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Abstract: The Arctic sea ice region is the most visible area experiencing global warming-induced
climate change. However, long-term measurements of climate-related variables have been limited
to a small number of variables such as the sea ice concentration, extent, and area. In this study,
we attempt to produce a long-term temperature record for the Arctic sea ice region using Special
Sensor for Microwave Imager (SSM/I) Fundamental Climate Data Record (FCDR) data. For that, we
developed an algorithm to retrieve the wintertime snow/ice interface temperature (SIIT) over the
Arctic Ocean by counting the effect of the snow/ice volume scattering and ice surface roughness on
the apparent emissivity (the total effect is referred to as the correction factor). A regression equation
was devised to predict the correction factor from SSM/I brightness temperatures (TBs) only and
then applied to SSM/I 19.4 GHz TB to estimate the SIIT. The obtained temperatures were validated
against collocated Cold Regions Research and Engineering Laboratory (CRREL) ice mass balance
(IMB) drifting buoy-measured temperatures at zero ice depth. It is shown that the SSM/I retrievals
are in good agreement with the drifting buoy measurements, with a correlation coefficient of 0.95,
bias of 0.1 K, and root-mean-square error of 1.48 K on a daily time scale. By applying the algorithm to
24-year (1988–2011) SSM/I FCDR data, we were able to produce the winter-time temperature at the
sea ice surface for the 24-year period.

Keywords: snow/ice interface temperature; SSM/I; microwave measurement; fundamental climate
data record; apparent emissivity; Arctic sea ice

1. Introduction

The increasing emission of man-made greenhouse gases has caused global warming of 0.8 ◦C
since 1900 [1–3], but the temperature increase is not the same everywhere over the globe. Especially,
over the Arctic polar region, where snow and ice cover the ocean, the increase in the near-surface
is nearly twice that in the tropics–a phenomenon called Arctic amplification [4,5]. Such a rapidly
rising surface temperature over the Arctic is manifested by changes in the sea ice extent over last three
decades. The sea ice extent has been declining at a rate of ≈3.8%/decade [6]. The largest decline is
observed in September with an alarming rate of ≈13%/decade, corresponding to more than 30% of
sea ice loss compared with the late 1970s [7,8].

The impact of ice loss appears to be profound, not only influencing the local climate, hydrological
cycle, ecosystems, and natural habitats, but also affecting the global weather/climate system. With the
declining sea ice, more ocean water will be exposed to cold and windy atmospheric environments,
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probably inducing enhanced evaporation to the cold atmosphere, which can lead to more water
vapor, clouds, and more precipitation [9]. The precipitation change in response to the sea ice melt is
particularly interesting because the precipitation itself (regardless of snow or rain) has the potential to
feedback the climate [10]. As expected, increased precipitation is noted in the Arctic [11], mainly due
to the increased local evaporation caused by the sea ice loss [12]. Furthermore, a higher percentage
of precipitation throughout the Arctic summer time will be in liquid form, namely rain, due to the
warmer low atmosphere, forcing the snow cover to further decline [10]. It is projected that rain will be
the dominant form of precipitation in the Arctic by the end of the 21st century [13]. The increased rain,
a hydrological response to dramatically decreasing sea ice (or to the warming atmosphere) should lead
to a positive feedback to ice melting, through the substantially decreasing surface albedo, establishes
a self-feeding cycle where warming temperatures will lead to more rain and ice melt [10] and cause
more warming due to even more rain and ice melt.

With respect to the influence of the decline of Arctic sea ice on the weather/climate elsewhere,
there is cumulating evidence that Arctic warming has been identified as an important element of the
variability of mid-latitude, large-scale atmospheric circulation including storm tracks, planetary waves,
jet stream, and energy transport [14,15]. It is reported that the atmospheric variability due to Arctic
warming is closely linked to more frequent events of atmospheric blocking patterns [16] and increased
cold surges with snowy winters in East Asia, Europe, and Northern America [14,17,18]. Central and
northern Europe have experienced six years (2007–2012) of extraordinary wet summer, likely due to
the southward shift of the summer jet forced by Arctic sea ice loss [19]. More extreme weather may be
expected worldwide in the future due to continuous Arctic warming and the associated sea ice loss.

Although current monitoring of sea ice extent and understanding of subsequent impacts on
climate components are in high confidence, dramatic changes of the Arctic climate system and expected
continuous change in the future make it difficult to assess the future evolution of Arctic environments
and/or predict global climate change. To facilitate our understanding of Arctic climate change
and thus to reduce the uncertainty of future climate change assessment, observations of climate
variables, such as the sea ice extent and its depth, snow cover, and depth are needed, in addition to
observations of thermal structures throughout the atmosphere-snow-ice column. At least, much needed
thermodynamic variables may be the surface air temperature, snow top temperature, and snow-ice
interface temperature (SIIT), from which the thermal structure of the snow-ice system can be studied
and related to the sea ice melt or sea ice depth change. The SIIT is intriguing because, if ice depth
is known, the heat content of an ice column can be calculated by assuming a nearly constant lapse
rate within the ice layer, at least during winter. The amount of heat content held by the ice should be
the main factor controlling upward heat transfer from the ocean water to the atmosphere. It builds
up a preconditioning of how fast the ice melts in spring and summer, or how fast the ice grows in
fall and winter. Thus, the SIIT is valuable information, which can lead to better climate monitoring
over the Arctic. In fact, the aforementioned sea ice decline, changes in the Arctic hydrological cycle,
and influences on the mid-latitude weather are all related to the SIIT because the SIIT is the variable
that can give information on the thermal state of the ice.

In this study, we propose an algorithm to produce the long-term SIIT from SSM/I microwave
(MW) measurements, which can penetrate the snow layer without much interference. A recent study
showed that 6.9 GHz brightness temperature (TB) measurements are theoretically related to the sea ice
emissivity and temperature [20]. Although the retrieved ice temperature from 6.9 GHz TBs is in good
agreement with the buoy-measured SIIT, the acquisition of long-term data may not be possible, because
6.9 GHz TB measurements before the launch of the Advanced Microwave Scanning Radiometer–EOS
(AMSR-E) in August 2002 are not available.

In reality, long-term global MW observations are available, as shown in the intercalibrated
Fundamental Climate Data Record (FCDR) of TBs [21], covering more than 30 years, but without
the 6.9 GHz channel. In the higher frequency region, such as 19.4 GHz, it is difficult to apply the
Fresnel assumption for the emissivity retrieval due to surface and volume scatterings. However,
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if the influences of surface and volume scatterings are known and included in the radiative
transfer calculation within the sea ice, it may be possible to retrieve the temperature even using
higher frequencies.

Aiming at producing long-term SIIT over the Arctic sea ice, we develop an algorithm for retrieving
the SIIT from SSM/I TB data, by counting surface and volume scattering effects on the measured TBs,
which were examined in the previous study [22]. For this objective, we introduce a correction factor
to remove surface and volume scattering influences from measured TBs. Subsequently, the radiative
transfer equation is solved for the physical emission temperature from SSM/I (or SSMIS alike) TBs only
using the correction factor and combined Fresnel equation. Based on this methodology, we attempt to
produce long-term sea ice temperature over the Arctic. The obtained long-term SIIT will certainly help
to understand how the global warming has influenced the Arctic climate change in the past decades.

2. Used Data

2.1. Passive MW Data

In this study, we use FCDR SSM/I 19.4 and 37.0 GHz vertically and horizontally polarized TBs to
retrieve the sea ice temperature. The SSM/I sensors have measured MW TBs with a viewing angle
near 53◦ since 1987. The sensors aboard different platforms are physically consistent but depend on
varying orbital and navigational quantities such as the incident angle, resolution, and observation time.
The objective of SSM/I FCDR data is to generate consistent and well-calibrated MW TBs from 1987
onwards by using multiple techniques for intercalibration [21,23]. In this study, these SSM/I FCDR
orbital data were converted to 25 km Equal-Area Scalable Earth (EASE)-grid data, on a daily basis, to
collocate SSM/I data with gridded AMSR-E TBs and SSM/I bootstrap sea ice concentration data [24].
More information on the SSM/I FCDR dataset can be found in References [21,23] and on the webpage
of the Precipitation Research Group of the Department of Atmospheric Science of the Colorado State
University (http:/rain.atmos.colostate.edu/FCDR/).

The AMSR-E 6.9 GHz TBs are used for retrieving the adjusted real refractive index and emitting
layer temperature of Arctic sea ice, adapting a method described in Reference [20]. Level 3 daily TBs
at 6.9 GHz were obtained from the Global Change Observation Mission (GCOM) data center site
(http://gcom-w1.jaxa.jp/). In addition, bootstrap sea ice concentration data are applied to minimize
the influences of water contamination. When sea ice coexists with open water within the same pixel,
a heterogeneous problem arises in the interpretation of the MW brightness temperature, making
the retrieval difficult. In this study, we minimized the water contamination effect in the retrieval by
imposing 98% of sea ice concentration as a criterion. Sea ice concentration data were downloaded from
the National Snow and Ice Data Center (NSIDC) website (http://nsidc.org/) [24].

2.2. CRREL Buoy Measurements

To validate the developed algorithm, we compared the pixel-based retrieved sea ice temperature
with in situ measurements from U.S. Navy Cold Regions Research and Engineering Laboratory
(CRREL) ice mass balance (IMB) buoy measurements at a daily time scale [25]. The buoy incorporates
a thermometer string instrument to measure the temperature profile from the near-surface atmosphere,
through the sea ice, and to sea water. In addition, the snow depth and sea ice thickness are measured
with an acoustic sounder installed at the buoy. Daily averages were taken from 2-hourly measured
data, which were downloaded from the CRREL website (http://imb-crrel-dartmouth.org/imb.crrel/).
Temperature at zero ice depth (which is also referred to as SIIT but from buoy measurement) is used
for the comparison with collocated SSM/I-derived SIIT.

Two types of CRREL IMB buoy data are available, i.e., “Provisional Buoy” data and “Archived
Buoy” data. The “Provisional Buoy” data were archived without quality control, and thus often
abnormal features are found in the “Provisional Buoy” data, i.e., (1) the air temperature is substantially
higher than snow/ice interface (or zero ice depth) temperature even during the winter time; (2) a strong
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inversion layer exists within the sea ice; (3) the air temperature variation is smaller than that of
temperature at zero ice depth; and (4) the air/snow interface or at snow/ice interface show no vertical
temperature gradient change. The “Archived Buoy” data are quality-controlled, but, even some of
“Archived Buoy” data show abnormal features similar to that found in the “Provisional Buoy” data,
although there are relatively few cases. In this study, we only used “Archived Buoy” data for the
comparison because of the abnormal features found in “Provisional Buoy” data. However, more control
checks are necessary even for “Archived Buoy” data, and we apply quality assurance checks (1)–(4) to
“Archived Buoy” data before the comparison. Details of the quality checks are provided in Section 4.

3. Theoretical Background and Methodology

The theoretical background for the algorithm development was developed and introduced in a
previous study ([22], this reference, (Lee, Sohn, and Shi, 2018), is now referred to as LSS18). Here, we
provide a summary of the theoretical backgrounds used in that study, and an algorithm development
for SSM/I measurements. Detailed explanations are provided in Appendix A.

3.1. Simple Snow/Ice Model for Radiative Transfer

In this study, sea ice used for the radiative transfer is composed of three layers, i.e., a snow
layer at the top, surface ice layer (or freeboard sea ice layer) in the middle below the snow layer,
and congelation ice layer as the lowest layer [26]. The snow layer (top layer) and upper part of
the surface ice layer (middle layer) are presumed to be the volume scattering layer that attenuates
the radiation emanating from the emission layer below. The model has one emission layer with
temperature and related emissivity (TE and ε, respectively). The emission layer is located below the
volume scattering layer and composed of the lower part of the surface ice layer and/or upper part
of the congelation ice layer (see Figure 1 in Reference [22]). For the radiative transfer, surface and
volume scatterings occurring above the emission layer are treated independent of the emission layer,
not allowing interactions between the two layers.

If TBsfc is defined as an upwelling TB at the snow top, then the radiative transfer through the
snow-ice layer can be expressed as follows:

TBs f c = εTEe−τsca (1)

where τsca is the optical thickness associated with the snow/ice volume scattering.

3.2. Apparent Emissivity

We defined the apparent emissivity (εA) by taking the ratio between TE and TBsfc:

εA =
TBs f c

TE
(2)

Apparent emissivities at the SSM/I 19.4 GHz channels are obtained by taking the ratio of SSM/I
19.4 GHz TBsfc to the sea ice emission temperature (TE), according to Equation (2). TBsfc here is from
the measured TB after removing atmospheric effects, which are calculated using the line-by-line
radiative transfer model of the Satellite Data Simulator Unit (SDSU)-version 2.1 [27] with inputs of
atmospheric temperature and humidity profiles from European Centre for Medium-Range Weather
Forecasts Reanalysis (ERA)-Interim data [28]. The collocated TE is obtained from the AMSR 6.9 GHz
retrieved SIIT, based on the finding that its emission weighting function is similar to that for 19.4 GHz.
Figure 1 shows the spatial distributions of the apparent emissivities for both polarizations at 19.4 GHz
on 1 January 2004. The obtained apparent emissivities are used for calculating the so-called “correction
factor” described in Section 3.3.
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The apparent emissivity can also be related to scatterings, as shown in Equation (1):

εA = ε exp(−τsca) (3)

By using known εA distributions in Figure 1, we try to solve the unknowns on the right-hand side
of Equation (3).
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3.3. Correction Factor

Since ε in Equation (1) represents the emissivity for a rough surface, we needed to express ε

with an emissivity for the smooth surface (εs). This is because the emissivity characteristics of a
smooth surface based on the Fresnel equations are well understood, and thus we intended to use the
combined version of the Fresnel equation [29,30] to solve the unknowns. In LSS18, a concept regarding
the surface roughness effect was developed by relating the smooth surface emissivity to the rough
surface emissivity:

ε = εsF (4)

where F is the roughness parameter. Based on the concept in Equations (3) and (4), F and τsca at
SSM/I 19.4 GHz frequency can be determined by introducing a two-dimensional surface roughness
model and using the adjusted real refractive index obtained together with TE from AMSR-E 6.9 GHz
TB measurements. The detailed method including the two-dimensional surface roughness model to
estimate F and τsca for a given εA can be found in LSS18.

The correction factor (CF) can be defined as the ratio between the apparent emissivity and smooth
surface emissivity. Since the smooth surface emissivity is altered by the surface roughness and volume
scattering extinction in the constructed model, CF can be written as:

CF =
εA
εs

= F exp(−τsca) (5)

After solving F and τsca for 19.4 GHz with given εA, the correction factor CF for 19.4 GHz is
calculated using Equation (5). The CF data for 19.4 GHz are constructed over the Arctic sea ice region
for the December–January–February (DJF) period of 2003–2011 (AMSR-E period). We present the CF
distribution on 1 January 2004 in Figure 2a.
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The Equation (5) can be written for two polarized components (vertical (V) and horizontal (H)
components for CF, εA, εs, and F). Thus, with the help of the combined Fresnel equation for emissivity
given in Equation (6), εs can be obtained by solving Equation (5) [30].

εs,V = 1 − [1 − εs,H ]

(
1 + [1 − εs,H ]

−1/2 cos 2θ

1 + [1 − εs,H ]
1/2 cos 2θ

)2

(6)

So far, εA and CF distributions are constructed for the winter (DJF) of the 2003–2011 period during
which AMSR-E and SSM/I data coexist, to develop an SSM/I-only algorithm.

Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 15 

 

21/ 2
,

, , 1/ 2
,

1 [1 ] cos 2
1 [1 ]

1 [1 ] cos 2
s H

s V s H
s H

 
 

 

  
       

 (6) 

So far, εA and CF distributions are constructed for the winter (DJF) of the 2003–2011 period 
during which AMSR-E and SSM/I data coexist, to develop an SSM/I-only algorithm. 

 
Figure 2. Geographical distributions of (a) directly calculated CF and (b) regression-based CFR at 19.4 
GHz (explained in detail in Section 3.4) on 1 January 2004. 

3.4. Development of the SSM/I-Only Algorithm for the Correction Factor 

The retrieval of long-term sea ice TE data from SSM/I FCDR data beyond the AMSR-E period 
depends on how we can obtain the CF from SSM/I measurements alone. For that purpose, we utilize 
a finding of strong linear relationship between the CF and spectral gradient ratio (GR in Equation 
(7)). Here, we attempted to develop a regression algorithm determining CF at 19.4 GHz using SSM/I 
TB measurements. 

Now we relate the estimated CF (in Figure 2a) to collocated SSM/I TBs and GR between 19.4 and 
37.0 GHz at vertical polarization: 

37 19
19 ,37

37 19

V V
V V

V V

TB TB
GR

TB TB





 (7) 

0 1 19 2 37 3 19 37
R

V V V VCF a a TB a TB a GR     (8) 

where ai (i = 0, 1, 2, and 3) are regression coefficients (Table 1), which are obtained using daily CF and 
TBs data for DJF months of the 2003–2011 period, except for 2004, over the area with a sea ice 
concentration >98%. 

Table 1. Regression coefficients at two polarizations in Equation (8). 

Coefficients a0 a1 a2 a3 
V-polarization 0.48253852 0.00204367 0.0000556537 −0.50878161 
H-polarization 0.49223596 0.00201050 −0.0000576901 −0.52647698 

It is noted that the obtained coefficients are slightly different between polarizations, but spatial 
distributions and magnitudes of CFR at both polarizations are nearly identical (not shown). It is 
thought that the surface scattering influence on the apparent emissivity appears to be minor for sea 
ice in the case of the 19.4 GHz frequency, in spite of surface scattering capable of affecting the 

Figure 2. Geographical distributions of (a) directly calculated CF and (b) regression-based CFR at
19.4 GHz (explained in detail in Section 3.4) on 1 January 2004.

3.4. Development of the SSM/I-Only Algorithm for the Correction Factor

The retrieval of long-term sea ice TE data from SSM/I FCDR data beyond the AMSR-E period
depends on how we can obtain the CF from SSM/I measurements alone. For that purpose, we utilize a
finding of strong linear relationship between the CF and spectral gradient ratio (GR in Equation (7)).
Here, we attempted to develop a regression algorithm determining CF at 19.4 GHz using SSM/I
TB measurements.

Now we relate the estimated CF (in Figure 2a) to collocated SSM/I TBs and GR between 19.4 and
37.0 GHz at vertical polarization:

GR19V,37V =
TB37V − TB19V
TB37V + TB19V

(7)

CFR = a0 + a1TB19V + a2TB37V + a3GR19V37V (8)

where ai (i = 0, 1, 2, and 3) are regression coefficients (Table 1), which are obtained using daily CF
and TBs data for DJF months of the 2003–2011 period, except for 2004, over the area with a sea ice
concentration >98%.

Table 1. Regression coefficients at two polarizations in Equation (8).

Coefficients a0 a1 a2 a3

V-polarization 0.48253852 0.00204367 0.0000556537 −0.50878161
H-polarization 0.49223596 0.00201050 −0.0000576901 −0.52647698



Remote Sens. 2018, 10, 1795 7 of 15

It is noted that the obtained coefficients are slightly different between polarizations, but spatial
distributions and magnitudes of CFR at both polarizations are nearly identical (not shown). It is
thought that the surface scattering influence on the apparent emissivity appears to be minor for sea ice
in the case of the 19.4 GHz frequency, in spite of surface scattering capable of affecting the polarization
state [22]. By applying the regression equation, geographical distributions of CFR are obtained for
1 January 2004 (Figure 2b), which can be compared with the AMSR-derived CF in Figure 2a. The figure
shows that they are in good agreement, with small regional differences within 0.05 over the Arctic
Ocean (Figure 3a). The scatterplot between CF and CFR for one month (January 2004) also clearly shows
that regression-based SSM/I CFR retrievals are comparable to the direct CF, showing a correlation
coefficient of 0.98. The bias and RMSE in this comparison are −0.0004 and 0.0053, respectively. In order
to examine the robustness of the regression Equation (8), regressions were performed with different
combinations of 8 years in the 2003–2011 period. Each year’s comparison between CF and CFR

indicated that there exists a clear linear relationship between those two, with correlation coefficients
above 0.97, regardless of the year given in Table 2. This suggests that the regression coefficients
obtained in this study work well for other years. Because of this, we apply the coefficients in Table 1 to
the whole SSM/I period.
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Table 2. Correlation coefficients between directly obtained CF and modeled CFR for each year.

2003 2004 2005 2006 2007 2008 2009 2010 2011

0.9811 0.9839 0.9901 0.9798 0.9859 0.9745 0.9848 0.9897 0.9777

Consequently, the results demonstrate that the CF can be predicted from Equation (8) with SSM/I
TBs only. Therefore, by incorporating CFR into Equation (5), εA can be calculated by applying CF to
εs. Once εA is available, it is straightforward to estimate the emitting layer temperature TE from TBsfc
using Equation (2).

4. SSM/I Snow/Ice Interface Temperature (SIIT)

Since the emissivities for the smooth surface and regressed CFR values are now available for SSM/I
19.4 GHz, the apparent emissivities can be calculated from Equation (5), i.e., εR

A = CFRεs. The spatial
distributions of regression-based apparent emissivities are given in Figure 4. The distributions are
almost the same as that for the directly calculated apparent emissivity in Figure 1, demonstrating
that apparent emissivity can be estimated by solely using SSM/I measurements. Because εR

A is now
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available for the given SSM/I measurements, the emission temperature TE can be estimated. However,
because TE is in fact the temperature between snow and ice layers, as expressed in Reference [11],
the obtained emission temperature is also referred to as SIIT.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 15 
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Figure 4. Geographical distributions of the obtained apparent emissivities based on CFR for (a) vertical
and (b) horizontal polarizations at 19.4 GHz on 1 January 2004.

Figure 5 shows the geographical distributions of the SIIT retrieved from AMSR-E 6.9 GHz
and SSM/I 19.4 GHz measurements for 1 January 2004. Note that the spatial distributions of both
temperatures are similar, indicating that the retrieval method developed in this study works well
for SSM/I measurements. Both distributions show relatively colder temperatures over the central
Arctic Ocean and Canadian Archipelago where multiyear sea ice is prevalent. Relatively warmer
temperatures are shown in the Laptev, East Siberian, and Chukchi seas, where first-year sea ice is
likely present. The geographical distributions of the temperature difference between AMSR-E and
SSM/I are shown in Figure 6a for 1 January 2004. The temperature difference distributions may be
attributed to the difference distributions between CF and CFR because the unexplained CF variance in
the regression should be propagated into the temperature difference. The two difference maps show
very similar features (i.e., Figures 3 and 6). It is noted that the temperature difference is generally
within 1.5 K regardless of the ice type.
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Figure 6. (a) Geographical distributions of difference between AMSR-E 6.9 GHz and SSM/I
19.4 GHz-retrieved sea ice temperature for 1 January 2004. (b) Scatterplot between two temperatures
for January 2004 with bin size of 0.4 K for both axes. Statistics are provided in the scatterplot.

A scatterplot of the temperature difference between two for January month of 2004 is provided in
Figure 6b. Most of the pairs are near the one-to-one line, implying that both temperatures have a strong
linear relationship. The corresponding statistics show a high correlation coefficient of 0.97 and bias
(RMSE) of 0.007 K (1.01 K). It is noted that some points off the 1:1 line are in the boundary area between
sea ice and open water, where water exposure often contaminates the MW measurement scene.

Validation against the Buoy Snow/Ice Interface Temperature

Validating the developed algorithm, retrieved SSM/I sea ice temperatures are compared with
CRREL IMB drifting buoy measurements over the Arctic sea ice area [19]. For the comparison, grid-based
SSM/I-retrieved temperatures are collocated with buoy data by applying the following steps: (1) Is the
center point of any given SSM/I target with 25 km × 25 km resolution target located within a 12.5 km
distance from the buoy location at a given time? (2) Are the corresponding sea ice concentrations
greater than 98%? (3) Are the selected satellite pixels entirely covered by sea ice? (4) Select a closest
target value if multiple SSM/I targets satisfy conditions (1), (2), and (3). Although the buoy data pass
the above-mentioned criteria, the data are rejected if snow/ice interface information is not provided or
if the data failed the quality assurance criteria given in Section 2.2. The remaining measurements along
13 deployed tracks are taken for the validation. The observation periods and start and end latitudes and
longitudes are given in Table 3. Among the 13 buoy tracks, 8 were found in the northern Beaufort Sea
and 5 were found in the Central Arctic Ocean, as shown in Figure S1 in the Supplementary Material.

Figure 7a shows a scatterplot of the buoy-measured SIITs and corresponding SSM/I values along
all 13 buoy tracks, with a correlation coefficient of 0.86, bias of -0.36 K, and RMS error of 3.42 K. The plot
shows a scattered pattern, in which the daily variation is greater than 7 K. Except for the blue dots,
a large bundle of black points is located along the 1:1 line. It is noted that the scattered blue dots are
associated with three buoys (#2, #6, and #8 in Table 3) in which temperature variations at the snow/ice
interface are greater than 7 K for some data points. Close examination of those data reveals that such
large variations are not due to the shallow ice depth or ice type (not shown). It is thought that they are
likely due to problems related to the buoy instruments themselves. Rationally thinking, such large
temperature variations within the ice may not be acceptable such that 7 K is subjectively applied as a
criterion to remove such buoy measurements.
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Table 3. Used data periods and starting/ending points of buoys used for validation.

# Period Starting Point Ending Point

1 1 December 1993–28 February 1994 74.81◦N, 138.55◦W 74.38◦N, 154.19◦W
2 22 December 1997–28 February 1998 75.34◦N, 150.05◦W 75.11◦N, 159.66◦W
3 1 December 1997–28 February 1998 76.14◦N, 147.46◦W 75.11◦N, 159.59◦W
4 1 December 2003–29 February 2004 75.24◦N, 135.07◦W 74.89◦N, 141.07◦W
5 1 December 2006–28 February 2007 77.43◦N, 139.35◦W 76.74◦N, 139.14◦W
6 1 December 2006–2 February 2007 85.03◦N, 128.78◦E 86.98◦N, 125.96◦E
7 11 December 2007–27 February 2008 79.87◦N, 155.15◦W 80.85◦N, 151.78◦W
8 1 December 2007–28 February 2008 77.20◦N, 135.27◦W 74.64◦N, 135.14◦W
9 12 December 2007–23 February 2008 83.90◦N, 112.91◦W 84.00◦N, 109.63◦W

10 11 December 2007–28 January 2008 81.98◦N, 119.61◦W 82.01◦N, 119.76◦W
11 1 December 2008–18 February 2009 82.57◦N, 115.30◦W 82.09◦N, 114.50◦W
12 1 December 2010–28 February 2011 77.02◦N, 149.28◦W 76.23◦N, 146.66◦W
13 1 December 2010–28 February 2011 75.32◦N, 142.39◦W 74.10◦N, 142.60◦W
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give an attempt to produce 24 years of SSM/I SIIT. For demonstration purposes, we generated the 
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indicates that the temperature is significantly colder in the early years of the period, suggesting that 
the Arctic sea ice had experienced a rapid temperature rise during the 1988–2011 period. This type of 
data provides important information about the evolution of climate change over the Arctic Ocean in 
the last decades, if we extend this effort to include the SSMIS, which effectively replaces the SSM/I. 

Figure 7. (a) Scatterplots between CRREL IMB buoy-measured snow/ice interface temperature (x-axis)
and SSM/I-derived temperature (y-axis), from (a) all 13 buoys, and from (b) buoys after the quality
check is applied.

Because of those reasons, we exclude the blue dots in Figure 7a from the paired data set for
the comparison. Comparison results obtained after applying quality assurance checks indicate a
correlation coefficient of 0.95, bias of 0.15 K, and RMS error of 1.48 K (Figure 7b). It is important to note
that the SSM/I-derived physical temperature of the sea ice surface shows a good 1:1 correspondence
to buoy-measured SIIT, indicating that the temperature obtained for SSM/I in this study represents
the temperature near the snow/ice interface defined using buoy measurements in which the typical
emitting layer lay in MW frequencies.

As previously discussed, we intended to produce long-term SSM/I-derived temperature
information over the Arctic sea ice area. Since we developed an algorithm to retrieve the SIIT, we give
an attempt to produce 24 years of SSM/I SIIT. For demonstration purposes, we generated the mean
December SIIT from 1988 to 2011 and the results are given in Figure 8. The figure clearly indicates that
the temperature is significantly colder in the early years of the period, suggesting that the Arctic sea
ice had experienced a rapid temperature rise during the 1988–2011 period. This type of data provides
important information about the evolution of climate change over the Arctic Ocean in the last decades,
if we extend this effort to include the SSMIS, which effectively replaces the SSM/I.
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5. Discussion and Conclusions

Aiming at producing a long-term temperature record over the Arctic sea ice area, we developed
an algorithm to retrieve the wintertime SIIT over the Arctic Ocean from SSM/I FCDR data. In so
doing, a simple radiative transfer model was set up, in which the snow-ice is composed of three
layers (i.e., snow layer, volume scattering ice layer, and emitting ice layer, from the top). In the model,
the emitting radiation from the emission layer is attenuated via volume scatterings from snow/ice
layers above as well as by ice surface scattering. By using the collocated AMSR-E 6.9 GHz derived
SIIT as an emission temperature for SSM/I 19.4 GHz, the apparent emissivity was determined from
SSM/I 19.4 GHz TBs. The obtained apparent emissivity was then related to volume scattering and
surface roughness to examine how these parameters can be related to the correction factor (i.e., the ratio
between apparent emissivity at the surface and specular emissivity at the emission layer). Then the
correction factor was defined and predicted from a combination of SSM/I TBs (i.e., TB19V and TB37V).
The correction factor from SSM/I measurements can be used to predict the corresponding apparent
emissivity from the combined Fresnel equation. It is straightforward to estimate the SIIT from SSM/I
19.4 GHz measurements once the correction factor is determined from SSM/I measurements.

The developed algorithm has been successfully implemented for SSM/I TB measurements
available from July 1987. The retrieved temperatures were validated against the temperatures at
the snow-ice interface (or the temperature at the top of the ice layer) from CRREL IMB drifting buoy
measurements. The validation results indicated that the SSM/I-derived SIITs are in good agreement
with drifting buoy measurements of the SIIT (temperature at the zero ice depth), with a correlation
coefficient of 0.95, bias of 0.1 K, and RMS error of 1.48 K on a daily time scale. These results suggest
that a long-term ice temperature record can be produced by applying the developed algorithm to
well-calibrated long-term FCDR data composed of SSM/I and SSMIS data spanning over thirty years.
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It should be mentioned that caution should be exercised if the developed algorithm is applied
for thin ice because the penetration depth of the MW spectrum of interest in this study can penetrate
deeper to reach the ocean water below the ice layer if the ice depth is less than approximately 16 cm,
which is twice the penetration depth for first-year sea ice at 6.9 GHz with typical dielectric constant
of 3.3–i0.15 [31]. In other words, a portion of the signal may be from underlying water although the
magnitude is expected to be small. Additionally, the algorithm is only valid for high-concentrated sea
ice pixels because the regression coefficients for the correction factor are based on TB data over the
ice area with an ice concentration >98%. Therefore, when the sea ice concentration (SIC) decreases
with melt ponds on the sea ice during the summer ice melt, the current approach may produce
erroneous results. Furthermore, the regression coefficients for CFR may depend on the SIC products
because we tried to remove possible water-contaminated pixels. We used 98% of the SIC obtained
from National Snow Ice Data Center (NSIDC) product based on the National Aeronautics and Space
Administration (NASA)’s bootstrap algorithm as a criterion to remove such pixels. It is known that
different algorithms for the SIC (e.g., Ocean and Sea Ice Satellite Application Facility (OSI SAF),
NASA Team, and Bristol algorithms among others) result in different SIC distributions with respect to
seasons and regions [32–35]. However, considering that the water contamination should be largely
confined within the marginal sea ice area during the winter time which we focus on in this study,
the use of different data sets may provide results that do not significantly deviate from the current one.
Nonetheless, it may be worthwhile to examine how different SIC data give different results, especially
over the marginal sea ice area.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/11/
1795/s1, Figure S1: Tracks of the 13 selected buoys deployed in the Arctic sea. Colors indicate different buoy
tracks, and numbers correspond to deployed buoys defined in Table 3. Three rejected buoys (#2, #6, and #8) are
underlined in the labels.
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Appendix A

Here, the method to estimate the surface roughness and volume scattering effects on the apparent
emissivity is reviewed in detail. The snow-ice layer schematically simplified for the radiative transfer
calculation is composed of two different layers; upper layer for volume scattering and lower layer for
emission. Once MW emission occurs in the lower emission layer with emission temperature TE and
corresponding rough surface emissivity (εr), the emitted TB at the surface (TBsfc), after experiencing
volume scattering extinction, can be written as:

TBs f c = εrTEe−τsca (A1)

where τsca is the optical depth due to volume scatterings by snow and surface ice. Because of εr

for rough surfaces, it can be expressed in terms of the smooth surface emissivity (εs) scaled by the
roughness factor, F, i.e., εr = εsF.

Applying the roughness factor F to Equation (A1), we obtain:

TBs f c = εsFTEe−τsca (A2)

http://www.mdpi.com/2072-4292/10/11/1795/s1
http://www.mdpi.com/2072-4292/10/11/1795/s1
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By introducing the apparent emissivity (εA) concept described in Section 3.2, the following
equation is obtained,

εA =
TBs f c

TE
= εsFe−τsca (A3)

To solve Equation (A3), the smooth surface emissivity and roughness factor on the right-hand
side should be parameterized in terms of basic parameters, such as the refractive index and surface
roughness, using physical theory or modeling.

In the case of smooth surface emissivity, Fresnel reflection theory [30] is followed:

εs,V(Nr) = 1 −

∣∣∣∣∣∣
N2

r cos θ −
√

N2
r − sin2 θ

N2
r cos θ +

√
N2

r − sin2 θ

∣∣∣∣∣∣
2

(A4)

εs,H(Nr) = 1 −

∣∣∣∣∣∣
cos θ −

√
N2

r − sin2 θ

cos θ +
√

N2
r − sin2 θ

∣∣∣∣∣∣
2

(A5)

where εs,V and εs,H are the vertically and horizontally polarized smooth surface emissivities,
respectively; Nr is the adjusted real refractive index; and θ is the satellite zenith angle. Therefore,
the smooth surface emissivity can be obtained if the refractive index is known.

To parameterize the roughness effect in Equation (A3), a two-dimensional roughness model was
introduced [36–38]. This model assumes that there are no multiple reflections on the surface and slopes
of numerous rough facets that follow the Gaussian probability. There are three different factors to
parameterize the rough surface emissivity: (1) locally polarized emissivity for numerous facets with
different emission angles (εs,local), (2) a ratio between the area of local facets and the projected area
perpendicular to the emission direction (g), and (3) an illumination function (S). Therefore, the rough
surface emissivity εr can be expressed as an ensemble average of the smooth surface emissivity of
numerous facets [36]:

εr(Nr, σ) = εs,local gS (A6)

Since the parameters of g and S are expressed as Gaussian probability density function with a
root-mean-square (RMS) slope of the surface (σ), the rough surface emissivity can be calculated if Nr

and σ are known. Subsequently, F can be calculated as follows:

F(Nr, σ) =
εr(Nr, σ)

εs(Nr)
= εs,local gS (A7)

Based on Equations (A4)–(A7), Equation (A3) can be expressed as:

εA = εs(Nr)F(Nr, σ)e−τsca (A8)

Equation (A8) consists of two parts for each polarization and three unknowns (Nr, σ, and τsca).
In order to solve Equation (A8), information on one of three unknowns should be ready. In this study,
we employ Nr calculated in accordance with Reference [20] by assuming a spectral invariance of Nr in
the MW frequencies especially for Arctic sea ice [39]. At this point, σ and τsca can be obtained from
Equation (A8) if the apparent emissivity is known.
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