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Abstract: Accurate precipitation data is crucial in many applications such as hydrology, meteorology,
and ecology. Compared with ground observations, satellite-based precipitation estimates can provide
much more spatial information to characterize precipitation. In this study, the satellite-based
precipitation products of Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
(IMERG) and Tropical Rainfall Measurement Mission (TRMM) Multisatellite Precipitation Analysis
(TMPA) were firstly evaluated over the Tibetan Plateau (TP) in 2015 against ground observations at
both annual and monthly scales. Secondly, random forest algorithm was used to obtain the annual
downscaled results (~1 km) based on IMERG and TMPA data and the downscaled results were
examined against rain gauge data. Thirdly, a disaggregation algorithm was used to obtain the monthly
downscaled results based on those at annual scale. The results indicated that (1) IMERG performed
better than TMPA at both annual and monthly scales; (2) IMERG had few anomalies while TMPA
displayed significant numbers of outliers in central and western parts of the TP; (3) random forest
was a promising algorithm in acquiring high resolution precipitation data with improved accuracy;
(4) the downscaled results based on IMERG had better performances than those based on TMPA.
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1. Introduction

Precipitation plays a significant role in global water cycles and energy exchanges [1].
Accurate precipitation information is highly desirable in various scientific and application fields
such as water resource management, weather prediction, as well as disaster monitoring and
control [2]. Currently, there are three kinds of independent instruments to obtaining precipitation data,
including gauges, weather radar and satellite-based sensors [3]. Though conventional point-based
measurements from rain gauges could provide relatively accurate rainfall values at the point scale,
they are not suitable for providing continuous spatial precipitation distributions [4]. Weather radar can
obtain rainfall data with finer spatiotemporal resolutions. However, weather radar has disadvantages
due to errors from various sources such as beam blockage in complex terrain and range degradation
issues [5]. While satellite-based remote sensing has great potentials to provide comprehensive estimates
of precipitation globally with reasonable spatiotemporal resolutions and accuracy.

Several projects, including the Global Precipitation Climatology Project (GPCP) [6–8], the Global
Satellite Mapping of Precipitation (GsMaP) project [9], and the Tropical Rainfall Measuring Mission
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(TRMM) [10–12], had calculated satellite-based precipitation estimates and published various
precipitation products with different temporal and spatial resolutions for free, such as the TRMM
Multisatellite Precipitation Analysis (TMPA) data set [12]. The TRMM, carrying a signal-frequency
precipitation radar (PR; the Ku-band at 13.8 GHz) and a multichannel TRMM Microwave Imager
(TMI; frequencies range between 10 and 85.5 GHz), had provided a range of precipitation products
since 1997 [10] and intended to provide the ‘best’ satellite precipitation estimates [12]. TMPA data had
been widely applied in various fields, such as hydrological modeling [13], flood prediction [14] and
climatology [15], over the past two decades.

With the success of TRMM, the Global Precipitation Measurement (GPM) Core Observatory was
launched in February 2014 by a joint effort of the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA). The GPM Core Observatory carried a
dual-frequency precipitation radar (DPR; the Ku-band at 13.6 GHz and Ka-band at 35.5 GHz) and a
conical-scanning multichannel GPM Microwave Imager (GMI; frequencies range between 10 and 183 GHz).
Compared with TRMM’s instruments, GPM extended its sensor packages and could detect light and solid
precipitation more accurately than TRMM sensors [2,16]. Numerous studies had examined the accuracy
of GPM rainfall products. The performance of the Integrated Multi-satellitE Retrievals for GPM (IMERG)
and TMPA products were evaluated over mainland China at various spatiotemporal resolutions [17].
In southeast India, the accuracy of IMERG data were validated and compared with those of TMPA and
GsMaP data [18]. While in Far East Asia, the IMERG and TMAP data were employed to evaluate the
topographical and seasonal precipitation features applied [19]. These studies mainly demonstrated that
IMERG had a better ability to provide more accurate rainfall estimate data than TMPA data.

However, the spatial resolution of TMPA data was too coarse (0.25◦) and could not meet the demands
of some researches, especially at the regional and basin scales. As a result, numerous downscaling models
combining different environmental variables as auxiliary data had been explored to derive precipitation
estimates at 1 km scale. To downscale TMPA data, the exponential regression model between TMPA and
the normalized difference vegetation index (NDVI) was firstly applied in [20]. Based on this downscaling
method, a statistical regression downscaling algorithm, introducing the NDVI and the digital elevation
model (DEM), was developed [21]. The regression kriging method was also found to be feasible to
downscale TMPA data [22]. While in [23], a downscaling algorithm namely geographically weighted
regression (GWR) was introduced, which considered a regional regression model. Recently, a spatial data
mining algorithm which introduced a series of land surface variables (NDVI, land surface temperature
(LST) for both day (LST-d) and night (LST-n), DEM, etc.) was proposed [24,25]. While the resolution of
IMERG was still too coarse (0.1◦), and it was important to downscale IMERG data into a finer resolution
(~1 km) for applications at the regional or basin scales. Many studies had evaluated the quality and
accuracy of IMERG data, but few focused on the downscaling performance of IMERG.

Random forest (RF) is a nonparametric statistical regression algorithm developed from classification
and regression tree (CART). In this study, the IMERG and TMPA data were explored to obtain downscaled
results at the 1 km scale based on the nonparametric regression models constructed using the RF
model. Moreover, both the original satellite-based precipitation estimates (TMPA and IMERG) and
the downscaled results were furtherly analyzed and compared to reveal their differences at different
spatial scales.

The objectives of this study were as follows: (1) to compare the quality of TMPA and IMERG
over the TP at both annual and monthly temporal scales against ground observations; (2) to obtain
downscaled results (~1 km) based on TMPA and IMERG data, respectively; and (3) to generate the
monthly downscaled results based on those at annual scale.
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2. Materials and Methods

2.1. Study Area

The TP is located in southwestern China (Figure 1) between 73◦–104◦ E and 26◦–40◦N. It is the
highest plateau on Earth. The extent of the TP is approximately 2.5 million km2, with an average elevation
of >4000 m above mean sea level. Because of the complex topography and extremely high elevation,
the precipitation on the TP exhibits substantial spatiotemporal variability [26]. Spatially, much of the
precipitation occurs in the central and southern parts of the plateau, with little in the western and northern
parts. Temporally, the amount of rainfall differs seasonally. Spring and summer receive approximately
90% of the annual precipitation because of the effects of the Indian monsoon, which brings substantial
water vapor from the sea. In winter, the westerlies influence the western part of the plateau, resulting in
little rainfall. The TP contains the upstream reaches of the five major Asian rivers, including the Yellow,
Brahmaputra, Ganges, Indus and Yangtze Rivers [27,28], which supply water resources for more than
1.4 billion people [29].
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Figure 1. Spatial distribution of gauge stations and the Digital Elevation Model (DEM) over the Tibetan
Plateau (TP).

2.2. Materials

2.2.1. Rain Gauges

The rain gauge data used in this study were provided by the Third Pole Environment Database
(http://en.tpedatabase.cn/portal/MetaDataInfo.jsp?MetaDataId=249472). This dataset provided daily
precipitation data from 1979 to 2015 for the TP and its surroundings. We obtained precipitation records
from 113 rain gauge stations which distributed unevenly across the TP (Figure 1). Daily precipitation
records from January 2015 through December 2015 were used in this study. The monthly and annual
precipitation volume for each station were calculated by accumulating the daily precipitation.

2.2.2. TRMM Satellite Precipitation Dataset

The TRMM was launched in November 1997 through cooperation between NASA and JAXA to
monitor and investigate tropical and subtropical rainfall system. The TMPA employed inputs from two
different types of satellite sensors. The primary data source was from precipitation-related microwave
sensors, including the TMI, Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave
Imager/Sounder (SSMIS), Advanced Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E), the Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounders

http://en.tpedatabase.cn/portal/MetaDataInfo.jsp?MetaDataId=249472
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(MHS). Additionally, the second major data source for the TMPA was the geo-infrared (IR) data.
Precipitation information collected from these sensors were combined to generate precipitation estimates.
The TMPA 3B43 Version 7 monthly precipitation products were published for free at a spatial resolution of
0.25◦ for latitudes from 50◦ N–50◦ S worldwide [12]. The TMPA 3B43 V7 spanning from January 2015 to
December 2015 were employed in this study and it were obtained from the Precipitation Measurement
Mission (PMM) website (http://pmm.nasa.gov/data-access/downloads/trmm). Annual precipitation
was obtained by accumulating monthly TMPA precipitation in the year.

2.2.3. IMERG Satellite Precipitation Dataset

GPM is an international project that launched on 27 February 2014 by a joint effort of NASA and
JAXA. It was designed to provide a new generation of global precipitation observations. IMERG is
the level 3 multi-satellite precipitation algorithm of GPM, which combined precipitation information
obtained from all constellation microwave sensors, infrared-based observations and monthly gauge
precipitation data [2]. IMERG employs the 2014 version of the Goddard Profiling Algorithm (GPROF2014)
to compute precipitation estimates from all passive microwave (PMW) sensors onboard GPM satellites
constellation which was one of the significant improvements compared with TMPA (GPROF2010) [16,30].
The GPM-3IMERGM ‘Final’ V05B product (hereafter referred as IMERG), which estimated global monthly
precipitation at spatial resolution of 0.1◦, were used in this study. Since IMERG data are available from
March 2014, the first year with full months (i.e., 2015) was selected. IMERG data could be downloaded at
http://pmm.nasa.gov/data-access/downloads/gpm. Furthermore, annual IMERG precipitation was
obtained by summing up monthly precipitation in the year.

2.2.4. NDVI Datasets

The NDVI is typically used to determine the vegetation productivity and distribution [31,32],
and is correlated well with precipitation at annual temporal scale [25,33,34]. The MOD13A3 monthly
NDVI product from January 2015 to December 2015 with a spatial resolution of 1 km was employed in this
study. The MOD13A3 was derived from atmospherically corrected reflectance in the red and near-infrared
wavebands of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite,
which can be downloaded at https://ladsweb.modaps.eosdis.nasa.gov/search/. Annual NDVI value
was obtained by averaging monthly NDVI in the year.

2.2.5. Land Surface Temperature Datasets

Land surface temperature datasets were collected through MODIS sensors aboard the Terra and
Aqua satellites. MODIS can provide the global land surface temperature records of day and night with
an error-controlled between −1 K and 1 K. MODIS11A2 products with a spatial resolution of 1 km and
an eight-day temporal resolution were obtained at (https://lpdaac.usgs.gov/dataset_discovery/modi
s/modis_products_table/mod11a2_v006). In 2015, there were forty-five 8-day periods, we calculated
the averaged day and night land surface temperatures over the TP to determine the year-round land
surface temperature for day (LST-d) and night (LST-n).

2.2.6. Topography Datasets

The Shuttle Radar Topography Mission (SRTM) is an international project spearheaded by the National
Geospatial-Intelligence Agency (NGA) and (NASA), and it was launched in February 2000. The SRTM
project provided high-resolution DEM data with a spatial coverage ranging from 56◦S to 60◦N and a spatial
resolution of one arc second (~30 m). In this study, the dataset with three arcs second (approximately 90 m)
were adopted as the basic topographical data (http://srtm.csi.cgiar.org). Other topographical
parameters, including slope [35], aspect [36], curvature [37], radiation [38], slope length and steepness
(LS) [39], the topographic wetness index (TWI) [40], the multiresolution valley bottom flatness index
(MrVBF) [41] and the terrain ruggedness index [42], were derived from DEM data. Curvature, radiation,
and ruggedness were abbreviated as Curv, Radi, and Rugg, respectively.

http://pmm.nasa.gov/data-access/downloads/trmm
http://pmm.nasa.gov/data-access/downloads/gpm
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2_v006
http://srtm.csi.cgiar.org
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2.3. Methods

2.3.1. Random Forest

RF was developed as an extension of the CART to improve the accuracy and stability of the CART
model [43]. To perform a regression in CART, the model searches every distinct value of every predictor
in the entire data set (S) to find the optimal predictor and split values that are used to partition the
data into two groups (S1 and S2), such that the overall sum of squared error (SSE) is minimized [44]:

SSE = ∑i∈S1
(yi − y1)

2 + ∑i∈S2
(yi − y2)

2 (1)

where y1 and y2 represent the averages of the training set outcomes of groups S1 and S2, respectively.
The process continues within sets S1 and S2 until the number of samples in the splits falls below
some threshold.

To reduce the variance of the estimates, bagging (short for bootstrap aggregation) strategy was
proposed. The bagging method generates m bootstrap samples of the original data and trains the tree
model for each bootstrap sample. Each model is then used to generate a prediction for a new sample,
and these m predictions are averaged to obtain the bagged model’s prediction. However, the trees in
bagging are not completely independent of each other because of the underlying relationship between
the predictors and responses. The trees from different bootstrap samples may have similar structures
that prevent bagging from optimally reducing the variance of the predicted values. Random Forest
was developed to reduce the tree correlation by randomly selecting predictors at each split.

The main steps of the random forest algorithm were as follows.

(1) To randomly generate ntree bootstrap samples from the original dataset. The elements not selected
are referred to as ‘out of bag’ (OOB) samples.

(2) For each split, to randomly select mtry predictors of the original predictors and choose the best
predictor among the mtry predictors to partition the dataset. Additionally, mtry is the tuning
parameter of the model.

(3) To predict new data (OOB elements) by averaging predictions of the ntree trees.
(4) The OOB samples were used to estimate the prediction error. The OOB estimate of the error

rate [45] was calculated as follows:

MSEoob =
1
N

N

∑
i=1

(yi − f̂oob[Xi])
2

(2)

where f̂oob[Xi] represents the observation of the ith OOB prediction.

The random forest can provide a measurement of variable’s importance. One of the approaches
is to look at the increase in the OOB estimate error when the specific predictor variable is randomly
permuted and other predictors are kept unchanged. The more the error increases, the more important
the variable is. These variable importance values are used to rank the predictors in terms of their
relative contribution to the model. The random forest model was generated using the package
randomforest in R (https://cran.r-project.org/web/packages/randomForest/).

2.3.2. Main Downscaling Steps at the Annual Scale

RF was used to downscale the TMPA and IMERG data over the TP at an annual scale. The main
steps in the downscaling process were as follows:

(1) Sum the TMPA and IMERG monthly precipitation to annual precipitation (P0.25◦
TMPA, P0.1◦

IMERG).
(2) Aggregate land surface variables with their original resolutions to those at the resolutions of 0.1◦

and 0.25◦, respectively.

https://cran.r-project.org/web/packages/randomForest/
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(3) Establish the random forest model RFTMPA between land surface variables at 0.25◦ and P0.25◦
TMPA,

and establish the random forest model RFIMEGR between land surface variables at 0.1◦ and P0.1◦
IMERG.

(4) Estimate annual precipitation at 0.25◦ using RFTMPA, and estimate annual precipitation at 0.1◦

using RFIMERG.
(5) Map the residuals at 0.25◦ (P0.25◦

resi ) by computing the difference between P0.25◦
TMPA and the estimated

annual precipitation at 0.25◦. Similarly, map the residuals at 0.1◦ (P0.1◦
resi ) by computing the

difference between P0.1◦
IMERG and the estimated annual precipitation at 0.1◦.

(6) Obtain the residuals (P0.25◦
resi and P0.1◦

resi ) at 1 km from those at 0.25◦ using a simple spline tension
interpolator. As the residual data were regularly spaced, the spline interpolation was typically
used for this type of data.

(7) Generate the annual precipitation estimates, termed as the downscaled results before residual
corrections, at 1 km using RFTMPA and RFIMEGR, respectively, in combination with the land
surface variables.

(8) Add the residuals at 1 km obtained at step (6) and the downscaled results before residual corrections
at 1 km obtained at step (7) to finally obtain the downscaled results after residual corrections.

The steps used for downscaling are shown in Figure 2.

Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 21 

 

(3) Establish the random forest model 𝑅𝐹  between land surface variables at 0.25° and 𝑃 . ° , 
and establish the random forest model 𝑅𝐹  between land surface variables at 0.1° and 𝑃 . ° . 

(4) Estimate annual precipitation at 0.25° using 𝑅𝐹 , and estimate annual precipitation at 0.1° 
using 𝑅𝐹 . 

(5) Map the residuals at 0.25 °  ( 𝑃 . ° ) by computing the difference between 𝑃 . °  and the 
estimated annual precipitation at 0.25°. Similarly, map the residuals at 0.1° (𝑃 . °) by computing 
the difference between 𝑃 . °  and the estimated annual precipitation at 0.1°. 

(6) Obtain the residuals (𝑃 . ° and 𝑃 . °) at 1 km from those at 0.25° using a simple spline tension 
interpolator. As the residual data were regularly spaced, the spline interpolation was typically 
used for this type of data.  

(7) Generate the annual precipitation estimates, termed as the downscaled results before residual 
corrections, at 1 km using 𝑅𝐹  and 𝑅𝐹 , respectively, in combination with the land 
surface variables. 

(8) Add the residuals at 1 km obtained at step (6) and the downscaled results before residual 
corrections at 1 km obtained at step (7) to finally obtain the downscaled results after residual 
corrections. 

The steps used for downscaling are shown in Figure 2. 

 

Figure 2. The flow chart of the random forest-based downscaling algorithm used in the study. 

2.3.3. Disaggregation from Annual Precipitation to Monthly Precipitation 

Considering the time lag of the response of the NDVI to precipitation [46], we used a 
disaggregation algorithm to obtain the monthly downscaled results. The disaggregation algorithm 
was based on the assumption that the monthly ratios are as defined in Equation (3) [47]. 𝑅𝑎𝑡𝑖𝑜 = 𝑂𝑟𝑔𝑆𝑎𝑡_𝑃𝑟𝑒∑ 𝑂𝑟𝑔𝑆𝑎𝑡_𝑃𝑟𝑒  (3)

The numerator 𝑂𝑟𝑔𝑆𝑎𝑡_𝑃𝑟𝑒  represents the precipitation that occurs in the ith month estimated 
from the original satellite precipitation product, and the denominator represents the annual 
precipitation. Note that the spatial resolution of 𝑅𝑎𝑡𝑖𝑜  is the same as that of the original satellite 
precipitation data, and the ratios were further interpolated by spline interpolation to 1 km, which 
was consistent with the downscaled annual results. The monthly downscaled results can then be 
acquired by multiplying the monthly ratios (~1 km) by the annually downscaled results. 

Figure 2. The flow chart of the random forest-based downscaling algorithm used in the study.

2.3.3. Disaggregation from Annual Precipitation to Monthly Precipitation

Considering the time lag of the response of the NDVI to precipitation [46], we used a
disaggregation algorithm to obtain the monthly downscaled results. The disaggregation algorithm
was based on the assumption that the monthly ratios are as defined in Equation (3) [47].

Ratioi =
OrgSat_Prei

∑12
i=1 OrgSat_Prei

(3)

The numerator OrgSat_Prei represents the precipitation that occurs in the ith month estimated
from the original satellite precipitation product, and the denominator represents the annual
precipitation. Note that the spatial resolution of Ratioi is the same as that of the original satellite
precipitation data, and the ratios were further interpolated by spline interpolation to 1 km, which was
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consistent with the downscaled annual results. The monthly downscaled results can then be acquired
by multiplying the monthly ratios (~1 km) by the annually downscaled results.

2.3.4. Validation

Validation statistics, including the coefficient of determination (R2), bias, the mean absolute error
(MAE) and the root mean square error (RMSE) were used to access the performance of the original
satellite-based precipitation products and the downscaled results against precipitation estimates observed
from rain gauges. The R2 values indicate the strength of the linear relationship between the precipitation
estimates and ground observations, ranging between 0 and 1 with an optimal value of 1. Bias denotes
the degree either over- or underestimated, with a perfect value of 0. Overestimation is represented as
positive bias indicating the satellite value is higher than gauge data. MAE shows the mean magnitude of
the errors and RMSE was used to represent the distribution of errors. Smaller values of MAE and RMSE
indicate more accurate and precise results. The perfect score for both the MAE and RMSE is 0.

MAE =
∑n

i=1 |Pi −Mi|
n

(4)

RMSE =

√
∑n

i=1 (Pi −Mi)
2

n
(5)

bias =
∑n

i=1 Pi

∑n
i=1 Mi

− 1 (6)

where Pi is the satellite precipitation measurement; Mi is the measured precipitation from rain gauge
stations; n is the total number of samples.

3. Results

3.1. Original Results and Validations Using Ground Observations at Annual and Monthly Scales

Figure 3a–c represented the annual precipitation maps derived from original TMPA,
resampled IMERG and original IMERG in the year 2015 over the TP, respectively. Over the region,
both TMPA and IMERG data, as well as the resampled IMERG, captured the typical southeast-northwest
decreasing precipitation patterns, which were consistent with the patterns measured by rain gauges
displayed in Figure 1. TMPA and IMERG patterns were close as they utilized similar sensors including
IR and PMW sensors, to retrieve precipitation. However, TMPA presented some exceptional values in
the western and northern parts of the TP relative to the neighboring pixels. These anomalies did not
appear in IMERG estimates resulting in more continuous precipitation trends.
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To compare the performance of the original TMPA data with resampled IMERG, as well as
the original IMERG data, we validated these products against ground observations from 113 rain
gauge stations on the TP in 2015. Figure 4a shown the scatterplot of the validation between ground
observations and the original TMPA data at 0.25◦ resolution. Figure 4b,c demonstrate the validations of
resampled IMERG data at 0.25◦ resolution and original IMERG data at 0.1◦ resolution, against ground
observations, respectively. Both satellite precipitation products generally overestimated precipitation
over the TP compared to ground observations. The original TMPA was the mostly overestimated
product compared to ground observations (R2 ~ 0.67, bias ~ 22.40%). IMERG shown improved accuracy
(R2 ~ 0.74, bias ~ 12.23%) at 0.1◦ resolution. The resampled IMERG data also outperformed the original
TMPA data, with R2 ~ 0.73 and bias ~ 12.40%, at the same spatial resolution of 0.25◦.
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performed better during the wet seasons and performed worse during the dry seasons. During dry 
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time which made the detection more complicated by PWM sensor. The performance of IMERG was 
slightly better than TMPA during the dry seasons with relatively higher values of R2 and lower values 
of bias, MAE and RMSE, respectively. One of the possible reasons for the improvements may 
attribute to the extended sensors that equipped on IMERG (DPR and GMI) than sensors equipped on 
TMPA (PR and TMI), leading to a more accurate detection of light and solid precipitation. Another 
likely reason to explain why IMERG performed better than TMPA during the dry season was that 
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GPROF2010. GPROF2014 was Bayesian in nature, and used “dynamic” detection threshold values, 
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Figure 4. Scatterplots of the validation between ground observations and (a) the original TMPA data at
a spatial resolution of 0.25◦; (b) the resampled IMERG data at a spatial resolution of 0.25◦; and (c) the
original IMERG data at a spatial resolution of 0.1◦, at the annual scale.

Figure 5 displayed the monthly mean precipitation from 113 rain gauges, the original TMPA,
resampled IMERG and the original IMERG, respectively. Both TMPA and IMERG successfully captured
the precipitation dynamics intra-annually, with heavy precipitation occurred at June, July, August and
September (referred as wet seasons), while little precipitation happened in November, December,
January and February (referred as dry seasons). IMERG estimates were better than TMPA estimates,
due to its values were closer to the ground measured precipitation amounts.
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Table 1 presented the statistical results at monthly scale. Both TMPA and IMERG products performed
better during the wet seasons and performed worse during the dry seasons. During dry seasons,
the volume of precipitation was lower, and the durations of the precipitation was shorter in time which
made the detection more complicated by PWM sensor. The performance of IMERG was slightly better
than TMPA during the dry seasons with relatively higher values of R2 and lower values of bias, MAE and
RMSE, respectively. One of the possible reasons for the improvements may attribute to the extended
sensors that equipped on IMERG (DPR and GMI) than sensors equipped on TMPA (PR and TMI),
leading to a more accurate detection of light and solid precipitation. Another likely reason to explain
why IMERG performed better than TMPA during the dry season was that the different PWM retrievals.
IMERG employed the GPROF2014 while TMPA employed GPROF2010. GPROF2014 was Bayesian
in nature, and used “dynamic” detection threshold values, compared with GPROF2010 of regression



Remote Sens. 2018, 10, 1883 10 of 20

and relative “static” detection threshold values. Therefore, GPROF2014 resulted in much less “false”
alarm. During wet seasons, both TMPA and IMERG corresponded well with ground observations
with R2 values approximately 0.70. IMERG was still more accurate with bias ~ 10%, MAE ~ 22 mm
and RMSE ~ 32 mm, than TMPA (bias ~ 20%, MAE ~ 25 mm, RMSE ~ 37 mm). Regrading to the
resampled IMERG data at 0.25◦ resolution, the statistical results were very close to those of the original
IMERG at 0.1◦ and thus provided more accurate precipitation estimates than TMPA at 0.25◦. Based on
these evaluations, we concluded that IMERG data were better than TMPA data in terms of accuracy,
with anomalies removed at the annual scale.

Table 1. Coefficients of determination (R2), bias, mean absolute error (MAE) and root mean square
error (RMSE) of the original TMPA data, the resampled IMERG data and the original IMERG data,
compared with ground observations at each month in 2015.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Original TMPA R2 0.57 0.56 0.48 0.51 0.53 0.67 0.68 0.67 0.74 0.48 0.37 0.39
Bias (%) 6.29 46.54 65.57 14.30 29.40 16.86 19.59 18.35 21.25 47.02 81.07 53.79

MAE (mm) 4.20 4.18 7.98 14.75 20.19 27.45 22.53 31.45 23.98 10.71 3.75 2.20
RMSE (mm) 10.21 6.55 14.48 22.42 28.00 37.89 32.01 50.42 31.06 15.41 5.64 3.53

Resampled IMERG R2 0.56 0.66 0.67 0.63 0.69 0.74 0.71 0.68 0.75 0.56 0.58 0.42
Bias (%) −13.02 19.78 32.75 −4.74 13.59 13.50 8.19 13.27 16.48 20.14 51.24 31.74

MAE (mm) 3.43 3.02 5.50 12.10 15.35 23.20 18.30 27.97 21.00 8.32 2.65 1.87
RMSE (mm) 9.96 5.00 9.84 19.60 19.79 30.67 27.30 42.45 28.00 11.27 3.50 3.20

Original IMERG R2 0.55 0.69 0.58 0.59 0.72 0.74 0.72 0.67 0.74 0.62 0.57 0.48
Bias (%) −12.53 17.59 38.85 −4.27 12.14 14.23 7.60 13.31 16.22 16.86 45.86 26.04

MAE(mm) 3.56 3.13 5.96 12.45 14.43 23.61 17.79 27.86 22.15 7.59 2.54 1.85
RMSE(mm) 10.10 5.32 12.97 20.72 18.70 31.25 26.47 43.01 28.22 10.62 3.43 3.59

3.2. Main Results in the Downscaling Procedure Using Random Forest

Ntree and mtry were the key parameters that affected the predictive performances of the RF model.
To determine the optimal selection of parameters, the OOB error rate, as defined in Equation (2),
was applied. The OOB error rate was an internal estimate of the predictive performances provided
by the bagging model. The values of OOB error usually correlated well with the assessment of the
predictive performance obtained from a cross-validation or test set. In addition, using OOB error rate
could decrease the computational time required to tune RF model.

The RF was protected from overfitting [43], the model could not be adversely affected if a large
number of trees were built for the forest. Figure 6a,b indicated that the OOB error in RFTMPA and
RFIMERG decreased not significantly when ntree increased from 900 to 1500. To balance the accuracy and
computational burden, 1000 was finally selected as the value of ntree for both RFTMPA and RFIMERG.
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Figure 6. Graphs of the variation of the ‘out of bag’ (OOB) error rate for (a) RFTMPA and (b) RFIMERG

at different ntree values. Note: OOB error denoted the ‘out of bag’ error provided by the bagging
model. RFTMPA and RFIMERG denoted the random forest models based on TMPA data and IMERG
data, respectively.
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To specify the mtry parameter for RFTMPA and RFIMERG, we tested five values of mtry that ranged from
2 to 10 and independently generated 1000 tree models at each mtry value. The boxplots of the OOB error
for RFTMPA and RFIMERG were presented in Figure 7a,b, respectively. The upper and lower edges of the
central box were the first and third quartiles (25% and 75%, respectively). The sign of band and circle inside
the box represented the median and average value of OOB error, respectively. For RFTMPA, the OOB error
decreased when the value of mtry increased from 2 to 6 and then increased with increasing values from 6
to 10. For RFIMERG, the OOB error decreased when mtry increased from 2 to 8. Therefore, a combination of
ntree = 1000 and mtry = 6 was applied to build the model and downscale the TMPA data, and ntree = 1000
and mtry = 8 was employed to build the model and downscale the IMERG data over the TP.
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RFIMERG denoted the random forest models based on TMPA data and IMERG data, respectively.

Figure 8a,b demonstrated the variable importance in RFTMPA and RFIMERG, respectively.
These indicated that NDVI, DEM, LST-d and LST-n were the main factors contributed to establish the
random forest models and that these factors influenced the spatial patterns and amount of precipitation
at annual scale. The spatial distribution of the dominant factors which influenced the spatial distribution
of precipitation over the TP was firstly explored in [25]. In central and northeast TP where were mainly
covered by grassland and meadows (which were easily influenced by precipitation), the NDVI was the
most important factor. The dominant factors were LST-d and LST-n in the northwest and west, where the
temperatures were low with high elevations, and the precipitation in these regions could be influenced
through thermal and dynamic mechanisms. In the southeast regions, topography played the most important
roles in influencing the precipitation. Orographic rainfall typically occurred in the southeast where the
topography varied greatly from valleys to huge mountains ranging in elevation from 100 to 4000 m.
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3.3. Downscaled Results and Validations Using Ground Observations

The annual downscaled results at 1 km resolution using random forest models based on TMPA
and IMERG data were presented in Figure 9b,c, respectively. We additionally obtained the downscaled
results at 0.1◦ based on TMPA which was displayed in Figure 9a. Both the downscaled results based on
TMPA and IMERG captured the spatial distribution of annual precipitation compared to the original
TMPA, original IMERG and gauge precipitation, showing a decreasing trend from south to north,
and from west to east. It was notable that the downscaled results based TMPA data shown contiguous
precipitation map with anomalies removed which appeared in the original TMPA data, in western
and northern parts of the TP. The downscaled results based on IMERG data still displayed continuous
variation and gradual trend without outliers.
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Figure 9. Spatial distribution of precipitation maps generated from (a) downscaled results based on
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based on IMERG data at 1 km, over the TP in 2015.

The performances of the downscaled results were validated against ground observations.
Both the downscaled results still overestimated precipitation compared to ground observations but
in lower degrees with reduced positive bias. The values of MAE and RMSE also decreased and
R2 values increased in the downscaled results compared with the corresponding satellite products
indicating the improved accuracy of downscaled results. Figure 10a shown the validation of the
downscaled results based on TMPA data at 10 km resolution, while Figure 10b,c shown the validations



Remote Sens. 2018, 10, 1883 13 of 20

of the downscaled results based on TMPA and IMERG data at 1 km, respectively, against ground
observations. The downscaled results based on IMERG at 1 km had the best performance (R2 ~ 0.86,
bias ~ 7.73%) among the three downscaled results based on TMPA and IMERG data and shown
improved accuracy compared with the original IEMRG data (R2 ~ 0.74, bias ~ 12.23%). The downscaled
results based on TMPA at 10 km and at 1 km also shown improvements compared with the original
TMPA data (R2 ~ 0.67, bias ~ 22.40%), while the downscaled results based on TMPA at 1 km (R2 ~ 0.82,
bias ~ 11.63%) performed better that the downscaled results at 10 km resolution based on TMPA data
(R2 ~ 0.77, bias ~ 14.13%). Regrading to the comparison between the original IMERG data and the
downscaled results based on TMPA at 10 km resolution, their performances were remarkably close
compared to ground observations with R2 ~ 0.75 and bias ~ 13%.
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results based on IMERG data at 1 km, at the annual scale.

Based on the disaggregation algorithm introduced in Section 3.3, the monthly downscaled results
based on TMPA and IMERG were obtained. Table 2 presented the statistical results at monthly scale.
The downscale results based on IMERG at 1 km shown the best accuracy at monthly scale with R2 ~ 0.82
and bias ~ 7% during wet seasons and R2 ~ 0.62 and bias ~ 10% during dry seasons. The downscaled
results based on TMPA at 1 km also corresponded well with ground observations during wet seasons
(R2 ~ 0.79 and bias ~ 10%) and shown relatively poorer performance during dry seasons (R2 ~ 0.58 and
bias ~ 15%). Regrading to the downscaled results based on TMPA at 10 km resolution, the performance
was equivalent to the original IMERG data at 10 km but better than the original TMPA data at 0.25◦.
Generally, the accuracy of the downscaled results based on TMPA and IMERG performed better than
those of the original satellite-based precipitation products, in each month.
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Table 2. Coefficients of determination (R2), bias, mean absolute error (MAE) and root mean square error
(RMSE) for the downscaled results based on TMPA data at 10 km, the downscaled results based on
TMPA data at 1 km and downscaled results based on IMERG data at 1 km, against ground observations
at each month in 2015.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Downscaled results R2 0.57 0.60 0.57 0.59 0.68 0.80 0.75 0.70 0.76 0.52 0.58 0.42
based on TMPA Bias (%) 12.23 20.54 25.67 14.30 10.40 16.86 19.59 11.35 11.25 7.02 21.23 13.79

data at 10 km MAE (mm) 3.79 3.77 7.20 13.31 18.22 24.77 22.33 23.38 21.64 9.67 3.38 1.99
RMSE (mm) 9.70 6.22 13.76 21.30 26.60 36.00 30.41 37.90 29.51 14.64 5.36 3.35

Downscaled results R2 0.58 0.68 0.63 0.63 0.79 0.82 0.81 0.77 0.79 0.68 0.60 0.46
based on TMPA Bias (%) 10.76 14.93 22.75 13.23 7.45 11.27 13.44 7.26 11.96 6.48 20.23 8.47

data at 1 km MAE (mm) 3.09 2.72 4.95 10.89 13.82 20.88 19.47 18.17 18.90 7.49 2.39 1.68
RMSE (mm) 8.96 5.50 8.86 17.64 17.81 27.60 24.57 28.21 25.20 10.14 3.15 2.88

Downscaled results R2 0.60 0.74 0.64 0.61 0.80 0.85 0.81 0.79 0.82 0.68 0.63 0.51
based on IMERG Bias (%) 8.12 6.47 14.76 3.38 2.56 7.29 8.63 4.11 8.42 4.48 14.87 6.72

data at 10 km MAE (mm) 2.01 3.00 4.66 8.80 10.11 15.12 15.33 13.00 12.00 5.00 2.10 1.00
RMSE (mm) 7.50 4.78 8.32 14.32 16.77 20.21 19.56 22.00 18.32 9.09 3.06 2.71

4. Discussion

4.1. Anomalies in the Inland Water Bodies in TP

Systematic anomalies were observed in the western and northern part of the TP in the original
TMPA 3B43 data. The phenomena were also found in [25,48,49]. They concluded that the systematic
anomalies on the TP interior in satellite-based precipitation estimates were mainly affected by some
water bodies. The distribution of inland water bodies was shown in Figure 11c. It was obtained
from the Global Lakes and Wetlands Database (GLWD) (downloaded from: https://www.worldwildl
ife.org/publications/global-lakes-and-wetlands-database-large-lake-polygons-level-1). The spatial
distributions of systematic anomalies were very close to those of inland water bodies. We further
investigated the precipitation estimates covered by anomalies compared with rain gauges or its neighbors.
Sites for seven anomalies which were located near water bodies were analyzed, as shown in Figure 12.

https://www.worldwildlife.org/publications/global-lakes-and-wetlands-database-large-lake-polygons-level-1
https://www.worldwildlife.org/publications/global-lakes-and-wetlands-database-large-lake-polygons-level-1
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Figure 12. Comparison of mean monthly precipitation data for the anomalies covering inland water
bodies in the original TMPA 3B43 data (blue line) and the original IMERG data (red line) with the data
from seven rain gauge stations (black line).

It was obvious that TMPA data tended to overestimate precipitation over inland water bodies, with
mean bias ~ 78%. In contrast, IMERG data agreed quite well with ground observations (bias ~ 10%).
The PMW retrievals might be the main source of the anomalies, and the deficiencies of PMW retrievals
in the TMPA products (GPROF2010) led to the systematic overestimation. While IMERG employed
the latest version of Goddard Profiling Algorithm (GPROF2014) to compute precipitation estimates
from all PMW sensors onboard GPM satellites, it provided more consistent precipitation estimates over
water bodies. For GPROF 2014, the surface type was classified based on the monthly emissivity for all
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SSM/I frequencies. The inland water bodies were treated as independent classes and were trained in the
Bayes’ model, which was beneficial for estimating precipitation over water bodies. Thus, the unified and
updated PMW algorithms used in IMERG products result in improved precipitation estimates over water
bodies compared to TMPA products. Another possible reason for the improvement in the precipitation
estimates over water bodies was that IMERG used GMI, which had a much better resolution than TMI
equipped in TRMM, thus it can better identify the inland water bodies.

For the monthly downscaled results based on TMPA data and IMERG data using random forest
algorithm and monthly disaggregation algorithm, we also calculated the precipitation estimates for
the same seven sites for anomalies. The results were shown in Figure 13. Both the downscaled results
based on TMPA data and IMERG data at 1 km resolution corresponded well with rain gauges. The bias
was ~12% and 8% for the downscaled results based on TMPA and the downscaled results based
on IMERG, respectively. The downscaled results based on TMPA and IMERG also eliminated the
anomalies indicate that random forest was an effective way to improve the spatial resolutions with
reasonable accuracy with systematic anomalies removed.
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4.2. The Relationships between the Spatial Resolutions and the Accuracies of the Precipitation Estimates against
Ground Observations

Though the accuracy of the precipitation estimates improved with the finer spatial resolutions,
based on the statistical results presented in Tables 1 and 2 in this study, it did not mean that the finer
the spatial resolution, the better the precision. While in [50], the performances of the satellite-based
precipitation products were better with decreasing spatial resolutions, in Lower Colorado River
Basin (LCRB). The relationships between the spatial resolutions and the accuracies of satellite-based
products might be affected by the density of rain gauge networks. For instance, over regions like
LCRB, there were dense rain gauge networks, which enabled it possible to conduct the detailed
assessment of the performances of the IMERG products at various resolutions. While in TP, there are
sparsely and poorly constructed rain gauge networks, which made it not suitable to do researches
exploring the relationships between spatial resolutions and the accuracies of remote sensing products.
Generally, to compare the difference between point-based measurements (from rain gauges) and
gridded estimates, the precipitation estimates from gauges located in the same pixel should be
averaged, and then compared with the corresponding pixel values. More gauges would be contained
in one pixel after upscaling, and thus the estimate errors at each gauge might be neutralized or
alleviated. This might be one of the possible reasons to explain why the performances of remote
sensing products improved after spatial resolution degradation. Further studies should be conducted



Remote Sens. 2018, 10, 1883 17 of 20

to investigate the relationships between the spatial resolutions and the accuracies of satellite-based
products, especially over regions where gauge network is coarse.

4.3. Future Research

In this study, the precipitation measured by rain gauges were used to evaluate the performances
of the original TMPA and IMERG data, as well as the downscaled results based on satellite-based
precipitation products. However, due to the harsh environment and complex terrain, the rain gauges
were sparsely and unevenly distributed over the TP. A majority of the gauges were located in north
and east and at middle or low altitudes, while few gauges in the western part of the TP and at high
elevations [51]. Thus, the assessment may not be representative and reasonable in the ungauged
areas in western part of the TP and regions with high elevations. Though radar precipitation data
is also widely used as ‘ground truth’ values to evaluate the quality of satellite-based precipitation data,
radar networks are unsound over the TP. So far, there are only four working radar stations, shown in
Figure 14. Additionally, other shortages, such as beam blockage and range degradation, cause radar
precipitation merely useless over the TP. Therefore, more reliable ground reference data are highly needed
for the TP.
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Above all, this study evaluated the performances of TMPA and IMERG, and compared the
downscaled results based on TMPA and IMERG, respectively, at annual and monthly temporal scales.
However, the performance of satellite-based precipitation products may vary under extreme rainfall
conditions, occurring at meteorological scale (e.g., hourly scale) [52]. It is very important to obtain
the precipitation estimates with both finer spatial resolutions and accuracies to capture the extreme
rainfall events, which is meaningful in flood disaster prevention. Therefore, additional downscaling
techniques should be developed especially for higher temporal scales (hourly or half-hourly), to improve
our understanding of precipitation activities during extreme rainfall events.

5. Conclusions

In this study, we focused on downscaling TMPA and IMERG data to generate precipitation
estimates with a finer spatial resolution (~1 km) at annual scale, and a disaggregation algorithm was
applied to obtain the monthly downscaled results based on those at annual scale. Both of the original
satellite-based precipitation products (TMPA and IMERG) and the downscaled results were evaluated
against ground observations. The main conclusions from this study were as follows:
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(1) The IMERG data provided more accurate precipitation estimates than TMPA data at both the
annual and monthly scales. What’s more, compared with TMPA data, IMERG data did not have
systematic anomalies any more.

(2) The RF algorithm demonstrated potentials in downscaling TMPA and IMERG to obtain
precipitation estimates with improved spatial resolution and reasonable accuracy over TP.

(3) The downscaled results based on IMERG exhibited better performance than those based on
TMPA data at both the annual and monthly scales.

Precipitation data with both fine spatial resolution and accuracy is highly needed in related fields.
While precipitation data only with finer resolutions but low accuracy is, to some extent, useless, and vice
versa. IMERG data indicated great potentials for researchers to obtain precipitation estimates with finer
spatial resolutions and better accuracy worldwide. Additionally, after this study, we also found that the
RF algorithm could serve as an alternative approach to improve both the spatial resolutions and accuracy
of the coarse satellite-based products.
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