSHOG
feature on DS1.

SVM K-NN SRC TDDL-SIC

BC 96.1 94.8 98.2 100
CS 93.5 91.4 93.1 96.5
OT 92.3 86.6 87.0 95.7

Total 94.8 92.5 94.9 98.4

Table 9. Comparison on classification accuracy (%) of SVM, K-NN, SRC and TDDL-SIC with MSHOG
feature on DS2.

SVM K-NN SRC TDDL-SIC

BC 98.1 97.4 100 100
CS 92.2 90.5 93.1 96.5
OT 84.6 88.9 87.3 96.1

Total 91.6 92.3 93.4 97.5
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5.5. Classification Performance on Dataset 1

We first perform the ship classification on DS1. The classification methods that are tested and
compared are feature selection (FS) [10], superstructure scattering analysis (SCA) [5], feature space
based sparse representation (FSSR) [31], joint feature and classifier selection (JFCS) [9], and MSHOG
feature and TDDL-SIC (“MSHOG+TDDL-SIC”). We perform experiments twenty times for each
method in accordance with convention.

Table 10 demonstrates the classification accuracy obtained by all the methods on DS1, including
the classification accuracy of each class and overall classification accuracy. The proposed method,
“MSHOG+TDDL-SIC”, obtains the best classification accuracy, including the classification accuracy
of bulk carriers, container ships, oil tankers, and the overall classification accuracy. The overall
classification accuracy of the proposed method is as high as 98.4%, which outperforms the second
highest by 4.2%. Moreover, we can find that the classification accuracy of bulk carriers, container ships
and oil tankers in the proposed method is higher than that of bulk carriers, container ships and oil
tankers in other competitors by at least 1.8%, 3.8% and 10.4%, respectively. As expected, the proposed
method presents significant improvements in the classification of container ships and oil tankers.
Therefore, we can conclude that the proposed method classifies container ships and oil tankers more
precisely and yields best performance.

Table 10. Comparison of the classification accuracy (%) of FS, SCA, FSSR, JFCS and
“MSHOG+TDDL-SIC” on DS1.

FS SCA FSSR JFCS MSHOG+TDDL-SIC

BC 98.2 94.4 97.8 98.1 100
CS 80.5 91.8 92.7 89.6 96.5
OT 75.9 81.3 85.1 85.2 95.7

Total 90.2 91.2 94.2 93.9 98.4

5.6. Classification Performance on Dataset 2

We perform ship classification on DS2 to analyze the performance of classification methods further.
Table 11 illustrates the classification accuracy obtained by all the methods on DS2. We can see that the
proposed method achieves the highest overall classification accuracy of 97.5%, which is better than
the competitors by 3.4% at least. Additionally, the proposed method also outperforms other methods
in classification accuracy of each class. The proposed method reaches 100% in classification accuracy
of bulk carriers, and have at least 2.2% superiority over other methods in classification accuracy of
container ships. The improvement of the proposed method in classification accuracy of oil tankers is as
high as 9.3% and 7.1%, compared to FSSR and JFCS, respectively. None of others reaches classification
accuracy over 90% for oil tankers. These results support our assertion that MSHOG feature and
TDDL-SIC provide strong discriminability and greatly improve the classification performance.

Table 11. Comparison of the classification accuracy (%) of FS, SCA, FSSR, JFCS and
“MSHOG+TDDL-SIC” on DS2.

FS SCA FSSR JFCS MSHOG+TDDL-SIC

BC 96.7 90 100 100 100
CS 79.3 89.4 95 93.3 96.5
OT 77.6 81.2 86.8 89 96.1

Total 84.5 86.9 93.9 94.1 97.5

6. Conclusions

In this paper, we proposed a novel method for ship classification in SAR image—MSHOG feature
and TDDL with structured incoherent constraints (“MSHOG+TDDL-SIC”). We adapt SAR-HOG to our



Remote Sens. 2018, 10, 190 21 of 23

ship classification task, use manifold learning for dimensionality reduction, and obtain MSOHG feature.
Then, we jointly optimize the dictionary and the classifier parameter in TDDL framework. Intrinsic
and direct constraints are employed to learn a dictionary with elegant structures. The corresponding
optimization algorithm is developed using fixed point differentiation and gradient descent. Finally, we
conduct various experiments to verify the effectiveness of MSHOG feature, explore the coherence of the
dictionary in relation to the constraints, and evaluate the performance of our method. The experiment
results verify the superior performance of our method on two datasets quantitatively. Our method
outperforms other methods and achieves the best classification accuracy, as high as 98.4% and 97.5%
on DS1 and DS2, respectively.

In the future, we would like to apply the proposed method to general classification task in SAR
image. In addition, our method can also be extended to PolSAR image classification.
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