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Abstract

:

The spatial resolution and clarity of remote sensing images are crucial for many applications such as target detection and image classification. In the last several decades, tremendous image restoration tasks have shown great success in ordinary images. However, since remote sensing images are more complex and more blurry than ordinary images, most of the existing methods are not good enough for remote sensing image restoration. To address such problem, we propose a novel method named deep memory connected network (DMCN) based on the convolutional neural network to reconstruct high-quality images. We build local and global memory connections to combine image detail with global information. To further reduce parameters and ease time consumption, we propose Downsampling Units, shrinking the spatial size of feature maps. We verify its capability on two representative applications, Gaussian image denoising and single image super-resolution (SR). DMCN is tested on three remote sensing datasets with various spatial resolution. Experimental results indicate that our method yields promising improvements and better visual performance over the current state-of-the-art. The PSNR and SSIM improvements over the second best method are up to 0.3 dB.
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1. Introduction


Optical remote-sensing images are widely used in various applications, such as automatic detection, target recognition, object tracking, and image classification. However, the image quality and spatial resolution are still the key limitations affecting remote sensing applications.



The resolution of images indicates the spatial size of the planetary surface covered by one pixel. Thus, it reflects the ability to capture small terrain details. Thanks to the development of the sensor, the most advanced satellites are able to distinguish spatial information within a squared meter [1]. When requiring higher resolution, exceeding the limitation of sensors is a time consuming and costly task. Besides, the optical images will be degraded due to the undesirable environmental conditions (such as clouds and uneven illumination) and the noise produced by the sensor.



As is shown in Figure 1, low-resolution and noise will lead to low image quality and restrain the accuracy of image interpretation [2]. It is necessary to perform image restoration tasks such as super-resolution and denoising, which will improve image quality efficiently.



Image restoration is a classical problem, aiming at recovering latent clean image x from its degraded observation y. We assume that the clean image x is polluted by the function D combined with an additive zero-mean white Gaussian noise N. Thus, the measured image is




   y = D ( x ) + N .   



(1)





We desire to design an algorithm that can recover a high-quality image   x ^  , and making it as close as possible to the original image x. However, there is no unique solution for a given image y, which makes image restoration to be an ill-posed problem.



To address this problem, over the last decades, numerous contributions for image restoration are addressed from diverse points of view. These algorithms can be concluded in to neighbor embedding methods [3,4,5], sparsity-based methods [6,7], and low-rank minimization [8,9]. Some representative algorithms are illustrated in Section 2.1.



Due to the immense popularity of deep learning, convolutional neural networks stand out as a powerful image restoration tool since they provide significantly improved performance. Among them, Super-resolution Convolutional Neural Network (SRCNN) [10] is the first successful attempt that use a three-layer convolutional neural network for super-resolution. Feed-forward Denoising Convolutional Neural Network (DnCNN) [11] is another successful attempt that achieves the-state-of-the-art performance on image denoising, which stacks convolutional layers, Rectified Linear Unit (ReLU) [12] and Batch Normalization (BN) [13] functions. A deep generative network is proposed by [1] to improve the SR process with little external high-resolution (HR) training images.



Although those CNN-based methods achieve excellent results, there are still several weak points could be improved. Firstly, these methods such as SRCNN [10] and DnCNN [11] are very shallow (less than 20 layers). Therefore their receptive fields are small. The network capability is not satisfactory when reconstructing HR images with extensive information. Some recent methods apply deep network on ordinary images [14,15,16,17,18], but no experiments have been done on remote sensing images. Secondly, these methods ignore the local information produced by the lower layers and sometimes cannot reconstruct image details correctly. Despite achieving better results, those models are time-consuming due to the complex operation or redundancy structure. It is hard to carry out those restoration jobs on real-time platforms.



Particularly, remote sensing images are more complex and blurry than ordinary images. For example, an image from the ImageNet dataset measuring   256 × 256   pixels may only depict an animal or a building. While an equally sized image in satellite dataset may cover a small town with many buildings and streets (shown in Figure 2). Processing remote sensing images requires stronger ability. However, methods designed for ordinary images such as DnCNN may not meet the special requirement and fails on remote sensing images. We do an experiment to verify this phenomenon and show the result in Section 4.6.



Motivated by the problem above, we propose a fast and accurate image restoration method by building a deep memory connected network (DMCN). We build a deep convolutional neural network with a large receptive field to recover the latent clean image from the degraded one. The large receptive field provides more context for predicting image details. Inspired by neuron science study that short-term memory can be consolidated to long-term memory by synaptic consolidation after rehearsal. We define the residual information at different stages as short-term memory and the information learned along the pipeline as a long-term memory. To imitate the activating intracellular transduction cascades, we add different residual information to the pipeline, which is called memory connections. Our method used two level memory connections: global and local. These connections can combine local and global information learned by the network, fasten convergence and prevent vanishing gradients problem [20]. In addition, we apply Downsample Units to shrink the spatial size of the feature maps, alleviating the computational burden and accelerating the training process. In details, we use initialization described in [21], adaptive moment estimation (adam) [22] optimizer, batch normalization [19] and parametric rectified linear unit (PReLU) [21] to accelerate training process and achieve better performance. In addition, our model is designed for parallel computation on GPUs, making the restoration tasks more efficient.



The contributions of this work are as follows:




	
We build a deep memory connected network for high-quality remote-sensing image restoration. Our network can handle various image restoration tasks such as super-resolution and Gaussian denoising at the same time. We can also achieve blind Gaussian denoising for unknown noise level. By simply changing training datasets, our network can be applicable for super-resolution with different upscale factors.



	
Taking into account the lower layer information, DMCN is elaborately designed with local and global memory connections. With the global connection, DMCN only needs to predict high-frequency residual information instead of predicting the whole image. We use local residual in Basic Blocks to achieve fast error reduction.



	
DMCN is elaborately designed with Downsample and Upsample Units to build an hourglass structure. With a Downsample Unit, we can shrink the spatial size of the feature map by 2, significantly reducing the memory footprint and time-consumption.



	
We choose three representative optical remote sensing datasets with different spatial resolutions to train and test the model. Experiments show that our method outperforms the state-of-the-art algorithms in both super-resolution and denoising tasks. Besides, we apply BN and PReLU for faster convergence and relatively high performance.








The remainder of this paper is organized as follows. Section 2 presents an overview of traditional algorithms and deep-learning-based methods on image restoration. Section 3 describes the methodology used by our model. Section 4 verifies the effectiveness of DMCN by performing comparisons with the state-of-the-art image restoration methods. Section 5 concludes the paper with discussions and outlooks.




2. Related Works


2.1. Traditional Algorithms


Image restoration is an old but still hot problem. Over the last decades, numerous approaches based on traditional algorithms are proposed. Neighbor embedding methods find the nearest neighbors in the observed image Y, and reconstruct image X by computing the high-resolution embedding using the appropriate high-resolution features of the K nearest neighbors [3,4,5]. Xu et al. [23] uses patch grouping-based nonlocal means algorithm to denoise remote sensing images. C. Kwan and J. Zhou [24] propose a patent for image denoising, which provided a useful method for practice.



Sparsity-based methods define a trained dictionary and sparsely represent the latent clean image [6,7]. We assume that the latent clean image is x. Thus, the sparse representation   α ^   is formulated as:


   α ^  = arg  min α     ∥ α ∥    subject  to   D α ≈ x  ,  



(2)




where D is a redundant dictionary (matrix). The basic idea here is that every image patch x can be denoted as a linear combination of few columns from dictionary D. Chen et al. [25] presents a nonconvex low rank matrix approximation (NonLRMA) model to decompose the degraded Hyperspectral images. Fan et al. [26] propose an MSI denoising model based on nonlocal multitask sparse learning to fully exploit the nonlocal self-similarity of the MSI on the spatial domain.



Low-rank minimization is another strategy to exploit the underlying low-rank matrix from its degraded observation [8], where weighted nuclear norm minimization (WNNM) [9] problem uses the F-norm to measure the difference between observed data matrix y and latent data matrix x, which can be formulated as


   min x  ∥ y −​ x  ∥ 2 F  +   x   w , ∗​    ,  



(3)




where    x   w , ∗​    represents the weighted nuclear norm to regularize x.



Pansharpening aims at improving the spatial resolution of multispectral data, which is a special instance of super-resolution. Pansharpening fuse multispectral or hyperspectral image data with panchromatic bands [27]. In [28], the author reviews some advanced methods for multispectral pansharpening. Kwan et al. [29] integrates two newly developed techniques, hybrid color mapping algorithm and Plug-and-Play algorithm, to present a new resolution enhancement method for HS images. This algorithm is different from former ones because it only requires an HR color image and a low resolution (LR) HS image cube.




2.2. Deep Learning Methods


With the evolution of deep learning techniques, the neural network has shown standout potential. Remote sensing scientists also exploit the advantage of deep learning to tackle various challenges, such as image recognition, object detection, image classification, and image restoration. Remote sensing data also bring new chance and challenge for deep learning. With big and heterogeneous remote sensing data, it is more tangible to study information for image restoration. In this part, we provide a brief overview of some representative deep learning based methods for denoting and super-resolution tasks.



2.2.1. Image Denoising


There have been several methods attempting to handle the denoising problem by neural networks.Vincent et al. [30] first proposes a two-layer neural network (Denoising Autoencoder) that tries to reconstruct the latent image from an observed noisy image. This denoising autoencoder could be formulated as


   x ^  = σ  (  b 2  +  W 2  σ  (  b 1  +  W 1  x )  )   ,  



(4)




where  σ  is the sigmoid activation function   σ  ( x )  = 1 /  ( 1 +  e  −​ x   )   .   W 1  ,   W 2   is   d × d   weight matrix and b is a bias vector. The weight matrix W of the reverse mapping may optionally be constrained by   W =  W T   , in which case the autoencoder is said to have tied weights.



Jain and Seung [31] propose a simple network with four hidden layers that provide comparable and in some cases superior performance to Markov random field (MRF) methods. In [32], Chen et al. uses a trainable nonlinear reaction diffusion (TNRD) network which extends traditional nonlinear reaction diffusion models by highly parametrized linear filters and highly parametrized influence functions. TNRD can achieve promising performance comparable to BM3D [5]. However, these methods learn the parameter by stage-wise greedy training, involving many handcrafted parameters. Besides, for different noise level, a certain network should be trained. The most famous CNN-based method is DnCNN [11], which achieves the state-of-the-art results. DnCNN is a deep network that utilizes residual learning to estimate the Gaussian noise. Remarkably, a single-blind DnCNN network can achieve denoising tasks with different noise levels.



For image denoising, many new works are proposed recently. Ben et al. [33] utilize a technique for predicting spatially varying kernels that can both align and denoise frames. This method works well on some ordinary image datasets, however, the generalization ability should be discussed. Lefkimmiatis et al. [17] design a network for color and grayscale image denoising. This network can be trained for a wide range of noise levels using a single set of parameters. Lehtinen et al. [34] achieves noise removal, denoising synthetic Monte Carlo images, and reconstruction of undersampled MRI scan only based on noisy data, without explicit image priors or likelihood models of the corruption.



Except for the convolutional neural network, some other networks also perform well on denoising tasks. Patrick Putzky and Max Welling [35] propose a network, Recurrent Inference Machines (RIM), based on a recurrent neural network, which allows for an abstraction which removes the need for domain knowledge. The former methods, such as DnCNN [11], often suffer from the lack of paired training data. Chen et al. [18] use a Generative Adversarial Network (GAN) to estimate the distribution of noise and generate noisy data. Then the output of GAN is used for training a CNN for denoising.




2.2.2. Single Image Super Resolution


Network-based super resolution methods are also popular over recent years. Dong et al. propose a three layer network Super-resolution Convolutional Neural Network (SRCNN) [10] to learn an end-to-end mapping between the low/high-resolution images. SRCNN can be viewed as an extension of sparse-coding-based SR method which demonstrates superior performance to the previous hand-crafted models either in speed and restoration quality. The network SRCNN is represented as follows,


   x ^  =  b 3  +  W 3  ∗​ R  (  b 2  +  W 2  ∗​ R  (  b 1  +  W 1  ∗​ y )  )   ,  



(5)




where   W 1  ,   W 2  ,   W 3   represent the weight matrixs. The matrix is of size   c × f × f × n  , where c is the number of the input channel, f is the spatial size of a filter, and n is the number of filters. R represents the Rectified Linear Unit [12] (ReLU,   M a x ( 0 , x )  ). Remarkably, ∗ denotes the convolution operation. A convolutional layer is denoted as   C o n v ( c , f , n )  .



Then the author adopts smaller filter sizes in Fast SRCNN (FSRCNN) [36] to accelerate SRCNN. FSRCNN introduce a deconvolution layer at the end of the network, the mapping is learned directly from the original low-resolution image (without interpolation) to the high-resolution one. This operation reduces the computational complexity but brings a non-negligible drawback, that a specific model should be trained for a certain upscale factor. Kim et al. [37] use 20 convolutional layers in Very Deep Super-resolution Network (VDSR) to improve SR performance. To accelerate the convergence speed and avoid gradient explosion problem, VDSR adopts residual learning and very high learning rate.



However, those networks are too simple, and the network capability is not satisfactory when reconstructing HR images with extensive information. A deep network can utilize more contextual information in an image and usually achieves better performance than shallow ones.



For image super-resolution, many new works are proposed recently. In [38], the author applies transfer learning to achieve hyperspectral image super-resolution. The network is trained on a natural image dataset, and then fine-tuned on hyperspectral images. Qu et al. [39] propose two encoder–decoder networks to preserve the rich spectral information from the HSI network. This method achieves unsupervised learning for hyperspectral image super-resolution. Assaf Shocher et al. [40] apply “Zero-Shot” in super-resolution, which does not rely on prior training. The image information is extracted by the network, and an image-specific CNN is trained during testing time. Only the information from the input image is used when training.



Except for the convolutional neural network, some other networks also perform well on super-resolution task. Ledig et al. [41] proposes a generative adversarial network Super-resolution Generative Adversarial Network (SRGAN), which achieves photo-realistic natural images for 4× upscaling factors. In this network, the author uses a perceptual loss function which consists of an adversarial loss and a content loss. Mehdi SM et al. [42] propose an end-to-end trainable frame-recurrent framework for video super-resolution. This method assimilates a large number of previous frames without increased computational demands.






3. Proposed Deep Connected Neural Network


In the following, we will demonstrate the architecture of the proposed DMCN network, including the interior structure and mathematical expressions. Then, the Downsample and Upsample Units and the memory connections will be illustrated in detail. Finally, we study the trade-off between network depth and performance, and introduce some useful training strategies.



3.1. Network Architecture


The overall structure of DMCN is illustrated in Figure 3. DMCN can be decomposed into four parts: the input unit, the Downsample Units, the Upsample Units and the output unit. A network with N convolutional layers can be denoted as follows,


   F i   ( X ;  W i  ,  b i  )  = σ  (  W i  ∗​  F  i −​ 1    ( X )  +  b i  )  ,  i = 1 ∼ N  



(6)







As is illustrated above, there are several models for image super-resolution or denoising before DMCN. These methods complete these two tasks separately. However, we find out that there is an inner connection between SR and denoising. As we can see, the purpose of image restoration tasks is to recover the latent clean image x from the corrupted image y. In denoising problems, the corrupted image y is


  y = x + v  ,  



(7)




where v is the additive Gaussian noise.



We observe that when v represents the difference between the ground truth high resolution image and the bicubic upsampling image of the low resolution one, the image restoration model can be converted to a single image super-resolution problem.




3.2. Downsample Unit and Upsample Unit


Before we dive into the Downsample and Upsample Units, let’s first have a look at the computational complexity of a convolutional network   C o n v (  c i  ,  f i  ,  n i  )   with N layers:


   O  t i m e   =  ∑  i = 1  N   c i  ·   f i 2  ·   n i  ·  m i     ,  



(8)




where   m i   is the spatial size of the output feature map, which significantly influences the computational complexity. To ease the computational burden, we propose an hourglass structure with M Downsample Units and Upsample Units to shrink the spatial size of the feature map. With M Downsample Units, the spatial size of feature map is shrinked by   2 ∗​ M  . With Upsample Units, the feature map is expanded to the original size. The size of all the feature map looks like an hourgalss stucture. Hourglass structure is proposed in U-Net [44] to achieve fast training and testing, in which hourglass is achieved by pooling operation. Newell et al. [45] propose a stacked hourglass network for human pose estimation. This network creates a stacked hourglass network by placing several hourglass modules end-to-end.



As is shown in Figure 3, every Downsample Unit contains a Downsample layer, which is a convolutional layer with stride = 2. Thus we can shrink the spatial size of the feature map by 2. There are B Basic Blocks following the Downsample layer, increasing the network depth and extracting useful information. The architecture of Basic Block is shown in Figure 4. Let x and    f B   ( x )    be the input and output of Basic Block, then it can be formulated as


   f B   x  = max  ( 0 , B N  (  W i  x +  b i  )  )   ,  



(9)




where the function   B N   denotes Batch Normalization and   max (  0  ,  ·  )   denotes the ReLU function.



To rebuild the feature maps, we utilize Upsample Block with   s c a l e f a c t o r = 2  . The structure of Upsample Block is shown in Figure 4, which contains a sub-pixel convolution layer proposed in [43]. Compared to deconvolutional layer, the sub-pixel convolution layer is faster. After every Upsample Block, there are also B Basic Blocks. With this hourglass structure, we significantly reduce computational complexity by 70% while maintaining excellent performance.




3.3. Memory Connection


In convolutional neural networks (CNN), the neurons of lower layers have small receptive field and focus more on local and detailed information. With the increase of network depth, the receptive field gets larger. The neurons of higher layers learn the global information, but high-frequency information gets saturated and degrades rapidly. Thus, merely increasing the network depth may not be a good solution for image restoration. In [20], He et al. propose residual learning to accelerate the training of deep networks, in which the shortcut connections are applied to every few stacked layers.



Inspired by neural science study that human brain will protect previously acquired knowledge in neurons, we novelly propose two kinds of memory connections to combine network output with residual information: local memory connection in Basic Blocks, which is shown in Figure 4 (the blue line), and global memory connection on the pipeline, shown in Figure 3 (the green line). The function of memory connection   F c   can be formulated as


   F c   (  H  i n   )  =  H  i n   +  F  c o n v    (  H  i n   )   ,  



(10)




where   H  i n    is the residual information, and   F  c o n v    denotes the convolutional layers between the connection. Network with memory connections back-propagates gradients to former layers and accelerates the training process.



Instead of learning the mappings from observed degraded image to ground truth image directly, with the global connection, we combine image detail information in lower layers with global information in higher layers. The residual information in Basic Blocks denotes the short-term memory in this network, providing low-level image details for reconstruction.



Global and local memory connections add neither extra parameter nor computational complexity. Besides, it will back-propagate gradient to the bottom layers, accelerating the training process. We perform experiments in Section 4.4 to verify these effects.




3.4. Network Depth


DMCN has two key parameters: M, the number of Downsample Units or Upsample Units; and B, the number of Basic Blocks in every Unit. The input unit contains 7 convolutional layers, extracting the lower layer information of the input image. The output layer contains one convolutional layer. Given different M and B, we can train DMCN in different depths. The depth of DMCN is as follows:


  d e p t h = 7 + M × ( 1 + 2 ∗​ B ) + M × ( 2 + 2 ∗​ B ) + 1 = 8 + 3 ∗​ M + 4 ∗​ M ∗​ B .  



(11)







It has been pointed out that increasing receptive field size can make use of the context information in a larger image region. Thus, high noise level in denoising and large-scale factor in SR would require larger receptive field size to capture more context information. However, large receptive field usually require deep network with more parameter and heavier computational complexity. To balance the tradeoff between efficiency and performance, we did experiments in Section 4.2 to set a proper depth for our network.




3.5. Training strategies


Numerous training strategies have been proposed to accelerate convergence and boost performance [13,21,21]. In our work, we apply BN and PReLU for faster and better training performance. The effectiveness of them will be verified in Section 4.5.



Batch Normalization (BN). When training deep neural networks, since the parameters of the previous layers change, the distribution of each layer input also changes. Thus, network will be hard to converge with a large learning rate. This phenomenon is called internal covariate shift, which will slow down the training by requiring lower learning rates. We address this problem by applying normalization for each training batch. Batch Normalization allows larger learning rates and makes the network converges fast with better performance.



Parametric Rectified Linear Unit (PReLU). In the last few years, we have witnessed tremendous improvements in activation functions. Among them, Rectified Linear Unit (ReLU) [12] is one of several keys to the recent success of deep networks than conventional sigmoid-like units. In ReLU, if the input is negative, the output will be zero, which helps to generate a sparse representation.



To further improve the performance of ReLU, [21] propose a Parametric Rectified Linear Unit (PReLU) to improve model fitting with nearly zero extra computational cost and little overfitting risk. PReLU is defined as


  f  (  x i  )  =       x i  ,   if   x i  > 0        a i   x i  ,   if   x i  ≤ 0       



(12)




Here   x i   is the input of the nonlinear activation f on the   i  t h    channel, and   a i   is a coefficient controlling the slope of the negative part. Figure 5 shows the comparison of ReLU and PReLU. When   a i   become zero, ReLU is a special case of PReLU. In our network, we apply PReLU to improve accuracy at negligible extra parameters.





4. Experiment


In this section, we first introduce three datasets we used. Then we set a proper depth and width for our network. Three ablation experiments are performed to verify the effectiveness of Downsample Units, memory connections, BN and PReLU. Finally, experimental results on gaussian denoising and single image super-resolution are shown.



4.1. Dataset Sets and Environmental Configuration


We choose three datasets with different spatial resolutions to verify the robustness of our proposed method. Some of the training images are listed in Figure 6.



(1) UCMERCED [46]: The UC Merced land-use dataset is composed of 21 land-use scene classes with high spatial resolution (0.3 m/pixel) in the RGB color space. Each class consists of 100 aerial images measuring   256 × 256   pixels. We randomly select   80 %   of the dataset as training set and the others for testing.



(2) NWPU-RESISC45 [19]: This dataset is a public benchmark created by Northwestern Polytechnical University (NWPU), which contains images with spatial resolutions varying from 30 m to 0.2 m per pixel. This dataset has 45 scenes with a total number of 31,500 images, 700 per class. The size of each image is   256 × 256   pixels. We randomly select 4500 images for training and 90 images for testing.



(3) GaoFen1: Multispectral images from GaoFen-1 satellite are also applied to our model. The three visible bands of the multispectral image (2 m/pixel) are extracted and stacked into pseudo-RGB image. We select 200 images measuring   512 × 512   pixels and divide it for training (160 images) and testing (40 images).



Given an input corrupted image Y, we optimize parameters   Θ = {  W i  ,  b i  }   by minimizing the loss function between the ground truth HR image X and reconstructed image    X ^  = F  ( Y ; Θ )   . The loss function of DMCN is:


  L  ( Θ )  =  1 n   ∑  i = 1  n   |   X i  ^  −​  X i  |   



(13)







In this paper, we use the peak-signal-to-noise ratio (PSNR) [dB] and structural similarity index measure (SSIM) as criteria to evaluate the performance of DMCN. All the experiments are conducted on a computer with Intel Core i7, 16 GB of RAM and Nvidia Tesla K40 GPU, 12 GB of RAM.




4.2. Network Depth and Width


There are two parameters in network depth: M, the number of DownsampleUnit and UpsampleUnit; and B, the number of Bisic Blocks in every Unit. We build different models with various combination of M and B to study the performance of different network depth.



In Figure 7, network depth ranges from 15 (  M = 1  ,   B = 1  ) to 113 (  M = 3  ,   B = 8  ). When M is 1, the PSNR grows up with B, because the network depth is growing from 15 layers to 36 layers. The receptive field is growing, making the network capability better. When M is 2, before B reaches 3, the model performance grows up with B since the deeper network has large receptive field, providing more context to predict image details. After B reaches 4, the network is too deep to converge within 30 epochs, thus the model performance declines respectively. When M is 3, the network depth ranges from 29 layers to 113 layers. The network is too deep to converge. Besides, with three DownsampleUnits, the feature map will be shrunk by 8. A picture measuring   256 × 256   will be shrunk as a feature map measuring   32 × 32  , the detail information might be lost, thus the performance decrease.



Considering both the performance and speed, we choose   M = 2  ,   B = 3   (  d e p t h = 38  ) as our final model. Compared to DnCNN (depth = 20, receptive field = 43) and VDSR (depth = 17, receptive field = 37), our model DMCN (depth = 38, receptive field = 141) is the deepest network with the largest receptive field.



We also do experiments to verify the width of the network. The network is trained with network width   32 , 64 , 128 ,   and 256, and the results are shown in Table 1. When network width is 32, the computational complexity is small but the performance is not satisfactory. When network width grows larger than 128, the computational complexity is too large and the model cannot achieve good results in 30 epochs. Thus we choose 64 as the width.




4.3. Evaluation on Downsample Unit and Upsample Unit


To evaluate the effect of Downsample Unit and Upsample Unit, we perform ablation experiments of super-resolution tasks on UCMERCED dataset. By setting   s t r i d e = 1  , the feature map will not be shrunk by Downsample Unit. By setting   u p s a c l e f a c t o r = 1  , the upsample unit is also disabled.



The result is shown in Table 2. Theoretically, network with Downsample Units will reduce computational complexity by   69 . 05 %  . In this experiment, without sacrificing performance, Downsample Units reduce the memory footprint of training by   53 . 4 %  . And the testing time is reduced by   67 . 6 %  . Overall, Downsample Units will significantly improve speed and reduce memory footprint while maintaining satisfactory performance.




4.4. The Effect of Memory Connection


To evaluate the effect of memory connections, we run an ablation study on them in turn and show the results in Figure 8. Network with all the memory connections converges fast and gets the best performance. When we remove global and local memory connections in turn, the results decay. Network without memory connections cannot even converge. In conclusion, memory connections can transfer low layer information to higher layers, making the reconstructed image more detailed. It can also back-propagate gradients, accelerating the convergence.




4.5. Batch Normalization and PReLU


In order to verify the effect of BN and PReLU, we do ablation study on denoising tasks with UCMERCED dataset. Figure 9 shows the PSNR results of networks with/without PReLU. With PReLU, the network can achieve faster convergence and relatively high performance. Besides, the testing time of network with PReLU is shorter.



As for Batch Normalization, Figure 10 shows the PSNR results of networks with/without BN. The network with BN and PReLU achieves the best PSNR, and we can set a large learning rate for this network. Networks without BN spend less time for testing, but with a large learning rate, it is hard to converge.




4.6. Gaussian Denoising


For denoising tasks, we usually assume the latent clean image x is corrupted by additive white Gaussian noise N. Thus the observed image would be formulated as   y = x + N  . In this paper, we consider five noise levels, i.e.,   σ =   15, 25, 35, 45 and 55. Firstly, we train DMCN-S for Gaussian denoising with specific noise level. For one model, we use images with specific noise level to train and test. Then, we extend DMCN-B for blind noise level. We train DMCN-B with images from a wide range of noise levels (e.g.,   σ =   15, 25, 35, 45 and 55). Given a test image with unknown noise level, the single DMCN-B model can denoise it.



4.6.1. Training Details


When training DMCN-S model for specific noise level, we follow [11] to split the training data into   40 × 40   sub-images. Besides, we also train a single DMCN-B for denoise tasks (a single model for arbitrary noise level). The training images are split into   50 × 50   sub-images. Following previous works, we only denoise for grey images. The learning rate is initially set as   1 e −​ 3   and decayed every 10 epochs by factor 10. We initialize the weights following [21] and use ADAM optimizer [22] by setting    β 1  = 0 . 9  ,    β 2  = 0 . 999  ,   ϵ =  10  −​ 8    ,   w e i g h t _ d e c a y =  10  −​ 4    . We optimize the loss function stated in Equation (13). Our work is compared with several state-of-the-art denoising methods such as non-local similarity based methods BM3D [5], WNNM [9] and CNN based model DnCNN [11].




4.6.2. Quantitative Results


We show the average PSNR and SSIM results of different methods on three datasets in Table 3. DMCN-S and DnCNN-S represent the networks trained for specific noise level  σ , while DMCN-B and DnCNN-B is the network trained for blind  σ . As can be seen, both DMCN-S and DMCN-B achieves the best PSNR results over other methods. Specifically, the superiority over the second best method DnCNN reaches 0.2 dB when  σ  = 45 and 55. DMCN also achieves the best SSIM over other methods, which indicates that our model can reconstruct images with better structure information. It should be noted that even a single DMCN-B model trained for blind noise level outperforms the DnCNN-S model trained for specific noise level.



Besides, as is stated in Section 1, remote-sensing images are much more complex than ordinary images. Thus networks designed for ordinary images may not be able to meet the reconstruction needs of remotes sensing images. As can be seen in Table 3, DnCNN-B cannot remove noise for GaoFen1 dataset. The PSNR results are even worse than BM3D. The denoising results is shown in Figure 15, for image “Farmland028” with Gaussian noise   σ = 45  , DnCNN-B cannot remove noise successfully.



Figure 11 shows the average improvements of DnCNN-S, DnCNN-B, DMCN-S and DMCN-B over BM3D. Compared to the benchmark BM3D, DMCN-S and DMCN-B have a notable PSNR gain from 0.5 dB to 1.2 dB. Notably, the PSNR gain of DMCN over DnCNN and BM3D rise up with the noise level. When the noise level increase, the difficulty of denoising tasks go up exponentially. Since DMCN is a deep network with large receptive field and higher network capability, it is superior to other methods when dealing with large  σ .



Besides, DMCN still have absolute advantages on PSNR when testing on different classes. In Table 4, we list the average PSNR improvements of DMCN-S and DnCNN-S over BM3D. The experiments are performed on seven image classes in NWPU-RESISC45 dataset. We choose images from these classes and show them in Figure 12. It should be noted that DnCNN is inferior to BM3D on image class “industrial”, while DMCN yields the highest PSNR on all the images. Which indicates that DMCN is more robust.



Some image classes with small PSNR difference is highlighted in bold. Remarkably, classes such as “farmland”, “industrial” and “meadow” are dominated by repetitive structures. This phenomenon is consistent with the fact that non-local based methods such as BM3D use repetitive images structures to reconstruct image detail, thus these methods perform better on images with repetitive content and fails on images with irregular textures. While our deep learning methods learn the potential image structure over the whole training dataset with hundreds of images, thus achieving convincing results on all the image calsses.




4.6.3. Restored Image Quality


To further demonstrate the effectiveness of DMCN, we show the restored image in Figure 13, Figure 14 and Figure 15. On the whole, it can be seen that BM3D tends to produce images with over-smoothed edges and textures. That’s because non-local based methods are designed to use repetitive image patches to reconstruct details [5]. In contrast, DnCNN is likely to recover sharp edges while ignoring image details. With deep network, DMCN has large receptive field. With local-global connections, the low-layer information is transferred to higher layers. Thus, DMCN can keep a balance between removing noise and recovering image details. Our results reconstruct sharp edges and image details at the same time.



Particularly, in Figure 13, BM3D ignored some cracks on the runway. DnCNN lost the spot on the upper right corner of the white block area. Only DMCN learns the precise mapping from noisy image to the clean one. In Figure 14, the result of BM3D is over smoothed, thus we cannot clearly tell the outline of the plane. DnCNN losts some useful information such as the engine on the wing. DMCN recover these details and get images that is similar to the ground truth. In Figure 15, although all of the images seem similar, when we zoom in to the white block area, it can be seen that only DMCN produce straight and clear stripes. BM3D cannot distinguish those stripes, and DnCNN produces curved stipes.





4.7. Single Image Super-Resolution


For super-resolution problems, our task is to recover the latent clean image x from the down-scaled image y. Our model is compared with other methods including bicubic interpolation, the classic CNN-based SRCNN [10], LGCNet [47], and VDSR [37] (state-of-the-art).



4.7.1. Training Details


In the training phase, We first down-sample the images with scale factor   × 2  ,   × 3  ,   × 4  . Then, the ground truth images   {  X i  }   are split into   48 × 48   sub-images with no overlap. We use a mini-batch size of 128 when training. Following previous works, we only consider the luminance channel in YCbCr color space, because humans are more sensitive to luminance changes. We use the initialization scheme described in [21] for all layers. We train our model with ADAM [22] optimizer by setting    β 1  = 0 . 9  ,    β 2  = 0 . 999  ,   ϵ =  10  −​ 8    ,   w e i g h t _ d e c a y =  10  −​ 4    . The learning rate is initialized as   10  −​ 3    and decreased every ten epochs by a factor of 10. To augment the training data, we make two operations on them: (1) Flipping: flip images horizontally or vertically with a probability of 0.5. (2) Rotation: randomly rotate images by   90 ∘  ,   180 ∘  , or   270 ∘  . Our learning rate is initially set to   5 ×  10  −​ 4     and decreased every ten epochs by factor 10. We train our model for super-resolution with scale factor   × 2  ,   × 3  ,   × 4   respectively.




4.7.2. Quantitative Results


Our method is compared with the state-of-the-art methods such as Bicubic [48], neighbour embedding based method NE+NNLS [3], adjusted anchored neighborhood regression A+ [49], and deep learning based methods SRCNN [10], VDSR [37], and LGCNet [47]. We measure PSNR and SSIM on the luminance channel. Table 5 shows the quantitative evaluation results of several methods for   × 2  ,   × 3   and   × 4   SR. DMCN outperforms all these methods with the highest PSNR and SSIM.




4.7.3. Restored Image Quality


Except for quantitative results, the visual comparisons are shown in Figure 16, Figure 17 and Figure 18. Viewing the whole picture, we observe that our method accurately reconstruct clear images. When zoom in the yellow window, our method successfully reconstruct the detailed textures, shapes and edges.






5. Conclusions


In this paper, we have proposed a novel deep memory connected neural network (DMCN) for remote sensing image restoration. DMCN is a deep network with large receptive field as well as good reconstruction capability. We use memory connections to combine image detail with global information. To further reduce the computational complexity and memory footprint, we propose Downsample Units to shrink the spatial size of feature map. DMCN can achieve high-quality remote sensing image super-resolution and image denoising for specific or blind noise level. Our model is trained and tested on three benchmark datasets with various spatial resolution. Experiments show that DMCN achieves robust results and outperforms the current state-of-the-art by a large margin regarding visual quality and accuracy.



Although the proposed approach results are encouraging as a novel restoration model in remote sensing, the method still has some limitations. Though the network can deal with images measuring 256 × 256 in 0.006 s on GPUs, when dealing with large quantity of dataset, the network ability is still limited by computational complexity. Besides, when training the network, we need to use corrupted observation as well as the clean signals. However, the clean images are usually unobserved in the real world. Specifically, our future work will focus on the following aspects: (1) further shrinking the network computational complexity and maintain good performance by some operations on network width, depth, and filter size; (2) learning to turn corrupted images into clean images by only looking at observed images.







Author Contributions


W.X. and D.L. conceived and designed the experiments; W.X. performed the experiments; W.X. analyzed the data; G.X., X.S., Y.W. (Yang Wang), and Y.W. (Yirong Wu) contributed materials; W.X. wrote the paper. Y.W. (Yang Wang), and Y.W. (Yirong Wu) supervised the study and reviewed this paper.




Funding


This research received no external funding




Acknowledgments


Our code is available at https://github.com/wenjiaXu/Optical-RemoteSensing-Image-Resolution.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Haut, J.M.; Fernandez-Beltran, R.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Pla, F. A New Deep Generative Network for Unsupervised Remote Sensing Single-Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]

	



Huang, Z.; Zhang, Y.; Li, Q.; Zhang, T.; Sang, N.; Hong, H. Progressive Dual-Domain Filter for Enhancing and Denoising Optical Remote-Sensing Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 759–763. [Google Scholar] [CrossRef]

	



Chang, H.; Yeung, D.Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004; Volume 1, p. I. [Google Scholar]

	



Freeman, W.T.; Jones, T.R.; Pasztor, E.C. Example-based super-resolution. IEEE Comput. Gr. Appl. 2002, 22, 56–65. [Google Scholar] [CrossRef][Green Version]

	



Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]

	



Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]

	



Dong, W.; Zhang, L.; Shi, G.; Wu, X. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 2011, 20, 1838–1857. [Google Scholar] [CrossRef] [PubMed]

	



Yair, N.; Michaeli, T. Multi-Scale Weighted Nuclear Norm Image Restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–21 June 2018; pp. 3165–3174. [Google Scholar]

	



Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]

	



Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar]

	



Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]

	



Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]

	



Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv, 2015; arXiv:1502.03167. [Google Scholar]

	



Haris, M.; Shakhnarovich, G.; Ukita, N. Deep backprojection networks for super-resolution. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Beijing, China, 20 August 2018. [Google Scholar]

	



Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]

	



Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA, 21–26 July 2017; Volume 1, p. 4. [Google Scholar]

	



Lefkimmiatis, S. Universal Denoising Networks: A Novel CNN Architecture for Image Denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3204–3213. [Google Scholar]

	



Chen, J.; Chen, J.; Chao, H.; Yang, M. Image Blind Denoising With Generative Adversarial Network Based Noise Modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3155–3164. [Google Scholar]

	



Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]

	



He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]

	



He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1026–1034. [Google Scholar]

	



Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv:1412.6980. [Google Scholar]

	



Xu, S.; Zhou, Y.; Xiang, H.; Li, S. Remote Sensing Image Denoising Using Patch Grouping-Based Nonlocal Means Algorithm. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2275–2279. [Google Scholar] [CrossRef]

	



Kwan, C.; Zhou, J. Method for Image Denoising. Patent 9,159,121, 13 October 2015. [Google Scholar]

	



Chen, Y.; Guo, Y.; Wang, Y.; Wang, D.; Peng, C.; He, G. Denoising of hyperspectral images using nonconvex low rank matrix approximation. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5366–5380. [Google Scholar] [CrossRef]

	



Fan, Y.R.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Fan, S. Multispectral Image Denoising via Nonlocal Multitask Sparse Learning. Remote Sens. 2018, 10, 116. [Google Scholar] [CrossRef]

	



Loncan, L.; Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al. Hyperspectral pansharpening: A review. arXiv, 2015; arXiv:1504.04531. [Google Scholar] [CrossRef]

	



Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]

	



Kwan, C.; Choi, J.; Chan, S.; Zhou, J.; Budavari, B. A super-resolution and fusion approach to enhancing hyperspectral images. Remote Sens. 2018, 10, 1416. [Google Scholar] [CrossRef]

	



Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103. [Google Scholar]

	



Jain, V.; Seung, S. Natural image denoising with convolutional networks. In Proceedings of the 21st International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–11 December 2008; pp. 769–776. [Google Scholar]

	



Chen, Y.; Pock, T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1256–1272. [Google Scholar] [CrossRef] [PubMed]

	



Mildenhall, B.; Barron, J.T.; Chen, J.; Sharlet, D.; Ng, R.; Carroll, R. Burst Denoising with Kernel Prediction Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2502–2510. [Google Scholar]

	



Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration without Clean Data. arXiv, 2018; arXiv:1803.04189. [Google Scholar]

	



Putzky, P.; Welling, M. Recurrent inference machines for solving inverse problems. arXiv, 2017; arXiv:1706.04008. [Google Scholar]

	



Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 391–407. [Google Scholar]

	



Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1646–1654. [Google Scholar]

	



Yuan, Y.; Zheng, X.; Lu, X. Hyperspectral image superresolution by transfer learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1963–1974. [Google Scholar] [CrossRef]

	



Qu, Y.; Qi, H.; Kwan, C. Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2511–2520. [Google Scholar]

	



Shocher, A.; Cohen, N.; Irani, M. Zero-Shot super-resolution using deep internal learning. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Beijing, China, 20 August 2018. [Google Scholar]

	



Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the CVPR, Honolulu, HI, USA, 22–25 July 2017; Volume 2, p. 4. [Google Scholar]

	



Sajjadi, M.S.; Vemulapalli, R.; Brown, M. Frame-Recurrent Video Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6626–6634. [Google Scholar]

	



Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]

	



Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing And Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]

	



Newell, A.; Yang, K.; Deng, J. Stacked hourglass networks for human pose estimation. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 483–499. [Google Scholar]

	



Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference On Advances in Geographic Information Systems, San Jose, CA, UAS, 3–5 November 2010; pp. 270–279. [Google Scholar]

	



Lei, S.; Shi, Z.; Zou, Z. Super-Resolution for Remote Sensing Images via Local-Global Combined Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1243–1247. [Google Scholar] [CrossRef]

	



Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef][Green Version]

	



Timofte, R.; De Smet, V.; Van Gool, L. A+: Adjusted anchored neighborhood regression for fast super-resolution. In Proceedings of the Asian Conference on Computer Vision, Singapore, 1–5 November 2014; pp. 111–126. [Google Scholar]








[image: Remotesensing 10 01893 g001 550] 





Figure 1. The   × 3   super-resolution results of our method (DMCN) compared with   × 3   bicubic image. The denoising results of DMCN, compared to a noisy image with Gaussian noise level   σ = 45  . 
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Figure 2. The comparison of remote sensing images and ordinary images. The remote sensing images are randomly selected from NWPU-RESISC45 [19] dataset. The ordinary images are randomly selected from a Set12 dataset. 
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Figure 3. The architecture of DMCN is symmetrical as a whole. The structure of Basic Block and the Upsample Block is shown in Figure 4. 
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Figure 4. The structure of Basic Block and UpsampleBlock. Conv represents a convolutional layer. BN denotes Batch Normalization. PixelShuffle is the operation mentioned in [43]. 
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Figure 5. The comparison of ReLU and PReLU. 
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Figure 6. Examples of images in three datasets. UCMERCED dataset (first line) contains 21 land-use image classes such as river, forest, airplane and buildings. NWPU-RESISC45 dataset (second line) contains 45 land-use image classes such as beach, residential, mountain and storage tank. GaoFen1 dataset (third line) contains numerous images of city area. 






Figure 6. Examples of images in three datasets. UCMERCED dataset (first line) contains 21 land-use image classes such as river, forest, airplane and buildings. NWPU-RESISC45 dataset (second line) contains 45 land-use image classes such as beach, residential, mountain and storage tank. GaoFen1 dataset (third line) contains numerous images of city area.



[image: Remotesensing 10 01893 g006]







[image: Remotesensing 10 01893 g007 550] 





Figure 7. PSNR (dB) results of networks with different combination of M and B. The experiments are performed on denoising tasks on UCMERCED dataset with   σ = 25  . M is the number of DownsampleUnits and UpsampleUnits. B is the number of Bisic Blocks in every unit. 
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Figure 8. The ablation study of memory connection. The red line is the PSNR of DMCN, while the black line is the PSNR of bicubic. Green line represents network without global memory connections, while blue line represents network without local memory connections. If we remove all the connections, the network cannot converge. The experiment is performed on super-resolution tasks on UCMERCED dataset with upscale factor 2. 
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Figure 9. PSNR (dB) results of networks with PReLU (orange line), or without PReLU (blue line). Time means the average time when processing an image measuring   256 × 256  . 
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Figure 10. PSNR (dB) results of networks with BN (blue line) or without BN (red line and green line). Time means the average time of processing an image measuring   256 × 256  . 
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Figure 11. Average PSNR improvements of DnCNN-S, DnCNN-B, DMCN-S and DMCN-B over BM3D. The results are evaluated on the gray UCMERCED dataset. 
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Figure 12. Representative image in seven image classes of Table 4. 
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Figure 13. Denoising results of “Runway82” (UCMERCED) with noise level   σ = 25  . BM3D ignored some cracks on the runway. DnCNN lost the spot on the upper right corner of the white block area. Only DMCN learns the precise mapping from noisy image to the clean one. 
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Figure 14. Denoising results of “Airplane079” (NWPU-RESISC45) with noise level   σ = 35  . The result of BM3D is smoothed, and the outline of the plane is unclear. DnCNN lost some useful information such as the engine on the wing. DMCN recover these details and gets images similar to the ground truth. 
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Figure 15. Denoising results of “Farmland028” (GaoFen1) with noise level   σ = 45  . In this image, BM3D cannot distinguish those stripes, and DnCNN produces some curved stipes. Only DMCN produces stright and clear stripes. 
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Figure 16. Super-resolution results of “City163” (GaoFen1) with scale factor ×3. The stripe in the ground truth is also observed in our result, while it is not distinguished in other results. 
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Figure 17. Super-resolution results of “airplane327” (NWPU-RESISC45) with scale factor ×3. The airplane in our result has clear edges and more detailed information. 
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Figure 18. Super-resolution results of “meadow683” (NWPU-RESISC45) with scale factor ×4. The outline of the car is distinct in the result of DMCN, while in other works the car is very blurry. 
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Table 1. PSNR of DMCN with network width   32 , 64 , 128 ,   and 256. Time means the average time when processing an image measuring   256 × 256  .
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	Network Width
	32
	64
	128
	256





	time(s)
	0.005155
	0.006224
	0.007811
	0.008375



	PSNR (dB)
	29.9917
	30.0554
	29.9951
	29.9360
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Table 2. Evaluate the effect of Downsample Unit and Upsample Unit. Dis_D_U represents network without them. Memory Usage is measured in training process. Time means the average time processing an image measuring   256 × 256  . The experiment is performed on super-resolution tasks on UCMERCED dataset with upscale factor 2.






Table 2. Evaluate the effect of Downsample Unit and Upsample Unit. Dis_D_U represents network without them. Memory Usage is measured in training process. Time means the average time processing an image measuring   256 × 256  . The experiment is performed on super-resolution tasks on UCMERCED dataset with upscale factor 2.





	Model
	Memory (MB)
	Time (Sec)
	PSNR





	Dis_D_U
	8265
	0.037
	34.17



	DMCN (ours)
	3849
	0.012
	34.19
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Table 3. Evaluation of state-of-the-art denoising methods on three remote sensing datasets. We calculate the average PSNR/SSIM for noise level   σ = 15 −​ 55  . The bold numbers denote the best performance.






Table 3. Evaluation of state-of-the-art denoising methods on three remote sensing datasets. We calculate the average PSNR/SSIM for noise level   σ = 15 −​ 55  . The bold numbers denote the best performance.





	
Dataset

	
×

	
Noisy

	
BM3D [5]

	
DnCNN-B [11]

	
DnCNN-S [11]

	
DMCN-B (Ours)

	
DMCN-S (Ours)




	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM






	
GF

	
15

	
24.75/0.7942

	
30.03/0.9237

	
28.85/0.9082

	
30.57/0.9439

	
30.55/0.9446

	
30.60/0.9445




	
25

	
20.49/0.7658

	
27.33/0.8852

	
28.01/0.9053

	
27.99/0.9049

	
28.09/0.9077

	
28.10/0.9069




	
35

	
17.79/0.6221

	
25.58/0.8477

	
23.07/0.7448

	
26.37/0.8689

	
26.52/0.8731

	
26.52/0.8730




	
45

	
15.86/0.4243

	
24.08/0.8221

	
18.79/0.5483

	
25.19/0.8356

	
25.39/0.8409

	
25.36/0.8413




	
55

	
14.38/0.3884

	
22.94/0.7939

	
16.35/0.4301

	
24.29/0.8056

	
24.50/0.8121

	
24.46/0.8123




	
UC [46]

	
15

	
24.68/0.7928

	
31.80/0.9027

	
32.17/0.9427

	
32.30/0.9450

	
32.18/0.9435

	
32.38/0.9672




	
25

	
20.32/0.7530

	
29.37/0.8932

	
29.88/0.9116

	
29.94/0.9132

	
30.01/0.9147

	
30.07/0.9155




	
35

	
17.52/0.7094

	
27.81/0.8659

	
28.42/0.8853

	
28.45/0.8863

	
28.61/0.8896

	
28.64/0.9031




	
45

	
15.50/0.6825

	
26.49/0.8504

	
27.33/0.8614

	
27.36/0.8627

	
27.54/0.8663

	
27.59/0.8649




	
55

	
13.96/0.6177

	
25.47/0.8228

	
26.41/0.8390

	
26.49/0.8399

	
26.71/0.8467

	
26.73/0.8597




	
NW [19]

	
15

	
24.68/0.8059

	
31.44/0.9339

	
31.80/0.9332

	
31.91/0.9353

	
31.84/0.9351

	
31.98/0.9349




	
25

	
20.33/0.7604

	
28.99/0.8827

	
29.49/0.8924

	
29.56/0.8943

	
29.60/0.8962

	
29.64/0.8961




	
35

	
17.55/0.7139

	
27.50/0.8539

	
28.07/0.8575

	
28.13/0.8596

	
28.23/0.8626

	
28.23/0.8633




	
45

	
15.57/0.6855

	
26.28/0.8255

	
27.07/0.8277

	
27.12/0.8305

	
27.22/0.8325

	
27.24/0.8337




	
55

	
14.06/0.6272

	
25.35/0.8004

	
26.27/0.8040

	
26.33/0.8048

	
26.47/0.8085

	
26.49/0.8102
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Table 4. The PSNR results of seven image classes in NWPU-RESISC45 dataset. DnCNN-BM3D represents the PSNR improvement of DnCNN-S over BM3D. DMCN-BM3D represents the PSNR improvement of DMCN-S over BM3D. The bold numbers represent Images classes with small PSNR differences.






Table 4. The PSNR results of seven image classes in NWPU-RESISC45 dataset. DnCNN-BM3D represents the PSNR improvement of DnCNN-S over BM3D. DMCN-BM3D represents the PSNR improvement of DMCN-S over BM3D. The bold numbers represent Images classes with small PSNR differences.





	Image Class
	Airplane
	Basketball-Court
	Farmland
	Residential
	Industrial
	Meadow
	Stadium





	DMCN-BM3D
	0.9248
	1.1370
	0.5794
	1.1951
	0.2366
	0.2386
	1.0050



	DnCNN-BM3D
	0.7196
	0.9766
	0.3044
	1.0714
	−0.0581
	0.2031
	0.8294
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Table 5. Evaluation of the state-of-the-art SR methods on remote sensing datasets NWPU-RESISC45, UC Merced, and GaoFen1. We calculate the average PSNR/SSIM for scale factor   × 2  ,   × 3   and   × 4  . The bold number denotes the best performance.






Table 5. Evaluation of the state-of-the-art SR methods on remote sensing datasets NWPU-RESISC45, UC Merced, and GaoFen1. We calculate the average PSNR/SSIM for scale factor   × 2  ,   × 3   and   × 4  . The bold number denotes the best performance.





	
Dataset

	
Scale

	
Bicubic [48]

	
A + [49]

	
NE + NNLS [3]

	
SRCNN [10]

	
VDSR [37]

	
LGCNet [47]

	
DMCN (Ours)




	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM

	
PSNR/SSIM






	
NWPU-RESISC45

	
×2

	
30.77/0.8172

	
30.86/0.8223

	
30.94/0.8191

	
29.37/0.7598

	
32.77/0.8778

	
32.76/0.8770

	
33.07/0.8842




	
×3

	
27.86/0.6405

	
27.92/0.6493

	
27.98/0.6526

	
27.94/0.6545

	
29.28/0.7165

	
29.21/0.7163

	
29.44/0.7251




	
×4

	
26.30/0.4970

	
26.41/0.4996

	
26.47/0.5057

	
26.52/0.5252

	
27.30/0.5549

	
27.32/0.5633

	
27.52/0.5858




	
UC Merced

	
×2

	
31.08/0.8316

	
31.17/ 0.8482

	
31.32/ 0.8530

	
31.06/0.8428

	
33.79/0.8909

	
33.80/0.8817

	
34.19/0.8941




	
×3

	
27.59/0.6557

	
27.74/0.6763

	
27.99/0.6898

	
28.24/0.6998

	
29.63/0.7359

	
29.62/0.7350

	
29.86/0.7454




	
×4

	
25.72/0.5800

	
25.91/0.5512

	
25.98/0.5547

	
26.07/0.5439

	
27.31/0.5850

	
27.29/0.5763

	
27.57/0.6150




	
GaoFen1

	
×2

	
26.88/0.8585

	
26.93/0.8681

	
27.09/0.8896

	
26.98/0.8727

	
29.23/0.9155

	
29.14/0.9084

	
29.26/0.9250




	
×3

	
23.30/0.7263

	
23.56/0.7276

	
23.79/ 0.7261

	
23.83/0.7264

	
24.65/0.7631

	
24.63/0.7602

	
24.76/0.7658




	
×4

	
21.48/0.5039

	
21.60/ 0.5244

	
21.74/0.5470

	
21.78/0.5474

	
22.31/0.5879

	
22.23/0.5834

	
22.38/0.6031












© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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