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Abstract: The security of high-voltage power transmission corridors is significantly vital to the
national economy and daily life. With its rapid development, LiDAR (Light Detection and Ranging)
technology has been widely applied in the inspection of transmission lines. As the basis of
potential hazard detection, a robust and precise power line model is a necessary requirement for
rapid and correct clearance. Thus, this paper proposes a novel method for high-voltage bundle
conductor reconstruction, which can precisely reconstruct each sub-conductor. First, points in
high-voltage power transmission corridors are detected and classified into four categories; second,
for classified power lines, single power line spans are extracted, and bundle conductors are identified
by analyzing the single spans’ fitting residuals; and then, each sub-conductor of bundle conductors
is extracted by a projected dichotomy method on the XOY and XOZ planes, respectively; finally, a
double-RANSAC (random sample consensus)-based algorithm was introduced to reconstruct each
power line. The proposed method makes use of the distribution of bundle conductors in high-voltage
transmission lines, and our experiments showed that it could preferably reconstruct the real structure
of bundle conductors robustly with a high precision better than 0.2 m.

Keywords: airborne LiDAR; high-voltage; bundle conductor; projected dichotomy;
catenary reconstruction

1. Introduction

Electricity, as one of the indispensable energies, plays an important role in the normal operation
of modern societies [1]. High-voltage power lines are core components for electricity transmission
over long distance and in high capacity, and as such, they have a great impact on the national economy
and daily life [2]. With economic development, the demand for electricity is increasing, leading to a
rapid growth of high-voltage transmission lines. For example, by 2020, the total length of high-voltage
transmission lines will be up to 6.8 million kilometers worldwide, and in particular, will grow by
0.44 million kilometers in China when compared to 2014, with a global growth of 48% [3,4]. Exposed
to the natural environment in the long term, power lines are often infringed upon by many factors
such as lightning, storms, strong wind, bird damage, and vegetation encroachment [1,4], which may
result in large-scale blackouts, and even significant financial losses [5,6]. To guarantee the normal
transmission of electricity, the regular monitoring and maintenance of power lines are needed [1,7].

For administrative departments that are responsible for power transmission lines, there are
basically two main components in transmission line inspection [1,7,8]: power line monitoring
(including their structure and components), and surrounding objects monitoring (especially vegetation).
For decades, limited by detecting technology, the major methods for traditional transmission line
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inspection are field surveys and airborne surveys [1]. Although field-based methods have a high
hazard detection rate, both of the above methods are human-dominated, depending on the personal
inspection ability, and they have a high level of time consumption and labor intensity [1,7]. Moreover,
most of the high-voltage power lines extend to complex environments (e.g., lakes, mountains, and
forests), and their distribution is becoming more complicated (e.g., multi-loop and multi-bundle) [9],
which are great challenges for the inspection of power lines. With the continuous improvement of
hardware and innovative data processing algorithms, various advanced remote sensing data (such as
video [1], optical image [10,11], SAR (synthetic aperture radars) [12], thermal image [13], and LiDAR
(Light Detection and Ranging) [1,7–9]) and multitudinous monitoring platforms at different ranges
(such as satellite, airborne, unmanned aerial vehicles (UAVs) [14,15], mobile mapping [16,17], and cable
inspection robot (CIR) [4,9]) have been introduced into the management of smart grids. Compared
with other remotely sensed data, airborne LiDAR technology, which can easily acquire high accuracy
and high density 3D point clouds over a large range, has been widely applied to the inspection of
transmission lines in recent years. This provides a new solution for the urgent demand for monitoring
power lines conveniently, rapidly, accurately, and objectively.

1.1. Related Work

As an important application of LiDAR technology, transmission line inspection has drawn a lot of
attention, and many studies have been conducted on this topic. Generally, most of the reported studies
can be divided into three categories according to their final results: power line extraction, power line
reconstruction, and power pylon reconstruction.

Power line extraction: Methods related to power line extraction can be categorized into two
types [7,18]: line-shape-based extraction methods (e.g., RANSAC (random sample consensus) and the
Hough transformation), and supervised classification methods (e.g., support vector machine (SVM),
random forest (RF), JointBoost, and the Markov random field). For instance, McLaughlin [19] used a
Gaussian mixture model, together with neighborhood structures, computed by a covariance matrix,
to classify airborne LiDAR data of power transmission corridors into three categories: power lines,
vegetation, and surfaces. Zhu and Hyyppä [18] proposed an automated computationally-effective
extraction method for low-voltage power lines in forest areas from LiDAR data, where statistical
analysis and 2D image-based processing were adopted. However, a set of criteria (e.g., height criteria,
density criteria, and histogram thresholds) may result in poor adaptability. Cheng et al. [17] introduced
a hierarchical voxel-based method for urban power line extraction from vehicle-borne LiDAR data,
where single voxel filtering was aimed at extracting power line points, and neighboring voxel filtering
was used for noise filtering. Kim and Sohn [20] proposed a point-based classification method with a
random forest classifier and 21 features calculated from the airborne LiDAR data to classify points
into power lines, pylons, vegetation, buildings, and low objects. Guo et al. [21] proposed a contextual
JointBoost-based method to classify airborne point clouds into five classes, with various geometry and
echo features: buildings, ground, vegetation, power lines, and pylons. However, this method directly
processed large point clouds, where most of the non-interest points increased the computation time.
Wang et al. [22] proposed a supervised power line extraction framework based on an SVM classifier,
where ground points were filtered by software, and candidate line points were detected based on
the Hough transform and RANSAC algorithms. Yang et al. [7] developed a voxel-based method for
power line extraction with the Markov random field model, where Laplacian smoothing was used for
skeleton structure extraction, and latent Dirichlet allocation topic models were used for voxel feature
construction. Experiments showed that this method was of high precision, recall, and quality.

Power line reconstruction: These kinds of studies usually consist of two steps: single power line
span extraction, and model fitting. Mathematical models such as parabola, piecewise line, and catenary
have mainly been adopted in power line reconstruction with a RANSAC [23,24] or least square (LS) [25]
algorithm. For example, Melzer and Briese [26] introduced an iterative Hough transformation method
and a minimum linkage hierarchical clustering approach to obtain single power line spans, then each
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individual power line was fitted by a catenary model, and its parameters were estimated robustly by
a RANSAC algorithm. McLaughlin [19] proposed a model-based method to extract each individual
span of transmission lines from classified power line point clouds. The catenary model was first fitted
to a local small seed region, then grown by adding adjacent points consistent with the trend of the
model. The parameters of the corresponding model were re-estimated after the region was updated.
Considering that points in a same power line span would be much closer than points in different spans,
Liang et al. [27] proposed a spatial clustering method based on KD trees to extract single power line
spans, then two polynomial models on the XOY and XOZ planes were used for power line fitting. This
method only took the distance between points into account, and errors would occur when breakage
existed. Guo et al. [8] introduced a robust algorithm for single power line span reconstruction for
airborne LiDAR data. The distribution of power lines was detected by a similarity detection method,
then each span was fitted by a RANSAC-based algorithm. This method could well solve the problem
of broken power lines. Cheng et al. [17] introduced an iterative clustering method for urban power
line extraction from vehicle-borne LiDAR data, where the initial clustering and clustering recovery
procedures were conducted iteratively to identify each power line span, and a parabola model was
used to fit the identified power lines. Qin et al. [4] constructed a new collection mode of LiDAR
data for power lines, using a cable inspection robot (CIR). After the CIR LiDAR data were generated,
a POS-based crude extraction was conducted. Then, single power line spans were extracted by a
voxel-based extraction and clustering, and reconstructed by a RANSAC algorithm.

Power pylon reconstruction: There are three kinds of strategies that are widely used for
object reconstruction [2]: data-driven, model-driven, and hybrid-driven. Due to the power pylons’
complex structure, the data-driven strategy is rarely used alone for their reconstruction. For example,
a semi-automatic model-driven method was first proposed by Chen et al. [28], and further developed
by Li and Chen et al. [29]. In their method, a pylon was divided into three parts: legs, body, and
head, where the pylon body was reconstructed with four planes, while the pylon head was recognized
by a SVM algorithm from a manual modeling library. Guo et al. [30] proposed a fully automatic
model-driven pylon reconstruction workflow where the pylon type, and all parameters were solved
together by a reversible jump Markov chain Monte Carlo (RJMCMC) sampler with a simulated
annealing algorithm. However, this method was time-consuming [8], since a large proportion of
iteration times were wasted in recognizing the pylon’s type. Zhou et al. [2] made use of the power
pylons’ structure, and proposed a heuristic hybrid-driven reconstruction method from airborne LiDAR
data. Each power pylon was structurally decomposed into two parts: the pylon body and head, where
the pylon body was reconstructed by a data-driven strategy, and a model-driven strategy was used to
reconstruct the pylon head with the aid of a predefined 3D head model library. Experiments showed
that the proposed method could efficiently reconstruct power pylons with high precision.

1.2. Contribution

In order to suppress corona discharge and reactance, bundle conductors are usually widely
constructed in high-voltage transmission lines instead of single conductors. To maintain their structural
stability, bundle conductors are fixed by spacers [1]. However, as mentioned in literature reviews, most
of the research concerning power line reconstruction from LiDAR data [4,8,17,19,26,27] has focused
on single power line spans, or they regard bundle conductors as single conductors, while limited
studies have been reported for bundle conductor reconstruction. Thus, this paper makes use of the
distribution of bundle conductors in high-voltage power transmission lines, and proposes a novel
method for their reconstruction, which can robustly and precisely reconstruct each sub-conductor.

The processing flowchart of the proposed method is shown in Figure 1. First, points in
the high-voltage power transmission corridors were detected by the Hough transformation and
classified into four categories by a JointBoost classifier: ground, vegetation, power lines, and power
pylons; second, for classified power lines, each single power line span was extracted by a spatial
clustering-based method, and a fitting residual analyzing based method was introduced to identify
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bundle conductors from all power lines; third, a projected dichotomy method was adopted to extract
each sub-conductor, on the XOY and XOZ planes, respectively; and finally, a double-RANSAC based
model fitting algorithm was introduced to reconstruct each power line robustly and precisely.

As mentioned in the literature, since there are many mature algorithms for power line
classification [7,17–22] and single power line span extraction [4,8,17,19,26,27]; this paper only focused
on bundle conductor reconstruction, and for the other steps, they are just simply mentioned.
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1.3. Overview

The rest of the paper is organized as follows. Section 2 introduces a workflow for bundle conductor
reconstruction. The experimental data and results are shown in Sections 3 and 4, respectively. The
robustness to noise and breakage of the proposed bundle conductor reconstruction method are
discussed in Section 5. Finally, conclusions drawn from experiments are presented in Section 6.

2. Methodology

In this section, a JointBoost-based classification method for power transmission corridors and a
spatial clustering method for single power line extraction are simply introduced in Sections 2.1 and 2.2,
respectively. Then, a fitting residual analyzing-based method for the identification of the bundle
conductors is introduced in Section 2.3, and a projected dichotomy for sub-conductor extraction is
introduced in Section 2.4. Finally, a double-RANSAC-based model fitting method is introduced in
Section 2.5.

2.1. Power Transmission Corridor Detection and Classification

The real threat to the safety of power transmission lines are objects within a certain distance.
However, during data acquisition, because of the flying height and the scanning angle of airborne
LiDAR systems, a large number of non-interest points are usually acquired. To reduce the number of
point clouds for subsequent processing, it is necessary to detect the candidate regions of the power
transmission corridors first, and then to classify the points in the detected candidate regions.
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According to the height characteristics of high-voltage power transmission corridors [18], the
original point clouds are first converted to an elevation image to detect candidate regions by the
Hough transformation [18,22]. Second, by referring to Guo et al.’s method [21], a JointBoost-based
classification method was adopted with multiscale features [20,21,31] such as height features, surface
features, eigen features, and density features, to classify points in candidate regions into four categories:
ground, vegetation, power lines, and power pylons.

After the power lines between two power pylons were extracted, a local right-handed coordinate
system was constructed. As shown in Figure 2, the lowest point of the power lines was defined as the
origin, while the X-axis and Z-axis were parallel to the directions of the power lines and the height,
respectively. It is worth noting that all following operations on the power lines were carried out on the
local coordinate system.
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2.2. Spatial Clustering-Based Single Power Line Span Extraction

Single power line span extraction is a basic step for precise bundle conductor extraction. As shown
in Figure 3a, one obvious characteristic is that points in the same span are much closer than points
in different spans. Since this was not the focus of this paper, by referring to the existing algorithm of
Liang et al. [27], this paper extracted single power line spans by a spatial clustering method, according
to their spatial distribution.

For line breaks, consistency checking was adopted based on the projected line equations. As
shown in Figure 3b, first, the two breakage points A and B are located; then, considering that the same
power line span appears as a straight line between two power pylons on the XOY plane, clustered
power line spans are projected on the XOY plane to calculate their projected line equations by a least
square algorithm [25]. Taking into account the situation of different spans in a vertical arrangement
where the height differences of points in the same spans are much smaller than points in different spans,
a height difference threshold Th is set. When the power lines satisfy the following conditions at the
same time, the power lines are regarded as the same span and reconnected: (1) the slope and intercept
differences of the two projected line equations are less than thresholds Tk and Tb, respectively; and
(2) the height difference of the two points A and B is less than a threshold TH. According to the
characteristics of power lines in high-voltage transmission corridors, in the experiments, we set the
Tk = 0.05, Tb =1.5, and TH = 1 m.
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2.3. Fitting Residuals-Based Bundle Conductor Identification

Identifying bundle conductors is the premise to extract each sub-conductor. The bundle conductor
is a set of parallel conductors that are arranged on the vertices of regular symmetrical polygons [7].
Sub-conductors are spaced at a certain splitting diameter (0.2–0.5 m). Generally, for high-voltage
transmission lines, the number of bundle conductors is not more than four. For example, as shown in
Figure 4, the 220 kV high-voltage transmission lines are usually 2-bundled conductors (Figure 4a,b),
while the 500 kV high-voltage transmission lines are 4-bundled conductors (Figure 4c).
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According to the above features, theoretically, bundle conductors can be identified through the
fitting residuals of single power line spans, since the fitting residuals of bundle conductors are large,
while the fitting residuals of single conductors are small. Therefore, single power line span fitting
is conducted first, then the fitting residuals from the original point to the nearest fitting point are
calculated according to Equation (1). If the fitting residual of a single power line span is larger than a
residual threshold TR (TR is generally half of the diameter), this power line is identified as a bundle
conductor; otherwise, it is a single conductor.

R(x) =
1
n

n−1

∑
i=0

r(xi) (1)

where n is the number of points in a span; r(xi) is the distance from the original point to the nearest
fitting point.

To distinguish the arrangement of bundle conductors, the fitting residuals in the XY direction and
the Z direction are also respectively computed, according to Equation (1). For 2-bundled conductors, if
the residual in the XY direction is much larger than the residual in the Z direction, it is in a horizontal
arrangement; otherwise, it is in a vertical arrangement.

2.4. Projected Dichotomy for Sub-Conductor Extraction

After a bundle conductor is identified, a projected dichotomy method is introduced for
sub-conductor extraction. As shown in Figure 5, the projection dichotomy mainly includes the
projections on two planes: the XOY plane and the XOZ plane.
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Projected dichotomy on the XOZ plane: This step is mainly performed to divide a whole into
two subsets: up and bottom. As shown in Figure 5a, point clouds of a single power line span are
first divided into several segments, and then each segment is projected onto the XOZ plane. When
their length is small enough, each sub-conductor in the segment can be considered as a straight line.
Therefore, a least square-based line model fitting is first adopted for each segment to obtain a projected
line equation Ax + Bz + C = 0 on the XOZ plane. Then, the distances for all points Dis_xoz in this
segment are calculated according to Equation (2) and located according to Equation (3). If the distance
Dis_xoz from the point to the projected line is larger than 0, it is assumed to be in the up of the section;
otherwise, it is on the bottom.

Dis_xoz =
A× xi + B× zi + C√

A2 + B2
(2)

Locationxz =

{
up, Dis_xoz > 0
bottom, otherwise

(3)

Projected dichotomy on the XOY plane: This step is mainly performed to divide a whole into
two subsets: left and right. As shown in Figure 5b, the whole point clouds of a single span is first
projected onto the XOY plane, and then, similar to the XOZ plane projected dichotomy, a least square
based-line model fitting is adopted to obtain the projected line equation Dx + Ey + F = 0 on the XOY
plane. Finally, the distances of all points Dis_xoy are calculated according to Equation (4) and located
according to Equation (5): If the distance Dis_xoy from the point to the projected line is larger than 0, it
is assumed to be on the left of the section; otherwise, it is on the right.

Dis_xoy =
D× xi + E× yi + F√

D2 + E2
(4)

Locationxy =

{
le f t, Dis_xoy > 0
right, otherwise

(5)

For 2-bundled conductors, as mentioned in Section 2.3, there are two kind of arrangements:
horizontal and vertical. If it is in a horizontal arrangement, a projected dichotomy only on the XOY
plane is adopted to divide the bundle conductor into left and right subsets; otherwise, a projected
dichotomy on the XOZ plane is adopted to divide it into up and bottom subsets. For 4-bundled
conductors, a projected dichotomy on the XOZ plane is first conducted to divide them into two
subsets: up and bottom, and then for each subset, a projected dichotomy on the XOZ plane is required
respectively to extract each sub-conductor.

2.5. Double-RANSAC-Based Model Fitting

As mentioned in the literature reviews, most model fitting methods of power lines usually consist
of two key parts: choosing a mathematical model and selecting the parameter estimation algorithm.
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For model choosing, a 3D model can be decomposed into two parts: a 2D model on the XOY
plane, and a 2D model on the XOZ plane [32]. Mathematical models such as parabola [27], piecewise
line, and catenary [4,8,19,33,34] are mainly adopted for power line fitting. Since power lines between
two adjacent pylons (i.e., over a span) have the shape of a catenary curve [1,33,34], thus, the 3D model
used in this paper decomposed into two parts: a linear model on the XOY plane (Equation (6)) and a
catenary model on the XOZ plane (Equation (7)):

yi = axi + b (6)

zi =
h

Lh=0
[k× sh

xi
k
× ch

l − xi
k

]−

√
1 + (

h
Lh=0

)
2
[k× sh

xi
k
× sh

l − xi
k

] (7)

where (x, y, z) is the coordinate of a power line point; a, b, k are the parameters to be solved; Lh=0 =

k× sh l
k , ch(x) = ex+e−x

2 , sh(x) = ex−e−x

2 , and other parameters are defined as shown in Figure 6:
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RANSAC based method was used to fit the power line accurately, where RANSAC-based line fitting 
was used to fit power lines onto the XOY plane, and RANSAC-based catenary fitting was used to fit 
them on the XOZ plane. 

 

Figure 6. Diagram of the catenary equation parameter.

For parameter estimation, RANSAC [23,24] and least square [25] are two widely applied
algorithms. The LS-based methods estimate parameters by minimizing the square error sum
between the measured data and the modeled data, while RANSAC iteratively determines the optimal
parameters from data containing a large number of outliers. As shown in Figure 7, the RANSAC
algorithm iterates the following two steps [8]: (1) randomly generating a hypothesis; and (2) verifying
the hypothesis by the remaining data. Given a set of seed points, the initial parameters of a model can
be calculated, where a hypothesis is generated. Through iteration, the optimal parameters are solved.
Since the LS algorithm is sensitive to noise, while RANSAC is much more robust, a double-RANSAC
based method was used to fit the power line accurately, where RANSAC-based line fitting was used to
fit power lines onto the XOY plane, and RANSAC-based catenary fitting was used to fit them on the
XOZ plane.

Remote Sens. 2018, 10, 2051 8 of 23 

 

For model choosing, a 3D model can be decomposed into two parts: a 2D model on the XOY 
plane, and a 2D model on the XOZ plane [32]. Mathematical models such as parabola [27], piecewise 
line, and catenary [4,8,19,33,34] are mainly adopted for power line fitting. Since power lines between 
two adjacent pylons (i.e., over a span) have the shape of a catenary curve [1,33,34], thus, the 3D model 
used in this paper decomposed into two parts: a linear model on the XOY plane (Equation (6)) and a 
catenary model on the XOZ plane (Equation (7)):  𝑦௜ = 𝑎𝑥௜ + 𝑏 (6)

𝑧௜ = ℎ𝐿௛ୀ଴ ሾ𝑘 × 𝑠ℎ 𝑥௜𝑘 × 𝑐ℎ 𝑙 െ 𝑥௜𝑘 ሿ െ ඨ1 + ሺ ℎ𝐿௛ୀ଴ሻଶሾ𝑘 × 𝑠ℎ 𝑥௜𝑘 × 𝑠ℎ 𝑙 െ 𝑥௜𝑘 ሿ (7)

where (x, y, z) is the coordinate of a power line point; a, b, k are the parameters to be solved; 𝐿௛ୀ଴ =𝑘 × 𝑠ℎ ௟௞， 𝑐ℎሺ𝑥ሻ = ௘ೣା௘షೣଶ ， 𝑠ℎሺ𝑥ሻ = ௘ೣି௘షೣଶ , and other parameters are defined as shown in Figure 6: 

 
Figure 6. Diagram of the catenary equation parameter. 

For parameter estimation, RANSAC [23,24] and least square [25] are two widely applied 
algorithms. The LS-based methods estimate parameters by minimizing the square error sum between 
the measured data and the modeled data, while RANSAC iteratively determines the optimal 
parameters from data containing a large number of outliers. As shown in Figure 7, the RANSAC 
algorithm iterates the following two steps [8]: (1) randomly generating a hypothesis; and (2) verifying 
the hypothesis by the remaining data. Given a set of seed points, the initial parameters of a model 
can be calculated, where a hypothesis is generated. Through iteration, the optimal parameters are 
solved. Since the LS algorithm is sensitive to noise, while RANSAC is much more robust, a double-
RANSAC based method was used to fit the power line accurately, where RANSAC-based line fitting 
was used to fit power lines onto the XOY plane, and RANSAC-based catenary fitting was used to fit 
them on the XOZ plane. 

 
Figure 7. Flowchart of the RANSAC algorithm.



Remote Sens. 2018, 10, 2051 9 of 23

The RANSAC-based catenary fitting algorithm on the XOZ plane first calculates the catenary
model parameter k according to randomly generated points, then verifies its correctness by the
remaining points. As shown in Figure 8, in the sub-step of the Initial Catenary Model Calculation, an
iteration based on a least square algorithm was used to solve the unknown parameter k in the catenary
equation. The detailed procedure is shown in Algorithm 1. The optimal parameter k is estimated by
iteration, then the fitting points are calculated according to the optimal parameter k, with the aid of
the start and end of the power line. The noise points can be effectively removed by calculating the
distance from the original point to the nearest fitting point.
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Algorithm 1. Detailed procedure of initial catenary model calculation.

Step 1: Linearization of the catenary equation. Since the parameter k in Equation (7) is a non-linear function
with the observed values x and z, it is necessary to change the non-linear function into a linear form
(Equation (8)) by Taylor’s formula before the least square method is used.

vz = (z)− z +
∂z
∂k

∆k (8)

Step 2: The initial value solution of the catenary equation. In this part, the oblique parabolic equation
(Equation (9)) is used to calculate the initial value of the unknown parameters k.

z =
h
l

x− x(l − x)
kcosβ

(9)

Thus:

k =
x(l − x)(

h
l x− z

)
cosβ

(10)

Step 3: The iterative solution of the catenary equation. The form of Equation (8) can be written in matrix form:

V = AX− L; thus, the solution of the normal equation is obtained as X =
(

AT A
)−1 AT L. Thus, the

correction ∆k of the approximate value k can be solved.
Step 4: Repeat Step 3 until the correction ∆kn is less than a certain limited value; thus, the approximation kn+1

is solved by Equation (11). In the ith iteration, the sum of the unknown approximation ki−1 and the
correction ∆ki−1 calculated from the last iteration is used as a new approximation ki.

kn+1 = k0 + ∆k1 + ∆k2 + ∆k3 + . . . + ∆kn (11)

The RANSAC-based line-fitting algorithm on the XOY plane was similar to that of the fitting
process on the XOZ plane, and the only difference was the mathematical model, where the linear
model (Equation (6)) was used instead of the catenary model (Equation (7)).



Remote Sens. 2018, 10, 2051 10 of 23

3. Experimental Data

To verify the feasibility of the proposed method, a set of experiments was conducted on three
LiDAR datasets that were collected from different transmission lines in Guangdong Province, China.
The original point clouds were collected by a Riegl VUX-1 laser measurement system.

As mentioned in Section 2.1, to reduce the number of points for subsequent processing, the
transmission corridors of three datasets were first detected. Although they were collected from the
same scanner, the three datasets were quite different because of the differences in flying height, speed,
and topography. Details about the three processed datasets are shown in Table 1, and their overviews
are shown in Figure 9.

Table 1. Details of the three processed datasets.

Dataset Points
Number Area (m2)

Density
(pts/m2)

Point Distance (m) Line
Number

Data
Quality

Bundle Conductor
ArrangementAlong Vertical

I 43,879,821 40 ∗ 2000 548.5 0.10 0.35 25 middle 2-bundled in vertical
II 25,212,971 40 ∗ 730 863.5 0.07 0.15 24 high 4-bundled conductor

III 459,709 80 ∗ 600 9.6 0.45 0.50 24 low
2-bundled in

horizontal; single
conductor
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For high-voltage transmission corridors, as shown in Figure 10, there are four main objects: 
ground, vegetation, power lines, and power pylons. Inevitably, as shown in Figures 10c and d, there 
is some noise caused by external factors (such as light, vibration, noise, etc.) and the scanner itself 
during working. The above three datasets included four typical power lines in high-voltage 

Figure 9. Airborne LiDAR (Light Detection and Ranging) data of the three processed datasets. (a–c) are
the three detected high-voltage power transmission corridors of datasets I–III, respectively.

For high-voltage transmission corridors, as shown in Figure 10, there are four main objects:
ground, vegetation, power lines, and power pylons. Inevitably, as shown in Figure 10c,d, there is some
noise caused by external factors (such as light, vibration, noise, etc.) and the scanner itself during
working. The above three datasets included four typical power lines in high-voltage transmission
corridors: (1) single conductor (Figure 10a); (2) 2-bundled conductor in horizontal arrangement
(Figure 10b); (3) 2-bundled conductor in vertical arrangement (Figure 10c); and (4) 4-bundled conductor
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(Figure 10d). In particular, there were two transmission lines that were located closely in Dataset III,
which contained two kinds of power lines: a 2-bundled conductor in a horizontal arrangement, and a
single conductor.
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4. Results

In this section, experiments were conducted on the three datasets with the proposed method,
and the results are shown as follows: the classification accuracy of the power transmission corridors
based on a JointBoost classifier is first listed in Section 4.1; then, the accuracy of the bundle conductor
identification is shown in Section 4.2; the sub-conductor extraction results are shown in Section 4.3;
and the accuracy of power line model fitting is listed in Section 4.4.

4.1. Power Transmission Corridor Classification

To obtain the object distribution in high-voltage transmission corridors, a JointBoost-based method
was adopted to classify points in the detected corridors into four categories: ground, vegetation, power
lines, and power pylons. As shown in Figure 9b, the point clouds between the two power pylons in
Dataset II were first selected as the training set, and manually labeled to train the JointBoost classifier
model. Other data were regarded as the testing sets. Considering that the unbalanced distribution of
training examples per class (especially power lines and power pylons) in the training set may often
have a detrimental effect on the training process [35–37], this paper adopted a re-balancing strategy
by repeating the training samples in small amounts to keep all samples in the same magnitude. The
information of the training data is listed in Table 2. Typical classification results of the testing sets are
shown in Figure 11.
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Table 2. Information of training data.

Type Ground Vegetation Power Line Power Pylon

Points number 64,157 164,949 8507 6120
Repeat number 2 1 19 26
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and power pylons are colored in red.

It can be seen from the Figure 11 that the continuous vegetation and isolated vegetation are
basically classified correctly, and the distribution of power lines, power pylons, and ground points are
generally in accordance with the actual situation. However, there are still some misclassifications, for
example, due to the local features’ similarity between vegetation and the power pylons at the bottom,
some points at the bottom of the power pylons are misclassified as vegetation.

To quantitatively evaluate the accuracy of the classified results, the point clouds in dataset II are
all manually classified as reference, and the three-point accuracy evaluation method, Precise, Recall
and Overall Accuracy [8,38] are adopted. As shown in Table 3, the vegetation and power lines have
both high precision and recall, which satisfy the requirements of vegetation monitoring and power
line monitoring.

Table 3. Classification accuracy of Dataset II.

Overall Accuracy: 97.71%

Ground Vegetation Power Line Power Pylon

Precision (%) 99.35 97.40 97.02 94.35
Recall (%) 95.09 99.81 98.17 86.17

4.2. Bundle Conductor Identification

To verify the proposed fitting residual-based bundle conductor identification method, experiments
are conducted on 73 classified power lines (25 lines in dataset I, 24 lines in dataset II, and 24 lines in
dataset III). The identification results are shown in Table 4, where the fitting residual threshold TR is
set to 0.2 m in this paper.
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Table 4. Bundle conductor identification.

Single Conductor
2-Bundled Conductor 4-Bundled

ConductorHorizontal Vertical

Total 34 12 21 16
Identified 32 12 21 16

Correctness 94.17% 100% 100% 100%

As shown in Table 4, most of the bundle conductors were correctly identified according to the
fitting residual analysis, while two single conductors in Dataset III were misidentified as 2-bundled
conductors. This was due to the low point density and low data quality. As shown in Figure 12, when
the point density and data quality were high, the shape of the power line was more regular and more
in accordance with the catenary (Figure 12a); when the point density and data quality were low, the
points of power lines were more discrete (Figure 12b), leading the fitting residual to be much higher,
and then misidentification always occurred.
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Figure 12. Original point clouds of single conductors. (a) is the correctly identified single conductor of
high point density and high data quality, while (b) is the misidentified single conductor of low point
density and low data quality.

To obtain a better understanding of the fitting residual of different power lines, the fitting residuals
of four typical power lines were listed in Tables 5–8, respectively. Additionally, the fitting residuals in
the XY direction and Z direction were calculated to explore the relationship between their arrangements
and their fitting residuals. It can be seen clearly that, for the single conductors, their fitting residuals
in all directions were very small; for 2-bundled conductors, their fitting residuals in the splitting
direction were much larger than the others; and for 4-bundled conductors, which can be regarded
as splitting in both directions, all fitting residuals were large. This shows that the fitting residual
analysis-based method is suitable for most situations with high point density and high data quality to
identify bundle conductors.

Table 5. Fitting residuals of single conductors.

Residual 1 2 3 4 5 6

XY (m) 0.04 0.03 0.05 0.05 0.06 0.07
Z (m) 0.02 0.04 0.07 0.05 0.02 0.03

Sum (m) 0.04 0.06 0.09 0.08 0.07 0.08
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Table 6. Fitting residuals of 2-bundled conductors in a vertical arrangement.

Residual (m) 1 2 3 4 5 6

XY (m) 0.09 0.06 0.06 0.07 0.09 0.05
Z (m) 0.32 0.29 0.31 0.40 0.24 0.27

Sum (m) 0.36 0.30 0.32 0.41 0.27 0.28

Table 7. Fitting residuals of 2-bundled conductors in a horizontal arrangement.

Residual (m) 1 2 3 4 5 6

XY (m) 0.34 0.26 0.29 0.32 0.32 0.26
Z (m) 0.21 0.08 0.10 0.11 0.19 0.07

Sum (m) 0.42 0.28 0.32 0.36 0.40 0.28

Table 8. Fitting residuals of 4-bundled conductors.

Residual (m) 1 2 3 4 5 6

XY (m) 0.35 0.29 0.24 0.29 0.29 0.24
Z (m) 0.31 0.27 0.32 0.28 0.24 0.32

Sum (m) 0.53 0.46 0.44 0.44 0.43 0.44

4.3. Sub-Conductor Extraction

As mentioned in Section 2.3, the bundle conductor is a set of parallel conductors where
sub-conductors are spaced at a certain diameter and arranged on the vertices of regular symmetrical
polygons. According to these features, a projected dichotomy method was proposed for sub-conductor
extraction. To verify the proposed method, experiments were conducted on all bundle conductors.
The extraction results are shown in Table 9.

Table 9. Accuracy of sub-conductor extraction.

2-Bundled Conductor
4-Bundled Conductor

Horizontal Vertical

Extracted number 24 (12 × 2) 42 (21 × 2) 64 (16 × 4)
Correctness 100% 100% 100%

In this experiment, all bundle conductors with various arrangements and bundle numbers in the
three datasets were correctly extracted. To visually check the extraction results of the sub-conductors,
three typical results are shown in Figure 13, and each sub-conductor is colored differently to easily
distinguish them. Although residing very close together, each sub-conductor was still well extracted
effectively through this method.

It is worth noting that, for 2-bundled conductors, as mentioned in Section 2.3, a projected
dichotomy on only one plane was adopted, according to their arrangement. For 4-bundled conductors,
the projected dichotomy on the both XOY and XOZ plane were conducted, respectively.



Remote Sens. 2018, 10, 2051 15 of 23
Remote Sens. 2018, 10, 2051 15 of 23 

 

 

  
(a) 

 
(b) 

 
(c)  

Figure 13. Results of the bundle conductor extraction. (a–c) are the extraction results of 2-bundled 
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4.4. Power Line Model Fitting 

In this section, a double-RANSAC based method was proposed to fit the extracted power lines. 
All power lines in the three datasets were tested. Typical results are shown in Figure 14, where each 
of the fitted power lines is colored in a different color. It can be seen that the fitted power lines were 
parallel and disjointed, basically consistent with the distribution of the power lines. 

 

Remote Sens. 2018, 10, 2051 15 of 23 

 

 

  
(a) 

 
(b) 

 
(c)  

Figure 13. Results of the bundle conductor extraction. (a–c) are the extraction results of 2-bundled 
conductors in a horizontal arrangement; 2-bundled conductors in a vertical arrangement; and 4-
bundled conductors, respectively. 

It is worth noting that, for 2-bundled conductors, as mentioned in Section 2.3, a projected 
dichotomy on only one plane was adopted, according to their arrangement. For 4-bundled 
conductors, the projected dichotomy on the both XOY and XOZ plane were conducted, respectively. 

4.4. Power Line Model Fitting 

In this section, a double-RANSAC based method was proposed to fit the extracted power lines. 
All power lines in the three datasets were tested. Typical results are shown in Figure 14, where each 
of the fitted power lines is colored in a different color. It can be seen that the fitted power lines were 
parallel and disjointed, basically consistent with the distribution of the power lines. 

 

Figure 13. Results of the bundle conductor extraction. (a–c) are the extraction results of 2-bundled
conductors in a horizontal arrangement; 2-bundled conductors in a vertical arrangement; and 4-bundled
conductors, respectively.

4.4. Power Line Model Fitting

In this section, a double-RANSAC based method was proposed to fit the extracted power lines.
All power lines in the three datasets were tested. Typical results are shown in Figure 14, where each
of the fitted power lines is colored in a different color. It can be seen that the fitted power lines were
parallel and disjointed, basically consistent with the distribution of the power lines.

To give a quantitative precision of the fitted power line model, the fitting residuals defined in
Section 2.3 were calculated. The experiment showed that, after sub-conductor extraction, the fitting
residuals of most power lines were less than 0.2 m. To compare the difference between the single
power line span fitting and sub-conductor fitting, the fitting residual of the single power line span
D_sum, and the residual of each sub-conductor D_sub were calculated. Three examples are listed in
Table 10. It was found that the fitting residuals of each sub-conductor were smaller than 1/n of the
whole span’s fitting residuals, where n is the splitting number.
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D_sum D_sum D_sub D_sum D_sum 

0.04 0.36 0.09  0.04 0.36 0.09  0.04 0.36 0.09  
0.06 0.30 0.12  0.06 0.30 0.12  0.06 0.30 0.12  
0.09 0.32 0.12 0.09 0.32 0.12 0.09 0.32 0.12 
0.08 0.41 0.10  0.08 0.41 0.10  0.08 0.41 0.10  
0.07 0.27 0.07  0.07 0.27 0.07  0.07 0.27 0.07  
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Figure 14. Model fitting results of power lines. (a–c) are the fitting results of the 2-bundled
conductors in a horizontal arrangement, 2-bundled conductors in a vertical arrangement, and 4-bundled
conductors, respectively.

Table 10. Fitting residuals of power lines (m).

Single Conductor 2-Bundled Conductor 4-Bundled Conductor

D_sum D_sum D_sub D_sum D_sum

0.04 0.36 0.09 0.04 0.36 0.09 0.04 0.36 0.09
0.06 0.30 0.12 0.06 0.30 0.12 0.06 0.30 0.12
0.09 0.32 0.12 0.09 0.32 0.12 0.09 0.32 0.12
0.08 0.41 0.10 0.08 0.41 0.10 0.08 0.41 0.10
0.07 0.27 0.07 0.07 0.27 0.07 0.07 0.27 0.07
0.08 0.28 0.08 0.08 0.28 0.08 0.08 0.28 0.08

For direct comparison, three typical fitted power lines were magnified and overlaid with original
points in Figure 15, where the fitted models are colored in red and the original points are colored
in black. Through the comparison, it shows that even if there were spacers in the bundle conductor
(Figure 15c), the projected dichotomy could still work to accurately extract each sub-conductor, and
the power lines were accurately fitted by the double-RANSAC fitting method.
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Figure 15. Comparison between the fitted power lines and the original points: (a) comparison of a
2-bundled conductor with a horizontal arrangement; (b) comparison of a 2-bundled conductor with a
vertical arrangement; and (c) comparison of a 4-bundled conductor.

5. Discussion

In this section, the robustness to noise and the breakage of the proposed method is discussed.
The robustness to noise, which is mostly due to the double-RANSAC-based model fitting method,
is discussed in Section 5.1, and the robustness to breakage, which is thanks to the projected
dichotomy-based extraction method, is discussed in Section 5.2; and the effect of data quality is
quantitatively analyzed in Section 5.3.

5.1. Robustness to Noise

In data acquisition, which is affected by external factors (such as light, vibration, noise, etc.) and
the scanner itself, there is inevitably some noise. As shown in Figure 16a, there was a large continuous
noise across the two power line spans, which caused additional difficulty for model fitting with high
precision. However, through the proposed double-RANSAC based model fitting method, noise could
be efficiently removed (Figure 16b), and the fitting results were mostly in accordance with the power
lines’ distribution, which were not badly affected by noise.
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This is mainly due to the advance of the RANSAC algorithm: on the XOY plane, power lines are 
linear, and the effect of noise can be reduced when calculating the optimal linear model by RANSAC, 
resulting in the linear model being basically in accordance with the linear characteristics of the power 
line; on the XOZ plane, the power line’s catenary characteristics are obvious. When calculating the 
optimal catenary model, the influence of noise points can be minimized or avoided as much as 
possible, so that the parameters basically conform to the catenary characteristics of the power line.  

Additionally, most noise can be removed by calculating the fitting residual from the original 
point to the nearest fitting point. As the residual between the power line point and the fitting point 
is generally small, while the residual between the noise point and the fitting point is large, the noise 
points can be eliminated effectively. 

5.2. Robustness to Breakage 

Sparseness and large gaps often occur when a section of power line is obscured by vegetation or 
lacks data points, leading to a small number of power lines being split into several parts, or being 
undetected [8]. To analyze the robustness to breakage, a set of experiments were conducted by the 
proposed method.  

Taking a 2-bundled conductor in a vertical arrangement as an example, as shown in Figure 17, 
there was a large breakage of the 2-bundled conductor, where both sub-conductors disappeared. 
Through a projected dichotomy on the XOZ plane, the power lines were divided into several parts 
and projected onto the XOZ plane (Figure 17a), then each sub-conductor was extracted (Figure 17b). 
The fitting result of the broken bundle conductor is shown in Figure 17c, and shows that the proposed 
method could efficiently reduce the impact of breakage.  
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Figure 16. Robustness to noise: (a) the original power line points with noise; (b) bundle conductor
extraction results; and (c) the double-RANSAC-based fitting results.

This is mainly due to the advance of the RANSAC algorithm: on the XOY plane, power lines are
linear, and the effect of noise can be reduced when calculating the optimal linear model by RANSAC,
resulting in the linear model being basically in accordance with the linear characteristics of the power
line; on the XOZ plane, the power line’s catenary characteristics are obvious. When calculating the
optimal catenary model, the influence of noise points can be minimized or avoided as much as possible,
so that the parameters basically conform to the catenary characteristics of the power line.

Additionally, most noise can be removed by calculating the fitting residual from the original
point to the nearest fitting point. As the residual between the power line point and the fitting point
is generally small, while the residual between the noise point and the fitting point is large, the noise
points can be eliminated effectively.

5.2. Robustness to Breakage

Sparseness and large gaps often occur when a section of power line is obscured by vegetation
or lacks data points, leading to a small number of power lines being split into several parts, or being
undetected [8]. To analyze the robustness to breakage, a set of experiments were conducted by the
proposed method.

Taking a 2-bundled conductor in a vertical arrangement as an example, as shown in Figure 17,
there was a large breakage of the 2-bundled conductor, where both sub-conductors disappeared.
Through a projected dichotomy on the XOZ plane, the power lines were divided into several parts
and projected onto the XOZ plane (Figure 17a), then each sub-conductor was extracted (Figure 17b).
The fitting result of the broken bundle conductor is shown in Figure 17c, and shows that the proposed
method could efficiently reduce the impact of breakage.
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Figure 18a, only one sub-conductor of a single span was removed. Although the points in the 
breakage section were wrongly extracted (red box in Figure 18b), each sub-conductor was still well 
modeled through a double-RANSAC-based model fitting method (Figure 18c). Thus, it shows that 
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This also works for breakages where single sub-conductors have been removed. As shown in
Figure 18a, only one sub-conductor of a single span was removed. Although the points in the breakage
section were wrongly extracted (red box in Figure 18b), each sub-conductor was still well modeled
through a double-RANSAC-based model fitting method (Figure 18c). Thus, it shows that the proposed
bundle conductor reconstruction method has a high fault-tolerant capability.
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5.3. Effect of Data Quality

As mentioned in Section 4.2, misidentifications always occur when the point density or data
quality is low. To quantitatively analyze the impact of the data quality required for the successful
bundle conductor extraction and reconstruction, a set of experiments was conducted by controlling
the degradation of high quality data.

As shown in Figure 19, we selected power lines between two power pylons with high data quality
as the original data. The power lines included six 2-bundled conductors in a vertical arrangement, and
two single conductors. The splitting diameter of the six 2-bundled conductor was about 0.7 m. There
was little noise and breakage, and the point distance was about 0.2 m.
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To explore the effect of difference point distances and Gaussian noise, we respectively sampled
the original power lines and added Gaussian noise, and then the bundle conductor extraction and
reconstruction were conducted on the processed data. Tables 11 and 12 list the results of different
sample distances and Gaussian noise, where Success is the number of correctly reconstructed power
lines, Failure is the number of wrongly reconstructed power lines, and mr is the sample distance.

Table 11. Effect of sample distance (Gaussian noise = 0).

Sample Distance (m) 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Success 8 8 8 8 8 6 2
Failure 0 0 0 0 0 2 6

Table 12. Effect of Gaussian noise (sample distance = 0.2 m).

Standard Deviation (mr) 0.1 0.3 0.5 0.6 0.7 0.8 0.9

Success 8 8 8 8 7 6 6
Failure 0 0 0 0 1 2 2

Table 11 shows that as the sample distance increased from 0.2 m to 0.6 m, the power lines were
still correctly reconstructed. When the sample distance was up to 0.7 m, misidentification occurred,
and two 2-bundled conductors were misclassified as single conductors. Then, the larger the sample
distance, the higher the Failure rate.

Table 12 shows that as the standard deviation of Gaussian noise increased from 0.1 mr to 0.6 mr,
the proposed method could still work well, which indicates its robustness to noise. However, when
the deviation was up to 0.7 mr or larger, misidentification occurred: (1) the vertical arrangement was
misidentified as the horizontal arrangement; (2) 2-bundled conductors were misclassified as single
conductors; and (3) single conductors were misrecognized as bundled conductors. Typical results of
different Gaussian noise are shown in Figure 20.Remote Sens. 2018, 10, 2051 21 of 23 
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Figure 20. Effect of Gaussian noise. (a–d) are the Gaussian standard deviation = 0.3 mr, 0.5 mr, 0.7 
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conductor feature. Additionally, the thresholds of the sample distances are related to the splitting
diameters of the bundle conductors. The experiments suggest that for good reconstruction, the point
distance should be smaller than the splitting diameters. As for noise, the proposed method has a high
robustness to noise. However, if noise increases, the points of the power lines will be more discrete,
and the shapes of the bundle conductors will be indistinct, consequently leading to misidentification.

6. Conclusions

For the inspection of power transmission lines, power lines are the focus of hazard detection (e.g.,
vegetation monitoring and power line monitoring), and its reconstruction has received much attention.
A robust and precise power line model is a necessary requirement for rapid and correct clearance in
cases of potential hazards. However, most of the existing research has only focused on single power
line span reconstruction, and limited methods have been reported for bundle conductor reconstruction.
Thus, this paper proposed a novel method for high-voltage power line reconstruction, which could
precisely reconstruct each sub-conductor. After a single power line span was extracted, and each
bundle conductor was first identified by analyzing their fitting residuals; then, each sub-conductor of
each bundle conductor was extracted by a projected dichotomy method on the XOY and XOZ planes,
respectively; finally, a double-RANSAC-based algorithm was introduced to reconstruct each line.

The proposed reconstruction method has several merits: (1) the structure characteristics of bundle
conductors in high-voltage transmission corridors are used for their identification and extraction;
(2) the proposed projected dichotomy method can efficiently and precisely extract each sub-conductor,
and is robust to noise and breakage; and (3) the double-RANSAC based model fitting method can
reduce the effect of continuous noise. Overall, the proposed method can preferably reconstruct the real
structure of bundle conductors robustly, with a high precision of better than 0.2 m. Additionally, with
the classified power transmission and well-reconstructed power lines, related applications such as
vegetation monitoring and power line monitoring can be conducted.

It is worth noting that the reconstruction of bundle conductors relies highly on the point density
and data quality. Errors always occur when points are sparse and their structure is not apparent.
In our future work, for better power transmission inspection and management, the power line
reconstruction results will be combined with reconstructed power pylons to add contextual information.
As the distribution of high-voltage transmission lines is becoming more complicated (e.g., multi-loop
and multi-bundle), more attention will be paid on more applicable and general 3D methods for
bundle conductor reconstruction. Due to the limited research that is reported for bundle conductor
reconstruction, our work may inspire more researchers to work in this field and to achieve better results.
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