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Abstract: Satellite-based precipitation products (SPPs) provide alternative precipitation estimates
that are especially useful for sparsely gauged and ungauged basins. However, high climate
variability and extreme topography pose a challenge. In such regions, rigorous validation is
necessary when using SPPs for hydrological applications. We evaluated the accuracy of three
recent SPPs over the upper catchment of the Red River Basin, which is a mountain gorge region
of southwest China that experiences a subtropical monsoon climate. The SPPs included the
Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 product, the Climate Prediction Center
(CPC) Morphing Algorithm (CMORPH), the Bias-corrected product (CMORPH_CRT), and the
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN) Climate Data Record (PERSIANN_CDR) products. SPPs were compared with gauge
rainfall from 1998 to 2010 at multiple temporal (daily, monthly) and spatial scales (grid, basin).
The TRMM 3B42 product showed the best consistency with gauge observations, followed by
CMORPH_CRT, and then PERSIANN_CDR. All three SPPs performed poorly when detecting the
frequency of non-rain and light rain events (<1 mm); furthermore, they tended to overestimate
moderate rainfall (1–25 mm) and underestimate heavy and hard rainfall (>25 mm). GR (Génie
Rural) hydrological models were used to evaluate the utility of the three SPPs for daily and monthly
streamflow simulation. Under Scenario I (gauge-calibrated parameters), CMORPH_CRT presented
the best consistency with observed daily (Nash–Sutcliffe efficiency coefficient, or NSE = 0.73) and
monthly (NSE = 0.82) streamflow. Under Scenario II (individual-calibrated parameters), SPP-driven
simulations yielded satisfactory performances (NSE >0.63 for daily, NSE >0.79 for monthly); among
them, TRMM 3B42 and CMORPH_CRT performed better than PERSIANN_CDR. SPP-forced
simulations underestimated high flow (18.1–28.0%) and overestimated low flow (18.9–49.4%). TRMM
3B42 and CMORPH_CRT show potential for use in hydrological applications over poorly gauged and
inaccessible transboundary river basins of Southwest China, particularly for monthly time intervals
suitable for water resource management.

Keywords: TRMM 3B42 V7; CMORPH_CRT; PERSIANN_CDR; GR models; hydrological simulation;
Red River Basin

1. Introduction

Precipitation is one of the most important water balance components of the global water cycle,
and has great variability across different spatial and temporal scales [1,2]. The accurate observation
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or estimation of precipitation has important theoretical and practical significance for flood warnings,
drought monitoring, and water resource management [3,4]. Gauge observations provide relatively
accurate point-based measurements of precipitation [5]; however, owing to significant precipitation
heterogeneity across a variety of spatiotemporal scales, rain gauge observations only represent
local conditions, and can result in potential errors when interpolated to larger scales, especially
in mountainous areas with complex terrain [6]. Moreover, the spatial distribution of rain gauges is
extremely uneven, with sparse gauges in remote areas, less developed regions, or areas with complex
terrain [7]. Therefore, in situ gauge data usually cannot meet the requirements of applications that
depend on high spatial–temporal resolution precipitation data (e.g., hydrological simulations [5]).

Satellite-based precipitation estimates have the advantage of adequate temporal resolution
and fine spatial resolution with wide coverage, enabling accurate precipitation estimates in
data-scarce or ungauged regions [5,8–10]. A number of satellite-based precipitation products
(SPPs) are currently available, including the Global Precipitation Climatology Project (GPCP) [11],
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN) [12], the Climate Prediction Center (CPC) morphing algorithm (CMORPH) [13],
the Tropical Rainfall Measuring Mission (TRMM) Multi-satellites Precipitation Analysis (TMPA) [14],
the Global Precipitation Measurement (GPM) [3], and the global gridded precipitation dataset
Multi-Source Weighted-Ensemble Precipitation (MSWEP) [15]. With wide coverage and high
spatial–temporal resolution (mostly finer than 0.25◦ × 0.25◦at spatial and three-hour temporal scales),
SPPs have been extensively applied in many fields, including hydrological simulation [16–18], extreme
event analysis [19–21], and water resource management [22,23].

Since SPPs are based on an indirect approach that utilizes sensors, the results inevitably contain
uncertainties caused by measurement errors, sampling, retrieval algorithms, and bias correction
processes [17,24,25]. Furthermore, the error characteristics change depending on the climate region,
season, altitude, and other factors [10,26]. In general, quantitative statistical and hydrological
modelling evaluations are effective tools that are used to evaluate the precision of SPPs [4,17].
The former focuses on the comparison and evaluation of SPPs against gauge data or ground-based
radar estimates. By this principle, temporal characteristics and spatial distributions of SPPs are not
only investigated, but can also be quantitatively analyzed; however, the scale discrepancy problem
remains when using rain gauge data for validation. The latter evaluates SPPs based on their predictive
ability of streamflow rate in a hydrological modeling framework; precipitation products are evaluated
at the watershed scale with respect to a specific application [27].

Over the past decades, numerous studies have improved our understanding of SPP performance
at global and regional scales [8,28–31]. For example, TMPA products were validated in various parts of
the world [32–36], and those results showed that TMPA products perform reasonably well over most
regions. Following the successful TMPA, the Integrated Multisatellite Retrievals for GPM (IMERG),
which incorporates observations from several satellites, offers improvements over the TMPA in quality
and spatiotemporal resolution of precipitation data [3]. A range of studies comparing the TMPA and
GPM products for the United States [37], Brazil [38], Africa [39], Iran [40], India [41], Pakistan [42],
Malaysia [43], Singapore [44], and China [45] indicated that GPM is superior to TMPA products.
In China, evaluation and validation using hydrologic simulations have been explored over many
basins, including the Ganzi River basin [46], the upper Yangtze River and upper Yellow River basins
over the Tibetan Plateau [47], the Huaihe River basin of eastern China [18], the Beijiang and Dongjiang
River basins of southern China [5], the Luanhe River basin of northern China [4], the Tiaoxi watershed,
which is part of the southern catchment of Taihu Lake in southeastern China [48], the Lancang River
basin of southwest China [49], and the Huifa River basin of northeast China [50]. These studies all
highlighted the great potential of different SPPs in hydrologic simulations, although SPPs have variable
accuracy and distinct hydrological performance in different basins.

The Red River is an important transboundary river in Southeast Asia. Precipitation distribution is
significantly uneven across the basin due to the complex terrain and subtropical monsoon climate [51].
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About 85% of the annual total precipitation falls during the summer season [52]. Consequently, the Red
River has an irregular flow regime. The high variability of river discharge in space and time leads to
substantial challenges related to flooding and water stress, particularly in the Red River delta, which is a
densely populated area of great importance to Vietnam for its agricultural productivity and economic
activity [35]. The upstream region in China has a mean annual flow of 48.3 billion m3, which contributes
37% of total flow of the Red River (131.4 billion m3) [53]. The transboundary water resource is virtual
for agriculture irrigation, hydropower, and ecosystem services. However, the rain gauge network has a
low density (around 300 km2 per rain gauge in Yunnan province, China), spatially uneven distribution,
and is insufficient over mountainous areas. The scarcity and mismatch of the precipitation observations
from upstream and downstream countries make it imperative to use SPPs in hydrological modeling,
drought monitoring, and water resources management. Unfortunately, there is little work focusing on
the evaluation of SPPs and their hydrological applicability over the Red River Basin in China.

This study aimed to assess the performance of three latest SPPs over the upper catchment
of the Red River Basin for the time period 1998–2010. The SPPs included TRMM 3B42 V7,
CMORPH_CRT (CMORPH Bias-corrected product), and PERSIANN_CDR (PERSIANN Climate Data
Record). The main objectives were to: (1) statistically evaluate the quality of the three SPPs through
comparison with rain gauge observations; and (2) comprehensively explore and compare the capability
of these three SPPs in streamflow simulations using GR (Génie Rural) hydrological models at daily
and monthly scales. This study will improve our understanding of the reliability of the three latest
SPPs, and provide a reference for their applications in hydrological simulation and transboundary
water resource management in the Red River Basin.

2. Materials and Methods

2.1. Study Area

The Red River originates in a mountainous area of Yunnan Province, China; it flows 1200 km to the
southeast, and ends in the Gulf of Tonkin, in the South China Sea [54,55]. The Red River Basin drains an
area of 156,451 km2, of which 50.3% is in Vietnam, 48.8% is in China, and 0.9% is in Laos [52].The upper
catchment of the Red River Basin (URRB) refers to the catchment north of the China–Vietnam border
(Figure 1). The catchment covers an approximate area of 33,614 km2. The elevation of the catchment
ranges from 76 m to 3123 m above sea level, and decreases from the northwest to the southeast [51]. It is
characterized by a subtropical monsoon climate [52], with annual average temperatures of 14.8–23.8◦C.
The annual average precipitation over the URRB from 1998 to 2010 was about 1044 mm, ranging from
772 mm to 1276 mm; approximately 85% of the annual precipitation is concentrated in the rainy season
(May to October) [52]. The climate confers the typical hydrologic regime characterized by large runoff
during the summer and low runoff during the winter [56]. The annual average discharge at Manhao
Station for the period 1998–2010 was 282 m3/s.

2.2. Datasets

Daily observed discharge data for the period 1998–2010 at the Manhao hydrological station
was obtained from the Hydrological Year Book and the Hydrological Bureau of Yunnan Province
(HBYP). Daily precipitation data from 25 rain gauges were provided by the Meteorological Agency of
Yunnan Province (MAYP) (Figure 1). It is noteworthy that these rain gauges are independent from
the Global Precipitation Climatology Centre (GPCC) gridded gauge-analysis precipitation dataset.
Daily meteorological observations at 21 stations for the same period were collected from the China
Meteorological Administration (CMA), including mean air temperature, mean relative humidity, mean
wind speed at 10-m height, and hours of bright sunshine. The quality of the above datasets has been
checked by the HBYP, MAYP, and CMA. We also performed routine quality assessment including
statistical tests, visual data plots, and histograms, to ensure that there were no missing or erroneous
records. The descriptive statistics of precipitation and discharge during 1998–2010 are provided in the
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supplementary material (Table S1 and Table S2). The daily potential evapotranspiration for each station
was estimated using the Penman–Monteith equation, as recommended by the Food and Agriculture
Organization of the United Nations (FAO) [57]. The FAO Penman–Monteith method is provided in
the supplementary material (S1). Areal average rainfall and potential evapotranspiration over the
catchment were produced by using the Thiessen polygon approach [58].
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Figure 1. Location of the upper catchment of the Red River Basin (URRB) and distribution of
meteorological and hydrological stations.

Three SPPs (TRMM 3B42 V7, CMORPH_CRT, and PERSIANN_CDR) were considered.
The TRMM 3B42 V7 product is one of the TMPA products, which were designed based on a wide
variety of satellite datasets and are supplied by the National Aeronautics and Space Administration
(NASA) [14]. This product provides precipitation at a spatial resolution of 0.25◦ and a three-hour
temporal resolution; it has quasi-global coverage of 50◦N–50◦S from 1998 to the present, combining
information from calibrated passive microwave (PMW) and infrared (IR) data. The 3B42 V7 product
was adjusted using monthly rain gauge precipitation data from the GPCC [59]. Here, the 3B42 V7
with a daily temporal resolution and a 0.25◦ spatial resolution from 1998 to 2010 was employed. Daily
precipitation was obtained by the accumulation of three-hour precipitation data.

NOAA’s (National Oceanic and Atmospheric Administration) CPC CMORPH contains global
satellite-based precipitation generated by integrated PMW and IR data [13]. The latest CMORPH
V1.0 product includes a raw satellite-only precipitation product (CMORPH_RAW), CMORPH_CRT,
and a satellite-gauge blended product (CMORPH_BLD), covering 60◦S–60◦N and 180◦W–180◦E.
The CMORPH_CRT product is generated by adjusting the CMORPH_RAW product against the CPC
unified daily gauge analysis over land, and the pentad GPCP over ocean using the probability density
function (PDF) matching bias correction method [60]. Three combinations of spatial–temporal resolutions
are available: eight km and 30 min, 0.25◦ and 3 h, and 0.25◦ and daily. Here, the CMORPH_CRT product
with 0.25◦ and daily spatial–temporal resolution for the period 1998–2010 was used.

The original PERSIANN is one of the popular global precipitation estimations for estimating
historical precipitation from March 2000 to present; it was developed by combining PMW observations
and IR data. The latest PERSIANN_CDR product used the archive of the GridSat-B1 IR data [61] as
input to the trained PERSIANN model; then, the biases in the PERSIANN estimated precipitation
were adjusted using GPCP 2.5◦ monthly data version 2.2 [12,27]. Since no PMW is used in the
PERSIANN_CDR product, the PERSIANN model parameters were pretrained using National Centers
for Environmental Prediction (NCEP) stage-IV hourly precipitation data. Currently, this version of
PERSIANN_CDR provides daily precipitation estimates at a spatial resolution of 0.25◦ for quasi-global
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coverage (60◦N–60◦S) from 1983 to the present. In this study, a subset of data for the period 1998–2010
was employed.

2.3. Methods

2.3.1. Evaluation Indices

Comparisons between the three SPPs and rain gauge data were performed both on grid and basin
scales. For the grid scale, the SPPs precipitation at the grid boxes with rain gauge stations are extracted
and compared with the corresponding rain gauge precipitation. For the basin scale, spatially averaged
pixel values of the SPPs precipitation were compared with the areal-averaged precipitation from rain
gauge stations using the Thiessen polygon approach [58].

Several widely used statistical indices were adopted to quantify the performance of the three SPPs
against rain gauge observations, including Spearman’s Rank correlation coefficient (CC) [62], root mean
squared error (RMSE), mean absolute error (MAE), and relative bias (Bias). In addition, the probability
of detection (POD), frequency of hit (FOH), false alarm ratio (FAR), critical success index (CSI), and the
Heidke skill score (HSS) indices were calculated to evaluate the precipitation detection ability of the
three SPPs [63]. POD provides the fraction of precipitation events that the satellite products detect
among all the actual precipitation events; FOH measures how often the satellite products detect rainfall
when there is actually rainfall; FAR measures the fraction of unreal events among all the events that the
satellite products detected; CSI represents the overall fraction of precipitation events correctly detected
by the satellite products; and HSS measures the accuracy of the estimates accounting for matches due
to random chance. Furthermore, CC, Bias, and the Nash–Sutcliffe efficiency coefficient (NSE) [64] were
employed to evaluate the performance of the hydrological model in streamflow simulations. NSE
describes the prediction skill of the simulated streamflow as compared to the observed. The formulas
to calculate the indices mentioned above are listed in Table 1.

Table 1. Indices used to evaluate the performance of satellite precipitation estimates. CC: correlation
coefficient, RMSE: root mean squared error, MAE: mean absolute error, Bias: relative bias, POD:
probability of detection, FOH: frequency of hit, FAR: false alarm ratio, CSI: critical success index, HSS:
Heidke skill score, NSE: Nash–Sutcliffe efficiency coefficient.

Statistical
Metric Unit Equation Range Perfect

Value Reference

CC - CC = 1− 6 ∑n
i=1[X(i)−Y(i)]2

n(n2−1)
−1 to 1 1 [62]

RMSE mm RMSE =

√
∑n

i=1(Si−Gi)
2

n
0 to ∞ 0 [16]

MAE mm MAE = ∑n
i=1|Si−Gi |

n 0 to ∞ 0 [16]

Bias % Bias = ∑n
i=1(Si−Gi)
∑n

i=1 Gi
× 100% −∞ to ∞ 0 [16]

POD - POD = N11
N11+N01

0 to 1 1 [63]
FOH - FOH = N11

N11+N10
0 to 1 1 [63]

FAR - FAR = N10
N11+N10

0 to 1 0 [63]
CSI - CSI = N11

N11+N01+N10
0 to 1 1 [63]

HSS -
HSS =

2(N11−N00−N10 N01)
(N11+N01)(N01+N00)+(N11+N10)(N10+N00)

0 to 1 1 [63]

NSE - NSE = 1− ∑n
i=1(Qoi−Qsi)

2

∑n
i=1(Qoi−Qo)

2 −∞ to 1 1 [64]

Notation: n, number of samples; Si , satellite precipitation; Gi , gauged observation; X(i) = rank[S(i)]; Y(i) =
rank[G(i)]; Qsi , simulated streamflow; Qoi , observed streamflow; Qo , observed mean streamflow. N11, Satellite is >
0 and gauge is > 0; N10, Satellite is > 0 and gauge equals 0; N01, Satellite equals 0 and gauge is > 0; N00, Satellite
equals 0 and gauge equals 0.
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2.3.2. GR Hydrological Models

The GR hydrological models were developed by Irstea, which is a national applied research
institute of France; they are lumped rain–runoff models that can be applied at various time steps,
ranging from hourly to annual [65,66]. In this study, only the daily (GR4J) and monthly (GR2M) models
were employed.

(1) GR4J model

The GR4J model was originally developed and tested on 429 different catchments in France,
the United States of America (USA), Brazil, and the Côte d’Ivoire [67]. GR4J simulates runoff via two
functions. First, a production function accounts for precipitation (P) and potential evapotranspiration
(PET), and determines the effective precipitation that contributes to flow and supplies the production
reservoir. Second, a routing function calculates runoff at the catchment outlet. The quantity of water
feeding the routing part of the model comprises the percolation that is added to the remaining fraction
of water. This flow is divided into two components according to a fixed split: 90% is routed by a unit
hydrograph, UH1, and then a non-linear routing store, and the remaining 10% are routed by a single
unit hydrograph, UH2. The purpose of the unit hydrographs is to account for differences in runoff
delays between the two conceptual reservoirs. GR4J requires the calibration of four free parameters
(Table 2). The median values and approximate 80% confidence intervals for the four parameters are
provided in Table 2, which were obtained using a large variety of catchments [68].

Table 2. Median values and approximate 80% confidence intervals of four model parameters.

Parameter Median Value 80% Confidence Interval

x1: maximum capacity of the production store (mm) 350 100–1200
x2: groundwater exchange coefficient (mm) 0 −5 to 3
x3: maximum capacity of the routing store (mm) 90 20–300
x4: time base of unit hydrograph UH1 (days) 1.7 1.1–2.9

(2) GR2M Model

The GR2M has two parameters and has been shown to have the best performance among several
similar models when using a benchmark test consisting of 410 basins around the world [69,70].
The production function of the GR2M model has strong similarities with the daily version, but uses
a simplified routing scheme [66]. This model is characterized by two functions: (1) a function of
production that revolves around a reservoir ground of a maximum capacity (x1), which is the first
parameter to be wedged (transferring a percolation of reservoir ground is ensured by the dependent
feature of the stock status ‘S’), and (2) a transfer function represented by a quadratic draining reservoir
with a capacity fixed at 60 mm. This reservoir is modified by an underground exchange, whose
coefficient (x2) is the second parameter to optimize [71].

(3) Hydrological Simulation Scenarios

In this study, both models were warmed up for one year (1998), and then split into calibration
(1999–2004) and validation (2005–2010) periods. Model calibration was achieved with the aid of
the default algorithm provided in the airGR package developed at Irstea [66]. Two parameterization
scenarios were conducted to evaluate the effect of precipitation uncertainty on runoff simulation results.
In Scenario I, model parameters were first calibrated using gauged rainfall data in the calibration
period, and then the model was rerun using gauged rainfall data and the three SPPs in both the
calibration and validation periods. Scenario I was mainly used to evaluate the streamflow simulation
utility of the different SPPs using gauge-calibrated parameters [72]. In Scenario II, model parameters
were recalibrated with individual satellite rainfall data during the calibration period; then, streamflow
was simulated for both the calibration and validation periods using the three individual satellite-based
parameters. Scenario II was adopted to determine whether the evaluated SPPs have the potential to be
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alternative data sources for hydrological simulations in data-poor or ungauged basins [9,10]. Table 3
shows calibrated parameter values in the GR4J model for different precipitation data inputs.

Table 3. Calibrated parameter values in the GR4J model for different precipitation data inputs.

Parameter Rain Gauge TRMM 3B42 CMORPH_CRT PERSIANN_CDR

x1 1200 1737 1667 1998
x2 0.77 0.35 0.92 1.09
x3 25 37 23 35
x4 2.25 2.45 3.12 3.42

3. Results

3.1. Comparison of Rain Gauge and Satellite-Based Precipitation Data

3.1.1. Evaluation at the Grid and Basin Scales

Figures 2 and 3 present scatterplots of daily and monthly precipitation, respectively, from TRMM
3B42, CMORPH_CRT, and PERSIANN_CDR against rain gauge data at the grid scale. Intuitively,
Figure 2 shows that the TRMM 3B42 product performed the best among the three SPPs for all metrics
at the daily scale. Throughout the year, TRMM 3B42 had a much larger CC, but a smaller RMSE, MAE,
and Bias than that of the other two products, with the CC = 0.62, RMSE = 7.7, MAE = 2.9, and Bias =
1.6%. Meanwhile, PERSIANN_CDR performed the worst, with the exception of the Bias (Bias =−5.4%),
for which it was marginally better than that of CMORPH_CRT (Bias = −8.0%). The performances of
the three products were also compared seasonally. According to the climate of the Red River Basin,
May to October was considered to be the wet season, and November to April was considered to be the
dry season [73]. For both the dry and wet seasons, TRMM 3B42 still showed a better performance than
the other two products. All three SPPs achieved better estimations during the wet season than during
the dry season.

On a monthly scale (Figure 3), the TRMM 3B42 product showed the best performance, regardless
of season. Moreover, all three SPPs performed better for the wet season than for the dry season. In terms
of Bias, TRMM 3B42, CMORPH_CRT, and PERSIANN_CDR products all showed underestimations
during the dry season; such an underestimation in SPPs during the dry season has been reported
in many studies [7,74,75]. In addition, the monthly results show much higher CC values with the
observations than do the daily comparisons. This is because errors in the daily values are offset to
some extent when added to the monthly values [4].

At the basin scale (Table 4), the daily and monthly CC values of the three SPPs improved, and the
MAEs significantly decreased, respectively. Meanwhile, except for TRMM 3B42, the Bias values also
showed a corresponding decreasing trend. From Table 4, the relative performances of the SPPs are
similar to those at the grid scale. A distinct exception is that the TRMM 3B42 showed the largest
overestimation in precipitation. Overall, all three SPPs had comparable and good performances for the
monthly precipitation estimations.
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Figure 3. Scatterplots of monthly precipitation from TRMM 3B42, CMORPH_CRT, and
PERSIANN_CDR against ground observations at the grid scale: the three panels show the results from
the whole year (upper panel), dry season (mid panel), and wet season (lower panel). The red line
indicates a 1:1 correspondence.
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Table 4. Statistical indices between three satellite-based precipitation products (SPPs) and rain gauge
data at the basin scale.

Basin Scale
Daily Monthly

CC RMSE MAE CC RMSE MAE Bias

Whole year
TRMM 3B42 0.82 11.3 1.7 0.99 17.1 12.0 9.6%

CMORPH_CRT 0.75 23.4 2.3 0.98 14.2 10.2 −0.9%
PERSIANN_CDR 0.66 34.1 2.9 0.97 21.1 15.1 2.2%

Dry season
TRMM 3B42 0.57 2.7 0.7 0.96 6.2 4.6 4.8%

CMORPH_CRT 0.49 4.7 0.8 0.90 10.3 7.0 −16.6%
PERSIANN_CDR 0.42 6.8 1.1 0.83 10.6 8.0 −6.2%

Wet season
TRMM 3B42 0.81 19.8 2.7 0.96 23.4 19.3 10.4%

CMORPH_CRT 0.66 41.8 3.8 0.97 17.3 13.4 2.0%
PERSIANN_CDR 0.52 60.9 4.6 0.93 27.9 22.2 3.8%

3.1.2. Evaluation of Contingency

Figure 4 shows box plots of rainfall-detecting skill scores, including POD, FOH, FAR, CSI, and HSS,
which were used to measure the contingency of the three SPPs. Among the three SPPs, TRMM
3B42 performed the best, having the highest FOH, CSI, and HSS values, and the lowest FAR value;
PERSIANN_CDR performed the worst in terms of all five rainfall-detecting skill scores. These results
illustrate that TRMM 3B42 yields the highest frequency of successful hits when rainfall really occurs,
and the lowest erroneous detection rate when there is actually no rainfall. For the POD, TRMM 3B42
had a median value of 0.65, while that of CMORPH_CRT was 0.72; this implies that CMORPH_CRT is
more likely to detect a larger fraction of precipitation events among all of the actual precipitation events.
Note that the POD, FOH, FAR, CSI, and HSS of CMORPH_CRT tended to have slightly larger variations
than they did for the other two products, indicating the considerable data instability of CMORPH_CRT.
This instability can be partially attributed to the morphing processes in the CMORPH_RAW data,
which determines the precipitation values as a weighted mean of PMW estimates from multiple
sensors [74].Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 22 
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large box mark the maximum and minimum, respectively.
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3.1.3. Evaluation of Rainfall Intensity Distribution

Figure 5 displays the occurrence frequency distribution of daily precipitation for different rain
intensity classes and their relative contributions to the amount of total rainfall. Non-rainy days have
the largest occurrence frequency, accounting for 58–67% of the total days. TRMM 3B42 identified
significantly more non-rainy days (67%) than did the gauged data (63%); this is because the TRMM data
have less skill in correctly specifying moderate and light rain rates on short time intervals [48,50,76]
identified less non-rainy days (58%), but more light rain (0–1 mm) days. PERSIANN_CDR identified a
similar number of no-rain events (64%) as the observation; however, it deviated the most for the light
rain event. In addition, all three SPPs overestimated the moderate rain intensity class (1–25 mm) and
underestimated heavy rainfall (25–50 mm) and hard rainfall events (>50 mm), with the exception of
the TRMM 3B42 product, which slightly overestimated the heavy rainfall event.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 
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For the distribution of relative contribution, PERSIANN_CDR showed the largest discrepancy,
while the other two SPPs were very similar to the gauged data. It was found that although the frequency
of light rainfall event was 4–15% of the total days, its contribution to the total rainfall amount was
only 1.3% on average. On the contrary, although high rainfall occurred on only a small percentage of
the total days, they had a significant contribution to the total rainfall amount. For example, the hard
rainfall event had a frequency of just about 0.5%, but its contribution to the total rainfall amount was
10.7% on average. For the rain intensity of 10–25 mm, there was a similarly small percentage (6.5%) of
total days for all four datasets, but this class contributed the most (35.2%) to the total rainfall amount.
The different volume contribution performances greatly impacted the hydrologic simulations, since
most of the hydrological processes within the models are sensitive to the total precipitation amount
and rainfall intensity distribution [18,77].

3.2. Hydrologic Validation Using GR Models

3.2.1. Daily and Monthly Streamflow Simulations under Scenario I

Table 5 shows the model performance results simulated using different precipitation inputs with
gauge-calibrated parameters under Scenario I. Generally, the streamflow simulated by rain gauge data
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agreed well with the observed hydrographs on both daily (NSE = 0.82, CC = 0.92, Bias = 0.6%) and
monthly scales (NSE = 0.87, CC = 0.96, Bias = 1.8%). The GR4J and GR2M models were found to be
robust and provided a sound basis for testing the applicability of the three SPPs.

Table 5. Comparison of daily and monthly observed and simulated streamflow under Scenario I.

Precipitation Product
Daily Monthly

NSE CC Bias (%) NSE CC Bias (%)

Rain gauge 0.82 0.92 0.6 0.87 0.96 1.8
TRMM 3B42 0.62 0.93 24.2 0.72 0.97 24.2

CMORPH_CRT 0.73 0.92 −7.5 0.82 0.96 −0.9
PERSIANN_CDR 0.53 0.88 −2.9 0.76 0.94 5.5

On a daily scale (Table 5 and Figure 6), CMORPH_CRT showed the best performance for
streamflow simulations over the entire period, with relatively desirable NSE (0.73) and CC (0.92), and
a high but acceptable Bias of −7.5%; PERSIANN_CDR had the lowest NSE (0.53) and CC (0.88), and
a Bias of −2.9%. The TRMM 3B42 had better NSE (0.62) and CC (0.93) than did PERSIANN_CDR;
however, a significant overestimation (24.2%) was found for the TRMM forced simulation. It is possible
that the Bias (9.6%) of the daily TRMM 3B42 precipitation was magnified by the hydrological model,
causing this large overestimation [17]. Moreover, all the three SPP-based streamflow simulations
underestimated some high peak flows (e.g., 2001 and 2007) of the rainy season. This phenomenon can
mainly be attributed to the precipitation estimate uncertainty of SPPs at the daily scale during heavy
and hard rainfall events [72].Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 22 
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data; (b) TRMM 3B42; (c) CMORPH_CRT; and (d) PERSIANN_CDR. Blue lines show precipitation data.

Figure 7 illustrates flow duration curves (FDCs) for the four simulations on the daily scale from
1999 to 2010 under Scenario I. The rain gauge, CMORPH_CRT, and PERSIANN_CDR simulations were
all consistent with the observations. However, the FDC produced by the TRMM 3B42 simulation was
apparently higher than that of the observations, which is consistent with the large Bias (24.2%; Table 5).
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Figure 7. Daily discharge flow duration curves (FDCs) for observations, rain gauge simulation, TRMM
3B42 simulation, CMORPH_CRT simulation, and PERSIANN_CDR simulation under Scenario I.

The monthly streamflow simulations were generally found to be more accurate than the daily
simulations in terms of NSE and CC values (Table 5 and Figure 8). Similar to the daily results,
the CMORPH_CRT forced simulation had the best performance, with the highest NSE (0.82) and the
lowest Bias (−0.9%). PERSIANN_CDR performed the second best (NSE = 0.76, Bias = 5.5%), while
TRMM 3B42 performed the worst (NSE = 0.72, Bias = 24.2%) on the monthly scale. All the three
SPPs’ forced simulations had good agreements with the observed data, with CC values above 0.94.
As shown in Figure 8, the monthly streamflow hydrographs from the three SPPs reasonably well
matched the observed streamflow, predicting peak flow and low flow conditions perfectly. These
results indicated that all three SPPs are suitable for monthly streamflow simulation purposes in the
study area. In general, considering the results for the daily and monthly scales, the CMORPH_CRT
product is most suitable for streamflow simulations using gauge-calibrated parameters over the URRB.
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data; (b) TRMM 3B42; (c) CMORPH_CRT); and (d) PERSIANN_CDR. Blue bars show precipitation data.
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3.2.2. Daily and Monthly Streamflow Simulations under Scenario II

Table 6 shows the model performance results for the three SPPs when using their own
optimal parameters calibrated under Scenario II. The simulation results under Scenario II were
clearly improved when compared with those under Scenario I, which is consistent with former
studies [5,10,18,78]. For the daily scale (Table 6), the NSE values of streamflow simulated by the TRMM
3B42, CMORPH_CRT, and PERSIANN_CDR products increased to 0.76, 0.77, 0.63, and the CC kept its
high values of 0.92, 0.92, and 0.88, respectively. Furthermore, the Bias values were also significantly
reduced, except for the PERSIANN_CDR forced simulation. Even so, the underestimation problem for
peak flow (e.g., 2001 and 2007) remained after the recalibration (Figure 9). Figure 10 shows the FDCs
for the three SPP-driven simulations on a daily scale from 1999 to 2010 under Scenario II. The three
individual simulations all agreed well with the FDC produced by observations.

Table 6. Comparison of daily and monthly observed and simulated streamflow under Scenario II.

Precipitation Products
Daily Monthly

NSE CC Bias (%) NSE CC Bias (%)

TRMM 3B42 0.76 0.92 −0.8 0.86 0.97 0.8
CMORPH_CRT 0.77 0.92 3.1 0.83 0.96 3.6

PERSIANN_CDR 0.63 0.88 3.4 0.79 0.94 5.5
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Figure 9. Simulated (red) and observed (black) daily streamflow under Scenario II from: (a) TRMM
3B42; (b) CMORPH_CRT; and (c) PERSIANN_CDR. Blue lines show precipitation data.

For the monthly scale (Table 6 and Figure 11), the NSE values for the three SPP-forced simulations
also increased (0.86 for TRMM 3B42, 0.83 for CMORPH_CRT, and 0.79 for PERSIANN_CDR).
Furthermore, the high CC values (>0.94) also indicated the good agreements between the three
simulations and the observed data. However, only the TRMM 3B42 forced simulation saw a significant
reduction in terms of Bias (from 24.2% to 0.8%). Additionally, it was found that the TRMM 3B42
forced simulation had the greatest improvements in NSE and Bias values from Scenario I to Scenario II
for both the daily and monthly scales. Overall, the three SPP forced daily and monthly simulations
all exhibited good performance, matching well with observations in this study area. The better
agreement was achieved using TRMM 3B42 and CMORPH_CRT products, making them more suitable
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for performing hydrologic simulations with inadequate surface precipitation observations (e.g., in
ungauged catchments).
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Figure 11. Simulated (red) and observed (black) monthly streamflow under Scenario II from: (a) TRMM
3B42; (b) CMORPH_CRT; and (c) PERSIANN_CDR. Blue bars show precipitation data.

3.2.3. Capability of Simulating Extreme Events

To further investigate the capability of the three SPPs to simulate extreme events, we defined the
observed daily streamflow, exceeding its 90% quantile as high flow, and that less than its 50% quantile
as low flow [79]. The observed high-flow and low-flow data were compared with the corresponding
simulated flow with various precipitation inputs. In this section, the three simulations under Scenario
II, plus the rain gauge simulation under Scenario I, were evaluated. The model performance results
of high-flow and low-flow simulations were presented in Table 7. For the high-flow simulations,
the gauged-based simulation generally had the best performance with desirable NSE (0.50), CC
(0.67), and Bias (−11.6%) values. TRMM 3B42 and CMORPH_CRT products exhibited comparable
performance of similar NSE (0.31 and 0.36), CC (0.65 and 0.68), and Bias values (−19.1% and −18.1%),
whereas PERSIANN_CDR performed poorly with the NSE <0 and the largest underestimation
(28.0%). For the low-flow simulations, the model performances of the four precipitation inputs were
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unacceptable, with the NSE values all below 0, indicating their poor value for low-flow simulation
in this region. Additionally, there was an underestimation of the four precipitation inputs for the
high-flow simulations, and an overestimation for the low-flow simulations, which is consistent with
many other studies [5,10,78]. This is largely due to the underestimation or overestimation of different
precipitation products during extreme rainfall events. As discussed, all three SPPs have poor modeling
capabilities for extreme hydrologic events over the URRB.

Table 7. Comparison of daily high-flow and low-flow simulations using four precipitation inputs
against observations.

Precipitation Product
High flow Low flow

NSE CC Bias (%) NSE CC Bias (%)

Rain gauge 0.50 0.67 −11.6 −0.06 0.79 15.9
TRMM 3B42 0.31 0.65 −19.1 −0.17 0.79 18.9

CMORPH_CRT 0.36 0.68 −18.1 −0.91 0.77 35.3
PERSIANN_CDR −0.06 0.52 −28.0 −2.15 0.69 49.4

4. Discussion

SPPs have difficulty representing precipitation in mountainous regions, where precipitation is
controlled by the orography and characterized by high spatiotemporal variability [8,80]. PMW data
measured from low-orbit satellites and IR data from geostationary satellites are the main data sources
for SPPs [17,81]. Specifically, PMW provides direct and accurate precipitation estimates at the cost
of coarse temporal resolution, while IR provides useful information mainly about storm clouds
based on the low temperatures of the top of these clouds: these data has fine temporal resolutions,
but less accuracy [10,60]. In the mountainous regions, IR retrievals generally fail to capture light
precipitation events and underestimate orographic rains, whereas PMW retrievals face challenges
detecting orographic precipitation, especially in the cold season [82]. Therefore, all SPPs suffer from
systematical overestimations or underestimations over the URRB, which is explained by the negative
and positive values of Bias (Figure 2, Figure 3, and Table 4). In addition, SPPs perform better in the wet
season than in the dry season.

According to our results of accuracy analyses, PERSIANN_CDR performs unsatisfactorily
compared with the other two products (Figures 2 and 3), which is probably because PERSIANN_CDR is
mainly based on IR data, while TRMM 3B42 and CMORPH_CRT combine PMW and IR data. The main
difference between TRMM 3B42 and CMORPH_CRT is the gauge adjustment algorithm that is adopted.
To develop CMORPH, PDF matching against the CPC unified daily gauge analysis was used to adjust
the biases. Monthly GPCC rain gauge analyses and inverse-error variance weighting were used for
the TRMM to adjust the biases [60]. However, the accuracy of TRMM generally outperforms that of
CMORPH (Figures 2 and 3), which is probably due to the monthly gauge adjustment algorithm that is
used in TRMM being superior to the PDF matching adopted in CMOPRH over this region. A similar
finding was obtained in the previous studies over the Huaihe River basin in China [18]. At the basin
scale, as expected, the CC and MAE values for SPPs improved, and the relative performances of the SPPs
are similar to those at the grid scale (Table 4). Some distinct exceptions are that the TRMM 3B42 showed
the largest overestimation in precipitation, while the PERSIANN_CDR showed underestimation in
precipitation. This result indicated that the performance of these SPPs are not uniform with an
increasing spatial scale, as a consequence of topographical variations [83]. Mei et al. [84] also stated
that the size of catchments influences the satellite rainfall errors. Another possible reason is that there
may not be enough rain gauges in the area to provide accurate estimates of rainfall for comparisons
with satellite estimates at the basin scale.

Two parameters scenarios were designed to evaluate the effect of precipitation uncertainty on
streamflow simulations. Under Scenario I (Table 5), CMORPH_CRT showed the best performance
among the SPPs, which is mostly due to the relatively low Bias in precipitation input. In contrast,
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the TRMM 3B42-driven simulations overestimate the streamflow by 24.2% (Table 5), which is attributed
to the large overestimation in the TRMM 3B42 precipitation input. Another possible explanation is
that CMORPH_CRT used daily rain gauge analysis, and all of the bias correction algorithms were
conducted at the daily scale directly, while the other two products conducted bias correction with
rain gauge analysis at the monthly scale. Therefore, CMORPH_CRT performs better in streamflow
simulation using the gauge-calibrated parameters. Previous studies have reported that the errors of
SPPs are propagated into hydrological simulations [10,17,79]. An overestimation/underestimation
of precipitation estimates can be transformed into a larger overestimation/underestimation in the
simulated streamflow. In this study, the basin-scale Bias of TRMM 3B42 (9.6%), CMORPH_CRT (−0.9%),
and PERSIANN_CDR (2.2%) resulted in corresponding Bias values for streamflow simulations of 24.2%,
−7.5%, and −2.9% at the daily scale, and 24.2%, −0.9%, and 5.5% at the monthly scale, respectively.
This comparison between the input and output Bias values in GR models indicates that there is a
non-linear error propagation pattern [16].

Under Scenario II, a recalibrated hydrological model using the SPPs can greatly improve
streamflow simulation performance, as the different parameter settings can compensate for errors
in the satellite rainfall data (Table 6). However, a few studies have indicated that recalibration can
sometimes cause parameter values to exceed their reasonable ranges [16,79]. The calibrated model
parameters for rain gauge are all within the 80% confidence interval (Tables 2 and 3). However,
some model parameters (i.e., x1 and x4) for SPP-forced calibration greatly exceed the 80% confidence
interval, which may be attributed to the GR models being sensitive to the precipitation data and
the size of catchments. However, for a specific catchment, since the underlying surface condition
remains unchanged, the hydrological model parameters largely depend on the input data. If the
forcing data change, the sensitive parameters will change accordingly in order to match the streamflow
(Table 3). In spite of the influence of cancellation between parameter differences and precipitation
bias on streamflow simulation, the three SPPs are able to produce a reasonably good streamflow
under scenario II. For instance, TRMM 3B42-driven results presented a satisfactory model efficiency
(NSE = 0.86) and smaller Bias (0.8% relative to the observations) than that of the rain gauge data
at the monthly scale. However, the uncertainty in satellite-based precipitation data, together with
parameter uncertainty and the structural uncertainty of hydrologic models, will result in uncertainty
in streamflow predictions [85]. Therefore, a better understanding of parameter uncertainties and a
comparison of different hydrological models will be the focus of future research.

Many studies have explored the applicability of different SPPs using hydrological models
over basins of different scales. When the studied SPPs included TRMM 3B42, CMORPH_CRT,
and PERSIANN_CDR, similar results were obtained as this study: the streamflow simulations of
TRMM 3B42 and CMORPH_CRT performed better than that of PERSIANN_CDR. For example, Su
et al. [27] found that TRMM 3B42 and CMORPH_CRT products showed acceptable performance in
four SPPs, while PERSIANN_CDR showed little potential for streamflow simulations over the upper
Yellow River Basin in China. For the Xixian Basin (upstream of the Huai River Basin), streamflow
simulations using the Xinanjiang model found that TRMM 3B42 forced simulation fitted best with
the observed streamflow series among three post-real-time research products; this was followed by
the CMORPH_CRT-based simulation, and then the PERSIANN_CDR-based simulation [72]. Alazzy
et al. [46] also drew similar conclusions according to the results of hydrologic simulation, testing
four SPPs, including the three used in our study. According to Moriasi et al. [86], the models can
be considered satisfactory if the NSE >0.5 and the absolute Bias <25%. In this study, the daily NSE
and absolute Bias of PERSIANN_CDR were 0.53 and 2.9% under Scenario I, and 0.63 and 3.4% under
Scenario II, indicating that the PERSIANN_CDR product also has the capability to produce acceptable
streamflow simulation results by using the GR hydrological model in the URRB.

Inevitably, a few limitations were present in this study. First, compared to the dense rain gauge
networks of previous studies [10,18], the rain gauge stations in our study region are relatively sparse
and unevenly distributed, which may cause uncertainties in the rain gauge comparison and streamflow
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simulations. Moreover, it is difficult to ensure that the observed streamflow data for the Manhao
station of the URRB is not affected by human activities and regional economic development, although
the results of the hydrologic simulation for the study basin were reliable. For instance, the human
consumption of water can lead to much lower observed discharge than actual natural discharge,
particularly during droughts.

5. Conclusions

This study provides a comprehensive assessment of the three latest SPPs (TRMM 3B42 V7,
CMORPH_CRT, and PERSIANN_CDR) based on rain gauge observations over the URRB for the
period 1998–2010. The primary conclusions can be summarized as follows.

(1) On the grid scale, TRMM 3B42 performs the best, while PERSIANN_CDR performs the worst.
Moreover, monthly SPP data have a much better correlation with gauge rainfall data than daily SPP
data. Similar results are obtained at the basin scale, but with a high Bias for TRMM 3B42 (9.6%) and a
much-improved Bias for CMORPH_CRT (−0.9%) and PERSIANN_CDR (2.2%).

(2) For the detection capability of precipitation events, TRMM 3B42 performs the best, while
PERSIANN_CDR exhibits the worst performance. By comparison, CMORPH_CRT shows relatively
better capability, but with larger fluctuation among different rain gauge stations.

(3) To different degrees, all three SPPs overestimate or underestimate no-rain (0 mm) and light
rainfall (0–1 mm) events. Additionally, there is an overestimation of moderate rainfall events (1–25 mm)
and an underestimation of heavy and hard rainfall events (>25 mm), indicating their poor ability
to reflect extreme precipitation. For the distribution of relative contribution, the PERSIANN_CDR
product deviates the most from gauge data.

(4) During hydrologic validation under Scenario I (gauge-calibrated parameters), the CMORPH_CRT
product had the best consistency with observed streamflow series at both daily (NSE = 0.73) and
monthly scales (NSE = 0.82), while TRMM 3B42 showed obvious overestimation (24.2%) for both
daily and monthly streamflow simulations. Under Scenario II (individual-calibrated parameters),
the performance of the recalibrated models significantly improved (NSE >0.63 for daily, NSE >0.79
for monthly); TRMM 3B42 and CMORPH_CRT performed better than PERSIANN_CDR. All three
SPP-forced simulations showed underestimation for high-flow (18.1%–28%) and overestimation for
low-flow (18.9–49.4%).

These findings clearly show the great potential for TRMM 3B42 and CMORPH_CRT products in
hydrological applications over poorly gauged and inaccessible transboundary river basins in Southwest
China, particularly for monthly time intervals, which are suitable for water resource management.
However, all three SPPs underestimate and overestimate the occurrence frequency of daily precipitation
for some rain intensity classes. Therefore, the local calibration of satellite-derived rainfall estimates
and the merging of satellite estimates with rain gauge observations could be employed to alleviate
these problems [87,88]. Future work will focus on the validation of higher-resolution SPPs (i.e., GPM),
error corrections, spatial downscaling techniques, and their application in distributed hydrological
modeling [9,89].
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