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Abstract: The physical properties of a medium such as density, grain size and surface roughness
all influence the angular dependence of spectral signatures. Radiative transfer models, such as the
one developed by Hapke, can relate the angular dependence of the reflectance to these geophysical
variables. This paper focuses on extracting geophysical parameters, fill factor (decreasing porosity)
and the single scattering albedo (SSA), through the inversion of a modified version of the Hapke
model of airborne and space-borne imagery. The inversion methodology was validated through
controlled experiments within a laboratory setting, where a good correlation (R2 = 0.72) between
the retrieved fill factor and the measured density was obtained. Using the same approach, we also
retrieved the sediment fill factor and SSA from airborne data collected by the NASA G-LiHT system,
and space-borne data observed by the NOAA GOES imager. The results from these studies provide a
mechanism to understand geophysical characteristics of the terrain and may potentially be used for
long-term monitoring of the dynamic dunes system.

Keywords: hyperspectral; bidirectional reflectance distribution function (BRDF); radiative transfer;
Hapke model; goniometer; fill factor; Algodones Dunes

1. Introduction

Remote sensing techniques are continuously being developed to extract physical information
about the Earth’s surface. Over the years, space-borne and airborne sensors have been used for
the characterization of surface sediments [1–3]. Spectral observations of sediments can be used to
effectively identify the physical characteristics of the surface ranging from its texture, roughness, grain
size, to its density [1,3–7].

Researchers have recognized soil compaction as an environmental degradation process which
hinders the maintenance of soil quality [8–10]. The mapping of soil compaction plays a significant
role in agriculture, specifically in improving crop production [8,10] and in other environmental and
geophysical applications [9,11–14]. Soil compaction can be quantified by measuring the bulk density
or porosity [15]. Ascertaining bulk density at large scales is a difficult task due to variability of the
sediment surface [8]. Remote sensing techniques can provide the necessary means of characterizing
sediment surfaces over regional and global scales [8].

Physical properties of a sediment surface such as density, grain size, surface roughness, and
moisture content influence angular dependence of spectral signatures, specifically the Bidirectional
Reflectance Distribution Function (BRDF) [3–5,7,16–27]. Models based on radiative transfer equations
can relate the angular dependence of the reflectance to these geophysical variables [3,5,7,17–20,28,29].
Extraction of these parameters can provide a better understanding of the Earth’s surface, and plays
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a vital role in various environmental modeling processes [30,31]. Among the many geophysical
parameters describing Earth sediment, the porosity (bulk density) has a significant influence on its
spectral properties [3–6,28,32,33]. Radiative transfer models, such as the one developed by Hapke,
typically predicts a correlation between reflectance and density of the material [5,32]. This phenomena
has been demonstrated repeatedly in various laboratory studies [3,4,8,34–37].

The work detailed in Bachmann et al. [3] focused on the retrieval of the fill factor from the inversion
of the Hapke model and variants (increasing fill factor corresponds to decreasing porosity). A strong
correlation was reported between the retrieved fill factor and the measured sediment density [3].
Modifications were made to the Hapke isotropic multiple scattering approximation (IMSA) model
to account for directional dependence in the multiple scattering term [3,38]. In this paper, we take a
practical approach to the retrieval of geophysical properties of Earth sediments. We apply the inversion
methodology for the modified Hapke model detailed in Bachmann et al. [3] to imagery data collected
from airborne and space-borne platforms.

Located in Southern California, our area of study is the Algodones Dunes, a potentially desirable
site for the vicarious calibration of space-borne imaging sensors [39]. A major field campaign was
conducted in March 2015 to characterize the Dunes. The NASA Goddard LiDAR, hyperspectral,
and thermal (G-LiHT) sensor suite [39,40] collected airborne imagery during the field campaign, and
the field team collected sediment samples from various sites across the dune system, capturing the
variation in its geophysical properties [3,39]. During the campaign, Hyperspectral hemispherical
conical reflectance factor (HCRF) measurements of sediments were collected on site using the
Goniometer of the Rochester Institute of Technology (GRIT), and later from samples returned to
RIT in a laboratory setting using GRIT and a second generation instrument, the Goniometer of the
Rochester Institute of Technology Two (GRIT-T) [3,39,41].

In an earlier study, we retrieved fill factor from GRIT-T BRDF measurements of Algodones
sediment samples in the controlled conditions of our laboratory [3]. In this study, we demonstrate
that fill factor also can be retrieved from airborne imagery from the NASA G-LiHT system collected
during the 2015 campaign and from imagery collected by the the Advanced Baseline Imager (ABI)
on the Geostationary Operational Environmental Satellite (GOES) series [42]. Specifically, in this
study, we retrieved two geophysical parameters of Earth sediments, fill factor and single scattering
albedo, through inversion of a modified version [3] of the radiative transfer model developed by
Hapke [5]. The specific objectives of this study were to: (1) re-validate the inversion methodology by
performing controlled experiments within a laboratory setting using a field sediment sample drawn
from a different part of the Algodones Dunes system than what was used to develop the original
laboratory-based demonstration of the retrieval in [3], (2) apply the inversion methodology to airborne
data from NASA G-LiHT, and (3) to space-borne data collected by the NOAA GOES system.

2. Study Area

The study area, Algodones Dunes, located in southeastern California (32◦52’58.44”N, 115◦1’8.4”W),
is one of the hottest and driest regions in the United States [43]. The Dunes, which are 64 km in length
and 6–10 km wide, have formed and continue to evolve through aeolian deposition and can reach heights
up-to 100 m (Figure 1) [43,44]. Prevailing winds and the presence of high mountains located in the
west and northwest have led to the formation of larger dunes with coarser sands in the west, and drier
dunes with finer sediments in the east [44]. The sediments are typically composed of 70–80% quartz,
10–15% feldspar, 5–15% rock fragments, and an assortment of heavy minerals make up the rest [45].

The Algodones Dunes System has recently been identified as a potential site for the
inter-calibration of space-borne sensors. The site has shown promise due to its similarity to the
pseudoinvariant calibration site (PICS) Libya-4 [39,46]. The 2015 field campaign provided the
information required to perform absolute radiometric correction using the Algodones site as a PICS [39].
Portable spectrometers and hyperspectral goniometers obtained ground truth data which characterized
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both spatial and temporal variability’s within the dunes [3,39,47]. The imaging platform G-LiHT
collected complementary hyperspectral and LiDAR data for the characterization of the terrain [39,40].

Figure 1. (a) A Google Earth image of the Algodones Dunes System located in Southern California;
(b) a closer view of the terrain in Algodones, showing the high dunes within the landscape and scarce
vegetation present in the desert; (c) images of the first generation GRIT (goniometer of RIT) deployed
to perform BRDF measurements during the 2015 field campaign.

3. Theoretical Development

3.1. BRDF: Theoretical Background

The bi-directional reflectance distribution function (BRDF) characterizes the angular distribution
of reflectance but is a theoretical definition. In practice, due to the finite nature of the sensor
and the source, the terms “conical” or “hemispherical” typically describe reflectance distribution
functions [33,48–50]. Hemispherical conical reflectance factor (HCRF) measurements refer to
directional reflectance measurements conducted in outdoor settings. The “conical” term refers to the
finite nature of the sensor aperture, while the “hemispherical” term reflects the fact that illumination
conditions stem from both direct and diffuse sources [33,48,49]. In laboratory settings, the term
biconical reflectance factor (BCRF) describes directional reflectance factor measurements accounting
for the finite nature of both the sensor and directional illumination source [33,48–50]. The retrieval
method described in this research can be applied to both BCRF and HCRF data. The approach is based
on inversion of a modified form [3] of the radiative transfer model developed by Hapke [5].

3.2. Hapke IMSA Model

The radiative transfer equations developed by Hapke have been used widely in planetary
astronomy and Earth observation research [5,6,18,21,29]. Hapke’s isotropic multiple scattering
approximation (IMSA) model is based on the method of invariance and considers five orders of
scattering [5,51]. The IMSA model includes terms for single scattering, multiple scattering, the shadow
hiding opposition effect (SHOE), and coherent backscatter opposition effect (CBOE) to describe how
light scatters from granular materials [5,51–54]. The solution takes the following form:
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where µi and µe are the cosines of the incident (θi) and scattered zenith angles (θe), g is the phase
angle (the angle defined by the input direction of the light source to a scattering point on the
surface, and the direction of observation), p(g) is the single particle scattering phase function,
Bs(g, K, λ) models the SHOE with BS0 being an accompanying scaling constant, while Bc(g, K, λ)

represents the angular dependence of the CBOE with BC0 a scaling constant, H
( µi

K
)

and H
( µe

K
)

are
the Chandrasekhar-Ambartsumian H-functions describing the multiple scattering, w(λ) is the single
scattering albedo as a function of wavelength, and K is the porosity coefficient. The porosity factor (K)
is a nonlinear function of the fill factor (φ) [5,32]:

K ≈ − ln (1− 1.209φ
2
3 )

1.209φ
2
3

. (2)

The CBOE dominates at very small phase angles (<2◦), where scattering within and between
particles produces coherent amplification of observed reflectance [53,55,56]. The models of our
experiments described in this paper ignore the CBOE since our BCRF and HCRF measurements
do not include sufficiently small phase angles. GRIT-T can not measure at phase angles this small due
to the finite extent of the sensor chassis; GRIT-T self-shading occurs for phase angles ≤5◦ [41]. The
IMSA model in Equation (1) also excludes factors of 1/π and µi as the measurements described are
typically BCRF and HCRF.

3.3. Shadow-Hiding Opposition Effect

The surge in brightness observed at small phase angles is represented by the SHOE in Hapke’s
radiative transfer equation [5,37,54]. The SHOE is explicitly dependent on the fill factor, but implicitly
dependent on grain size distribution [5,54]. Hapke’s model of the SHOE takes the following form:

BSH(g) =
BS0

1 + 1
hs

tan
( g

2
) . (3)

hs is the angular width parameter, which depends on both the grain-size distribution and the porosity
of the medium. Hapke evaluates the parameter for various different particle size distributions [5]. In a
unimodal case, the distribution takes the form:

hs =

(
3
8

) 3
2

K(φ)φ. (4)

However, sediment grain size distributions can be quite complicated, with the distribution often
consisting of more than one mode as illustrated in the sample that we describe later in Section 4.2.
In earlier work, we modified the width parameter to account for multimodal particle distributions [3]:

hs = εk(φ)φ, (5)

where ε is a scaling constant, with 0 ≤ ε ≤ 1. We chose this form to retain the functional dependence
on φ found in the simple distributions modeled by Hapke [5], which differed only by an overall scaling
factor. In [3], we optimized ε during the inversion process.
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3.4. Modified Hapke IMSA Model

The Hapke IMSA model calculates single-scattering contributions exactly; however, the multiple
scattering term uses an isotropic scattering approximation in which the single scattering phase function
is uniform in all directions: p(g) = 1. In recent work, we modified the Hapke IMSA model to include
anisotropic scattering of particles by introducing directional dependence into the multiple scattering
term [3]. The modification includes an extra factor which depends on the phase function and a scaling
parameter η:

r(θi, θe, g, λ) = K
w(λ)

4
1

µi + µe

(
p(g)[1 + Bs0Bs(g, K, λ)] + ηp(g)

[
H
(µi

K

)
H
(µe

K

)
− 1
])

× [1 + Bc0Bc(g, K, λ)] .
(6)

3.5. Inversion Methodology

Our inversion of the Hapke model for the retrieval of geophysical properties relies on the key
observation that the single scattering phase function is invariant to the illumination geometry [3], with
a geometric dependence only on the phase angle g. Hence, the Hapke model in Equation (6) can be
reorganized in terms of a scaled version of the observed reflectance and the multiple scattering term:

p(g) [1 + Bs0Bs(g, K, λ)] =
4

Kw(λ)
(µi + µe)r(θi, θe, g, λ)− ηp(g)

[
H
(µi

K

)
H
(µe

K

)
− 1
]

. (7)

The approach requires the acquisition of BRDF data at different illumination geometries, and
minimizes the residual between the single scattering phase function for the two sets of data:

min
φ,w(λ)

[
{p1(g) [1 + Bs0Bs,1(g, K, λ)]− p2(g) [1 + Bs0Bs,2(g, K, λ)]}2

]
. (8)

The two-parameter search over the single scattering albedo, w(λ), and the fill factor, φ, uses
the gradient-based Nelder–Mead simplex method [57]. Bachmann et al. [3] previously described the
work-flow using this inversion method.

The inversion of the Hapke parametric model is a daunting problem due to the numerous
parameters involved. Earlier studies had only limited success in relating Hapke model parameters
to real physical properties of soil sample or regoliths. These challenges are detailed extensively
in [6,37], which incorporate both gradient descent and grid search methodologies. Our inversion
method, described in [3], takes a different approach in the optimization procedure to improve the
retrieval of fill factor and single scattering albedo of sediments from the inversion of a modified Hapke
model. In addition to using a modified form of the Hapke model, which incorporates an isotropic
multiple scattering term, our inversion relies on the minimization of residuals between the single
scattering phase function from at least two different illumination conditions. This choice leads to an
inversion depending only on two parameters, the porosity and single scattering albedo, compared to
the original ten free parameters of the Hapke model. Other differences between past approaches and
our optimization scheme include the fact that past approaches used least-squares gradient descent
and grid search optimization techniques [6,37], while our approach [3] uses a simplex-based search
method, the Nelder–Mead Simplex Method [57]. Additional advantages of using the Nelder–Mead
optimization include a decreased processing time and more repeatable retrieval process. We also
found that the best optimization results relied on using regularization to achieve numerically stable
solutions [3]. Our modified Hapke model, which no longer assumes isotropic multiple scattering,
also provided consistently better and numerically stable results compared to the original model when
using our inversion methodology. This was quite evident when we changed the starting values and
step size in our optimization using the Nelder–Mead Simplex method. The use of all these techniques
within our optimization to invert the Hapke model and our variant of this model has consistently
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given us a meaningful retrieval of the sediment fill factor and single scattering albedo from both
controlled experiments in a laboratory setting, described both in [3] and in this paper, as well as from
air-/space-borne data also described in this paper.

Studies have shown the inherent dependence of reflectance on the fill factor (decreasing porosity)
of the medium, when the particles are significantly larger than the wavelength [32]. Hapke’s model
predicts that the reflectance of the medium typically increases with increasing fill factor. As the fill
factor increases (decreasing porosity) and the medium becomes more opaque to the light passing in
between the particles [32], eventually a threshold is reached where the particles are sufficiently closely
packed that the scattering is more like that observed from larger single particles, with light reflecting
off the surface less efficiently [32]. Hence, at high fill factors, a noticeable decrease in reflectance can be
observed [5].

The single scattering albedo (SSA), w(λ), at a given wavelength is the ratio of the total amount of
light scattered to the total amount of light scattered and absorbed by the particle [5]:

w(λ) =
S

S + A
, (9)

where S and A are the fraction of light scattered and absorbed by the particle respectively. The SSA
depends on the optical properties of the medium, determined by factors such as composition, grain-size
distribution, shape and structure [37,51,52]. Non-absorbing media normally have high SSA, while media
with large particles and high index of refraction generally have smaller SSA [37]. For materials such as
sediment, where particles are closely packed and large, SSA increases with decrease in particle size [37].

4. Laboratory Studies

4.1. GRIT-T: Design and Instrumentation

The goniometer of the Rochester Institute of Technology-Two (GRIT-T) is a second-generation
system designed to obtain BRDF measurements in both laboratory and field settings [3,41,58]. Figure 2
illustrates the different components of the GRIT-T system, deployed in various settings. The instrument
consists of two Analytical Spectral Devices (ASD) FR4 spectro-radiometers to simultaneously provide
directional radiance measurements from the target plane while recording the directional downwelling
radiance from the sky. The ASD spectrometers provide spectral measurements from the visible through
the short-wave infrared (350–2500 nm). The design of GRIT-T ensures positioning of the fore-optic over
an azimuthal range of 0◦ to 180◦, and−70◦ to +70◦ in zenith. This allows sampling of the target surface
over the complete hemisphere. The target-plane tracking of the instrument minimizes any variations in
the field of view (FOV). As a result, it has an angular position accuracy of ±0.2◦ in both azimuthal and
zenith sensor positions. The small-form factor sensor head assembly minimizes self-shading. GRIT-T
produces digital elevation models using two different methods: from an onboard laser measurement
unit [41] and at higher resolution from an on-board field-of-view camera, which provides stereo views
of the measurement location as input to a structure-from-motion algorithm [58].
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Figure 2. (a) The main components of the goniometer system, GRIT-T. The two Analytical
Spectral Devices (ASD) spectrometers simultaneously measures the radiance of the target plane and
the downwelling radiance from the sky. After postprocessing, they provide spectral reflectance
measurements from 350 nm to 2500 nm at a resolution of 1-nm. The C-shaped design of the base
ring along with the rotating arm allows measurements of the surface over the complete hemisphere;
(b–d) illustrates the versatility of GRIT-T being deployed in various field and laboratory settings.

4.2. Laboratory Measurements

Our laboratory studies in this work included BCRF measurements of sediment samples acquired
from the Algodones Dunes during the 2015 field campaign. These studies involved manipulating
the density of the samples, and examining how this geophysical variable affected the observed BCRF.
These data are the basis of the fill factor and single scattering albedo joint retrievals using our modified
Hapke optimization model in the laboratory portion of the present study. The Algodones sediment
sample 1306-M-03 acquired from the northern end of the dunes system (32◦58’45.00”N, 115◦7’47.00”W)
was used for the laboratory analysis. The grain size distribution along with a microscopic images of
the sediment sample is shown in Figure 3. The smaller peaks of the secondary modes are due to the
presence of finer sand and silts within the mixture.

After mechanical sieving, we found that the largest grain size fraction was for the 450 µm sieve;
particles of this size will result in scattering described by the geometric optics regime. The microscopic
image in Figure 3 demonstrates the complexity of the material observed in the grain-size distribution
and shape as well as its variety in mineral composition. The complexity of the mixture is also reflected
in the multi-modal distribution of the particle size. In [3], we introduced a modification to the width
parameter of the SHOE, which depends on the grain size distribution, to allow greater flexibility in
representing the possibility of multi-modal distributions [3].

The sample was manipulated via pluviation to achieve a series of different densities [59]. The
drop height of the sediment in the apparatus is correlated with the resulting relative density of the
sediment, and we use this approach because past analysis indicates that results are more repeatable
than an existing American Society for Testing and Materials (ASTM) standard [59]. Other approaches to
sample preparation, such as the use of a wind tunnel, have also been studied [26,27]. Such approaches
arguably can produce distributions, and in particular gradients, across a larger area that are important
in analyzing the details of Aeolian processes; however, our goals here were much simpler, namely the
production of a uniform relative density of the sediment that was highly repeatable, both of which
result from the use of a pluviation approach [59]. In our laboratory, we used pluviation to achieve
ten different densities for the sediment sample 1306-M-03 acquired from the northern end of the
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Algodones Dunes. The GRIT-T system then measured the BCRF for each sample preparation. The
objective of the laboratory measurements was to validate the radiative transfer model and the retrieval
process detailed in Section 3 and in [3].

Figure 3. (a) The grain size distribution of the sediment sample 1306-M-03 acquired from the northern
end of the dunes. The sediment consists of fraction up-to 450 µm in size; (b) the prepared sand sample
to perform the laboratory studies using the goniometer; (c) microscopic image (4×magnification) of
the sediment, demonstrating the complexity of the material.

The samples were measured at two different illumination geometries (20◦ and 60◦) for each
sediment density preparation. The minimization process described in Equations (7) and (8) uses two
data sets acquired at the different illuminations as input. The lab set-up for performing the series of
BCRF measurements is shown in Figure 4. Figure 4a shows the set-up with the illumination source at
a zenith of 60◦. The source is a 300 Watt Fresnel lamp, which provided collimated light onto the target
plane. The radiance measurements from the ASD spectrometer were referenced to a Spectralon R©

panel [60], which approximates a Lambertian surface, shown in Figure 4b.

Figure 4. The laboratory set-up to perform BCRF measurements using the GRIT-T instrument. (a) The
illumination source for the measurements was a 300 Watt Fresnel lamp, mounted on a mechanical arm
to steer the source to the desired zenith angles; (b) the goniometer collecting measurements from a
Spectralon R© panel, which serves as the reference standard.
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4.3. Spectral Analysis and Fill Factor Retrieval

The reflectance spectrum for the sample 1306-M-03 at a density of 1.5252 g/cm3 is shown in
Figure 5. The figure displays the reflectance spectra for sensor positions over the complete hemisphere,
with the illumination source at a zenith angle of 60◦. The colorbar in the figure corresponds to the
sensor azimuth. All of the lab measurements in this study followed a similar trend. Several different
factors influence the reflectance spectrum of the sediment: the presence of organic matter, mineral
composition, roughness, particle size distribution, and density [61]. The reflectance increases with
wavelength in the visible part of the spectrum (400–700 nm). There are weak absorptions bands at
wavelengths less than 1000 nm due to the presence of iron oxides within the sample [62]. The strong
absorption peaks observed at wavelengths 1450 nm and 1950 nm are due to water and hydroxyl
bands [61]. The presence of clay materials influences the absorption peaks observed near 2200 nm [62].

Figure 5. BCRF spectra obtained from the GRIT-T instrument. Shown: reflectance for sensor geometries
over the complete hemisphere with the illumination source at 60◦. The GRIT-T instrument measures
reflectance from the visible to the short-wave infrared (350–2500 nm). The colorbar corresponds to the
sensor azimuth.

Figure 6 shows the BCRF plots observed at the two different illumination angles (20◦ and 60◦)
for five different wavelengths from the visible and near infra-red (VNIR) to the short wave infra-red
(SWIR). As the figure shows, the geometry of the source strongly influences the structure of the BCRF.
There is a greater amount of diffuse scattering at illumination angles closer to the nadir (20◦). When
the illumination angle is closer to nadir, there is more multiple scattering within the medium, resulting
in more diffuse reflectance. At large zenith angles (60◦), there are more prominent backward and
forward scattering lobes. A “bowl-shape” at off-nadir positions appears due to volumetric scattering
is also evident. The influence of wavelength on the BCRF plots is also quite apparent, especially for
BCRF measurements at a zenith angle of 60◦.

The inversion of the radiative transfer model detailed in Section 3 used the two sets of
measurements conducted at different incident illumination geometries. As described in Section 3, the
modified Hapke model was inverted to retrieve the fill factor and the SSA. Figure 7 shows the retrieved
fill factor and the SSA for ten different densities ranging from 1.4542–1.6904 g/cm3. The left part of
Figure 7 displays the fill factor (red dots), which for each sample density prepared, was an average
over the wavelength range of our instrument (350–2500 nm). The inversion jointly retrieved the fill
factor and the SSA, which likewise appears in the right part of Figure 7 with the mean and standard
deviation of the SSA being over the optimization runs, one for each density. The SSA provides insight
into the optical properties of the of the individual particles in the medium. For granular materials, the
SSA typically increases with a decrease in the particle size [37]. The final fill factor was an average
of the fill factors obtained at each wavelength by the inversion process, since density is invariant to
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wavelength. In our inversion methodology, we introduced an additional constraint to ensure the
retrieved fill factor remains consistent across all wavelengths [3]. However, the results obtained from
the inversion show the fill factor values still vary slightly between the visible near infrared and the
short wave infrared. A previous study [3] also showed a similar result. The difference in the fill factor
value between the VNIR and SWIR falls within the standard deviation observed within the range
of the fill factor across all wavelengths. Over the set of densities explored in this study, we found a
moderately good correlation between the retrieved fill factor and the measured density, with a R2

value of 0.72, as shown in Figure 7. The retrieved fill factor from the original IMSA model (not reported
in this paper) varied significantly with wavelength, and also produced less numerically stable results
when compared to the modified model. We note that the retrieved geophysical properties, which we
have obtained for a sample derived from the northern end of the Algodones Dunes system, achieves a
level of accuracy similar to this same approach applied to a sample derived from the western side of
the central dune system in our earlier study [3], confirming the validity of the approach.

Figure 6. BCRF measurements for sample 1306-M-03 at density 1.5252 g/cm3. The BCRF measurements
are shown at the two different illumination geometries, (a) 20◦ and (b) 60◦. The BRDF shape depends
on both wavelength and illumination geometry.

Figure 7. (a) The average retrieved fill factor over the complete spectrum versus the measured density
for the 1306-M-03 sediment sample from the Algodones Dunes (R2 value of 0.72); (b) the average
retrieved SSA for the ten different densities, and the corresponding standard deviation over the
inversion optimization runs.
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Having validated the inversion methodology in a set of controlled laboratory experiments, we
now turn our attention to the retrieval of the fill factor from data collected by airborne (Section 5) and
satellite (Section 6) systems.

5. NASA Goddard’s LiDAR, Hyperspectral, and Thermal (G-LiHT) Airborne Imager

5.1. G-LiHT: Design and Instrumentation

An integral part of the 2015 field campaign was obtaining hyperspectral and LiDAR airborne
data using NASA Goddard’s G-LiHT system [39,40]. The hyperspectral imager, designed by Headwall
Photonics Inc. (Bolton, MA, USA), is a pushbroom system providing spectral measurements from
400 to 1000 nm at a spectral resolution of 1.5 nm with an FOV of 50◦ [40]. The LiDAR is a VQ-480
airborne laser scanner (Riegl USA, Orlando, FL, USA). The LiDAR [40] provided a detailed digital
elevation model of the terrain [39]. The flight line and the spatial coverage of the G-LiHT system
over the Algodones Dunes system is shown in Figure 8. The G-LiHT system provided hyperspectral
imagery, a LiDAR-derived digital elevation model, as well as thermal imagery at a spatial resolution
of 1 m.

Figure 8. NASA’s G-LiHT system collected airborne data from Monday 9 March 2015 to Friday
13 March 2015; (a) the flight lines (in red) of the airborne system over the 4-day period during the
field campaign superimposed on Google Earth image of Algodones Dunes; (b) G-LiHT provided
hyperspectral, thermal and LiDAR data from several different flight lines over the region shown.
We specifically show the mosaic LiDAR data superimposed on Google Earth from all the different
flight lines.

Airborne data was collected using the G-LiHT system from Monday 9 March 2015 to Friday
13 March 2015. There were several flight lines (A-,T-, and E-lines) at various different orientations flown
over the course of the field campaign. For sets of flightlines flown on the same azimuthal heading,
successive lines in the set have significant overlap with neighboring flight-lines. The combination
of all these different flights provided hyperspectral imagery obtained from multiple imaging and
illumination geometries over the same region on the ground. For one of the typical areas of maximum
overlap used in our analysis, G-LiHT obtained hyperspectral imagery from 16 different view geometries
over the same 102 m by 139 m region on the ground. Figure 9 shows a mosaic of the 16 different flight
lines along with the region of interest (ROI) for our study. The multiple view-geometries provided
the necessary range of phase angles to perform the inversion of our modified Hapke model using the
acquired hyperspectral G-LiHT imagery.
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Figure 9. A mosaic of the 16 different flight lines from 9 March 2015 to 13 March 2015 (created using
the 450 nm band of the system), which provided us with the 102 m by 139 m region of interest (ROI)
with multiple imaging and illumination geometries.

5.2. Spectral Analysis and Fill Factor Retrieval from G-LiHT Imagery

Figure 10 illustrates the spectral library and polar plots for a pixel located at 32◦54’50.7553”N,
115◦6’53.8587”W. The spectral library in Figure 10a plots the reflectance for all 16 view-geometries
in the visible and near-infrared (400–1000 nm). The spectral characteristics are consistent with the
observations in the laboratory studies, mentioned earlier in Section 4. The spectral library illustrates
the angular dependence of the reflectance of the target from airborne platforms, with the colorbar
representing the phase angle. It should be noted that the solar/sensor angular calculations from
G-LiHT take into account the slope aspect of the dunes. We used the accompanying LiDAR data from
the flight to correct for the slope of the dunes in our angle final calculations. The overall intensity of
the reflectance is distinctly dependent on both illumination and view geometry, as shown in the plot.
The scattering of the target pixel is strongest in the backscatter direction, with the phase angle varying
from typically 20◦ to 80◦. This range of phase angles was evident for all the pixels within the scene.

Figure 10. (a) The spectral reflectance for all 16 view-geometries from G-LiHT. The sensor provides
hyperspectral reflectance from 400–1000 nm over 114 bands. The colorbar corresponds to the phase
angle of the sample; (b) reflectance at 551 nm and (c) 807 nm.
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Figure 10b,c shows the polar plots at wavelengths 551 nm and 807 nm, respectively. The plots
shown are a composite of the 16 different looks from the G-LiHT overpasses for a single pixel within the
ROI. The sensor zenith angles are less than 30◦ for the different looks, which is typical of measurements
taken from airborne and space-borne platforms. The view geometries, and the consequent HCRF,
for each pixel within the ROI are fairly different from each other, as illustrated in Figure 11. The
figure shows the polar plots at a wavelength of 714 nm for four pixels across the ROI. The reflectance
measurements are significantly different for each of the pixels, influenced by the geometries as well as
the geophysical properties of the regolith.

Figure 11. RGB image of the 102 m by 139 m region derived from one of the sixteen overlapping scenes
covering the ROI, and four highlighted pixels; image-derived HCRF plots for these four highlighted
pixels within the ROI at wavelength 714 nm. The sensor and solar geometries are distinctly different
for each individual pixel, leading to unique HCRFs.

In contrast with our lab studies using the goniometer in Section 4, the image-derived HCRF
from G-LiHT does not provide us with sensor positions over the complete hemisphere. However, the
imagery set does provide a comparable range of phase angles due to both varying heading of the
aircraft overflight as well as the change in solar position throughout the day. Thus, we could perform
inversion for a similar range of phase angles to that used in our laboratory study in inverting our
model of the G-LiHT imagery data, and we were able to get similar values for the fill factor and SSA.
As a result, we believe the range of the phase angle for each pixel in the ROI provided satisfactory
information about the scene to perform inversion of the Hapke model to retrieve the fill factor. The
range of view-geometries for each pixel in the ROI provided satisfactory information about the scene
to perform inversion of the Hapke model to retrieve the fill factor. In the inversion procedure, we
assumed that neighboring/adjacent pixels had the same geophysical properties. Since the G-LiHT
system provided imagery at high spatial resolutions (1 m), it was a reasonable assumption for the
inversion process. As a result, the spectra from adjacent pixels served as the two input data sets for
inversion using Equation (8). Figure 12 shows the retrieved fill factor for the 102 m by 139 m region.
Since the fill factor is proportional to the bulk density of the sample [63,64], we can see, therefore, that
the sediment density varies across the terrain. The primary goal of 2015 campaign was focused on
acquiring calibration data in support of inter-satellite calibration across the extensive dune system [39].
Although flights occurred over sites where geotechnical data, such as bulk density, was collected, the
flight plans were not specifically designed to maximize the number of views of each calibration site,
but rather to ensure that there was G-LiHT data collected across the entire dune system, and at least
some coverage of the calibration sites. For the geotechnical calibration sites, there were typically only a
few overlapping flight lines, and not the higher degree of overlap that occurred circumstantially near
but not at the precise calibration locations. The particular spot chosen for our imagery ROI was located
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in the zone of highest overlap where inversion of the radiative transfer could be most successfully
applied. Thus, we do not have any ground bulk density data from within the 109 m by 139 m ROI.
However, we did take bulk density measurements from locations close to our ROI (1 km away), and
we used the regression of the fill factor vs. density from lab studies in Section 4 (shown in Figure 7) to
convert the relative fill factor to bulk density for the ROI. We observed that the range of density (based
on the regression) varies from 1.1 to 2.15 g/cm3, which is comparable to bulk density measurements
obtained during the field campaign (Table 1).

Figure 12. Retrieved fill factor derived from 102 m by 139 m region of the Algodones Dunes, using
G-LiHT hyperspectral imagery from 16 different view and illumination geometries.

The retrieved single scattering albedo is plotted in Figure 13. The figure shows the average
retrieved SSA from all pixels over the ROI, and the corresponding standard deviation. We also report
the retrieved fill factor for four locations within our ROI, while the HCRF spectra for these four
individual pixels are shown in Figure 11.

Table 1. Bulk density measurements conducted during the 2015 Algodones field campaign from sites
near our ROI.

Sample Name GPS Location Bulk Density (g/cm3)

BC01-01 32◦55’8.25”N, 115◦7’2.42”W 1.96
BC01-02 32◦55’9.47”N, 115◦7’0.06”W 2.25
BC02-01 32◦54’54.77”N, 115◦6’33.03”W 2.18
BC02-02 32◦54’55.35”N, 115◦6’33.91”W 2.08
BC03-01 32◦54’55.07”N, 115◦6’34.76”W 2.02
BC03-02 32◦54’53.98”N, 115◦6’34.26”W 2.19
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Figure 13. (a) The average single scattering albedo for the ROI from the G-LiHT imagery, and the
corresponding standard deviation across all the pixels; (b) the retrieved SSA for four locations within
the ROI (the image-derived HCRF spectra for these pixels are shown in Figure 11).

6. The Geostationary Operational Environmental Satellite (GOES)

6.1. GOES: Design and Instrumentation

The GOES satellite series are a collaborative venture between the National Aeronautics and Space
Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) [65].
The 16-channel Advanced Baseline Imager (ABI), the primary imaging system on the GOES-R series,
is used for a variety of environmental applications relating to the weather, land, ocean, and the
atmosphere [42].

The ABI is a multi-spectral imaging system, with 16 different spectral bands from the visible to
the longwave infrared (0.47–13.3 µm) [42]. The spatial resolution of the system varies from 0.5 km to
2 km depending on the spectral band [42]. The imaging system has two different scanning modes,
providing excellent coverage rate. It is capable of collecting a full disk (Western Hemisphere) image
every 15 min, images of the Continental United States (CONUS) every 5 min, and also a selectable
1000 km by 1000 km region every 30 s [42]. A pseudo-RGB image of the CONUS on 1 July 2017 is
shown in Figure 14. The ABI system also provides on-orbit calibration for all 16 bands, minimizing
errors due to degradation over time.

Figure 14. (a) The figure shows a pseudo-RGB image of the CONUS on 1 July 2017 observed by the ABI
multi-spectral imaging system. The ABI provides imagery at 16 different spectral bands (0.47–1.3 µm)
with a temporal frequency of 5 min. The image has a spatial resolution of 0.5-km; (b) the Algodones
Dunes observed via the ABI imager.
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6.2. Spectral Analysis and Fill Factor Retrieval from GOES Imagery

The analysis of the GOES imagery was performed on four bands from the visible to the near
infra-red; band 1 (0.47-µm), band 2 (0.64-µm), band 3 (0.86-µm) and band 5 (1.6-µm). Band 2 has a
spatial resolution of 0.5-km, while the remaining bands used in this study have a resolution of 1-km.
The spatial resolution for bands 1, 3, and 5 was interpolated to 0.5-km. Figure 14 shows ABI imagery
of the Algodones Dunes, a 23.5 km by 17.5 km region. Although the ABI instrument has the same
view-geometry of the surface, as the solar position changes, the excellent temporal coverage of the
system provides the necessary range of phase angles to perform the inversion. Unlike the angular
calculations for the G-LiHT study in Section 5, we did not account for the slope aspect for the GOES
imagery, as we did not have any accompanying LiDAR data and also the spatial resolution of 0.5-km
made it difficult to accurately correct for the slope of the dunes. Figure 15 shows the variation of the
phase angle from sunrise to sunset on 1 July 2017. Since the phase angles are similar before and after
noon, they act as the two sets of data required to perform the inversion in Equation (8).

Figure 15. The ABI collects imagery of the surface every 5 min. The excellent temporal coverage
provides a range of phase angles at which the surface of the Earth is being observed. The figure shows
the observed phase angles over the Algodones Dunes from sunrise to sunset on 1 July 2017.

Figure 16 shows a map of the retrieved fill factor obtained from the GOES imagery through
the inversion of the modified Hapke model. There is not a large variance in the retrieved fill factor
across the dunes from the GOES imagery, as can be observed from the colorbar in Figure 16. This
is possibly due to the fact that GOES-R ABI imagery has a ground sample distance (GSD) of 0.5 km.
The low spatial resolution of the system averages a substantial region on the ground, consisting of
different materials, which ultimately affects the retrieved fill factor. However, at this spatial resolution,
qualitatively the distribution of the fill factor does highlight certain characteristics of the dunes. The
fill factor generally increases with height, and we observed this relationship when retrieved fill factor
was compared against LiDAR elevation data collected by the G-LiHT sensor during the 2015 field
campaign. Figure 17 shows side-by-side images of the fill factor and DEM of the dunes. The spatial
resolution of the fill factor image was interpolated from 0.5-km to 1-m to match the GSD captured by
the LiDAR system. The sediment fill factor typically increases (decreasing porosity) with the height of
the sediment medium [66]. The surface sediments compress the materials underneath, increasing the
density with height [66]. Figure 17 shows that high retrieved fill factors correlate well with the peaks
of the higher dunes observed in the middle of the desert. The edges of the desert, where there is more
of a basin or depression, have lower fill factor values associated with lower density. The northeastern
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part of the desert in Figure 17, circled in black, consists mostly of rock formations and dense vegetation,
an area for which our sediment retrieval model for the fill factor does not apply, and produced a high
fill factor. As expected here, our retrieval model has only a weak correlation with the LiDAR data.

Figure 16. Retrieved fill factor from the GOES imagery from the inversion of the modified Hapke
model detailed in Section 3. The inversion was performed on the Algodones Dunes, a 23.5 km by
17.5 km region, at a spatial resolution of 0.5-km.

Figure 17. (a) LiDAR data collected by the NASA G-LiHT system during the 2015 field campaign, and
(b) the corresponding retrieved fill factor over the same region from the NOAA GOES imagery on
1 July 2017. The northeastern part of the dunes is circled in black, where we have mostly vegetation
and rock formation, an area where our retrieval model for the fill factor does not apply.

7. Monitoring Large-Scale Changes in the Sand Dunes

The GOES imager is an ideal system for monitoring the Algodones Dunes. Its high temporal
resolution can observe changes in the fill factor, and thus the bulk density, in response to meteorological
phenomena on short time scales.
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Figure 18. The retrieved fill factor of the Algodones Dunes from 1 to 28 July 2017. The figure also
displays the standard deviation in the fill factor over the month period. The average daily wind speed
(AWND) in meter-per-second (m/s) and the maximum (TMAX) and minimum temperature (TMIN) in
Celcius (C) for each day are reported for each acquisition.
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Wind-blown sands have formed the Algodones Dunes whose topography changes continuously
due to the influence of local wind patterns [45]. Dunes are generally steeper in the windward side
and shorter on the lee side [67,68]. The common mechanism for the wind induced sand movement is
saltation, in which the wind carries aloft individual grains from the surface and eventually deposits
them back on the surface [67,69]. The movement of particles within the dunes generally depends on
particle characteristics (grain size, shape and density) and the wind speed [69]. Saltation occurs for
particles of size approximately 70–500 µm, a range encompassed by typical grain size distributions
observed in the Algodones Dunes in previous studies [3,68]. This wind induced sand movement takes
place almost entirely within the top 0.5 m of the desert surface, with 90% of the movement happening
within 2.5 cm [67]. For fine-grained particles, the minimum velocity required for the movement of
sand is approximately 5 m/s at 1 m above the surface [67]. A relationship between wind speed and
grain size in which saltation occurs is described in further detail by [70].

The high rate of image acquisition by GOES along with the inversion process detailed in this
article can be used to monitor changes in the dunes caused by meteorological influences such as wind
and precipitation.

Figure 18 illustrates the fill factor retrieved from GOES ABI cloud-free imagery of the Algodones
Dunes during the period from 1 July 2017 to 28 July 2017. The figure also displays the standard
deviation over the month of July. We obtained meteorological data from the Global Historical
Climatology Network (GHCN) [71]. The database provides historical weather data from numerous
stations around the globe. The average daily wind speed (AWND), maximum temperature (TMAX),
and minimum temperature (TMIN) for each day is also shown in Figure 18. The meteorological data
were recorded by the Marine Corps Air Station (MCAS) in Yuma, AZ, USA. Our retrieved fill factor
from the GOES imagery of Algodones varies from day-to-day due to the process of saltation induced
by the prevailing wind. It should be noted that wind pattern is not the only factor influencing the
retrieved fill factor for a particular day. For example, the wind conditions are similar for 2 and 15 July;
however, the fill factor is drastically different for these two days due to changing wind patterns leading
up to that day as well as other environmental factors. The largest change in the retrieved fill factor
occurs in the center of the dunes as illustrated by the standard deviation in Figure 18. This region
generally consists of active dunes with medium to fine sands, and the topography is susceptible to
the prevailing wind. Winds have less impact on the northern end of the dune system, and, to a lesser
extent, also the southern end. The presence of vegetation and rock formations within these regions of
the Dunes stabilizes the sediments, minimizing the influence of winds on the topography.

8. Conclusions

The physical properties of sediments such as density, grain size and surface roughness influence
the angular dependence of its spectral signature. Models based on radiative transfer equations, such as
the one developed by Hapke, can relate the angular dependence of the reflectance to these geophysical
variables. This paper focused on extracting geophysical parameters, fill factor (decreasing porosity)
and the single scattering albedo, through the inversion of a modified Hapke model of airborne and
space-borne imagery. The area of study was the Algodones Dunes located in Southern California.
The Algodones Dunes System is considered a potentially desirable site for the vicarious calibration of
space-borne imaging sensors, and the study detailed in this paper provides a better understanding of
the physical characteristics of the sediment surface.

We validated the inversion methodology by performing controlled laboratory measurements on
sediment samples from the Algodones Dunes. We used GRIT-T to measure hyperspectral BCRF of
these samples, and we found a good correlation between the retrieved fill factor and the measured
density in the present laboratory experiments, corroborating experiments done in previous work [3].
After validating the inversion methodology, we demonstrated the retrieval of the fill factor from
angular dependent reflectance data derived from airborne and satellite imagery time series.
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We applied the inversion methodology to airborne hyperspectral imagery collected by the NASA
G-LiHT system during the 2015 Algodones Dunes field campaign [3,39]. The significant overlap
between the G-LiHT flight lines during the campaign provided imagery with multiple geometries over
the same region on the ground. In total, there were 16 different view geometries over the same 102 m
by 109 m region used in this study. The retrieved fill factor and SSA provided a better understanding
of the variability of the terrain.

We also retrieved the fill factor from NOAA GOES ABI imagery. The inversion used four bands
from the visible to the near infra-red. The high temporal coverage of the system provided the necessary
range of phase angles to perform the inversion. There was not a large variance in the retrieved fill
factor due the low spatial resolution (0.5-km) of the GOES system. The low spatial resolution of the
system averages a significant portion of the surface, smoothing variations in the retrieved fill factor.
However, qualitatively, the retrieved fill factor still highlighted some characteristics of the dune. The
fill factor generally increased with height, and this correlation was clearly visible when compared
to LiDAR data from the Dunes. We also used the high temporal resolution of the GOES imager to
monitor changes in the dunes associated with meteorological phenomena. In this paper, specifically,
we observed changes in the fill factor or density as a function of the intensity of the prevailing winds.
The density of the dunes seems to vary day-to-day, due to the process of saltation induced by the
winds. Prevailing winds had the greatest impact on the center of the Dunes system; the predominant
sediment has medium to fine sands there, which are most susceptible to the winds. The presence of
vegetation in the northern end of the Dunes, and, to an extent the southern end, mitigates the effects of
the winds, and these trends appear in our retrieved fill factor.

The research in this paper detailed the inversion of the modified Hapke model to retrieve the fill
factor and the single scattering albedo originally described in [3]. In this paper, we demonstrated that
this method, which was originally developed and tested using laboratory data, could be extended
successfully to work with inputs from multi-temporal airborne and satellite imagery. Future work
may include a more targeted Algodones-2 campaign to further extend the analysis detailed in this
paper, i.e., the flight plan for the airborne sensor would focus on a larger overlap region on the surface
with significantly more view-geometries, and also a larger number of samples would be taken at
various locations within the overlap zone to provide reference data. We have also recently conducted a
field campaign in another field setting where both extensive ground reference data and overlapping
hyperspectral imagery from different sensing platforms were collected. These data will be used in a
rigorous verification of the initial results that we have obtained in the present study.
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