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Abstract: As an essential variable in linking water, carbon, and energy cycles, evapotranspiration (ET)
is difficult to measure. Remote sensing, reanalysis, and land surface model-based ET products
offer comprehensive alternatives at different spatio-temporal intervals, but their performance
varies. In this study, we selected four popular ET global products: The Global Land Evaporation
Amsterdam Model version 3.0a (GLEAM3.0a), the Modern Era Retrospective-Analysis for Research
and Applications-Land (MERRA-Land) project, the Global Land Data Assimilation System version 2.0
with the Noah model (GLDAS2.0-Noah) and the EartH2Observe ensemble (EartH2Observe-En). Then,
we comprehensively evaluated the performance of these products over China using a stratification
method, six validation criteria, and high-quality eddy covariance (EC) measurements at 12 sites.
The aim of this research was to provide important quantitative information to improve and apply
the ET models and to inform choices about the appropriate ET product for specific applications.
Results showed that, within one stratification, the performance of each ET product based on a
certain criterion differed among classifications of this stratification. Furthermore, the optimal ET
(OET) among these products was identified by comparing the magnitudes of each criterion. Results
suggested that, given a criterion (a stratification classification), the OETs varied among stratification
classifications (the selected six criteria). In short, no product consistently performed best, according
to the selected validation criterion. Thus, multi-source ET datasets should be employed in future
studies to enhance confidence in ET-related conclusions.

Keywords: evapotranspiration; eddy covariance observations; latent heat flux; a stratification method;
multi-source; China

1. Introduction

As an essential component of water balance, evapotranspiration (ET) can directly impact both
regional and global hydrological processes. Globally, ET has changed over recent decades, owing to
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climate and vegetation changes, human activities, and other factors [1–3]. Additionally, ET plays a
crucial role in the land–atmosphere interface, which is closely associated with various climate variables
(e.g., humidity, cloud information, temperature, and precipitation) given its link with water, energy, and
carbon cycles, thus further influencing the climate system [4,5]. Accurate estimation of ET is crucial to
comprehensively understand the changes in regional and global hydrological cycles (including extreme
events, such as floods and droughts) and climate, and to reasonably and accurately estimate ecosystem
productivity and agricultural irrigation needs [6–9]. More importantly, this information is of practical
significance for food security and sustainable development of the global socio-economy [10,11].

Despite its importance, direct and continuous measurements of ET are challenging [4,12,13].
With the development of theories on boundary layer meteorology and observation technology,
short-term ET measurements have become available based on porometry and lysimeters [14], energy
balance and micrometeorological techniques, such as the Bowen ratio [15], eddy covariance (EC)
techniques [16], and scintillometry [17]. Undoubtedly, these measurements provide necessary materials
for investigating ET processes and relevant mechanisms, as well as ET-related issues at specific locations
and periods; however, owing to the sparse distribution of the observation sites and the shorter time
span, the conclusions based on the limited ET observations may lack universality, especially for
long time periods and for a large spatial span [8,18]. To that end, numerous remote sensing [19–23],
reanalysis [24–27], and land surface model (LSM)-based ET products [28–30], as well as estimates from
empirical up-scaling of in situ observations [31] with different spatio-temporal resolutions and spans
have recently been developed. While these datasets provide an opportunity for use in long-term and
large spatial ET-related studies, validations and inter-comparisons of the data are necessary. Usually,
these ET products have different levels of uncertainties, which are associated with their distinct
purposes and applications [5,7,32–34]. It is reported that the accuracy of remote sensing-based ET
varies over space and time, with uncertainties between 15% and 30% [32,33]. Thus, to reduce the
impacts of ET product uncertainties on the degree of confidence for ET-related results (e.g., hydrological
cycle, land-atmosphere interaction, agriculture, and ecosystem), we should assess the suitability of the
ET products.

Eddy covariance (EC) ET has been used as the typical reference data for validating various ET
estimates at the site and pixel level (e.g., for a remote sensing-based product) or at grid (e.g., reanalysis-
and LSM-based products) scales [4,35,36]. Yet, EC measurements are commonly flawed, particularly
with respect to a lack of energy balance closure at some EC sites, relatively short periods, and sparse
spatial coverage [37]. Recently, many studies have quantified the performance of various ET products
across the globe [5,8,34,38–42]. For example, Michel et al. [40] used EC ET at 24 towers across the
world as benchmark data to assess four remote sensing-based ET products, and stated that all of the
products performed better in wet and moderately wet climate regimes than in dry regimes. Majozi et
al. [8] evaluated the accuracy and precision of four ET estimates over two eco-regions of South Africa,
and indicated that none of the ET products always performed better in the two biomes. Kim et al. [38]
found that the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 ET for forested
land cover of Asia was more accurate than for other biomes. Ershadi et al. [34] concluded that the
ET models in Europe and North America performed differently for certain biomes, and models with
relatively higher accuracy varied among biomes.

The climate in China has greatly changed in recent decades, with obvious variations in
precipitation, temperature, wind speed, sunshine duration or radiation, and humidity [43–51]. It is
worth quantifying how and by what magnitudes the ET processes responded to the climate change
in order to formulate climate change countermeasures (e.g., maintaining ecosystem health, planning
agricultural irrigation, and reducing natural disasters to the socio-economy). While a number of ET
products provide the necessary tools to examine this issue, the potential risks of inaccurate and even
incorrect conclusions are still large, owing to a lack of validations of these products. Recently, some
assessments have been conducted for various ET products, as well as the robustness of different ET
algorithms across China based on limited EC observations [39,52–57]. In the work of Yang et al. [42],



Remote Sens. 2018, 10, 1692 3 of 28

the validation results for the GLEAM ET showed that, relative to EC ET at eight sites, this product
performed well, particularly for the grassland sites. On the basis of routine measurements at one EC
site in a semi-arid environment of north China, Schneider et al. [52] analyzed the capabilities of four ET
algorithms in estimating ET and suggested that the Hargreaves and Makkink methods outperformed
others. Yang et al. [56] evaluated the performance of three dual-source ET products in the Heihe River
Basin in Northwest China, and indicated that the MOD16 and HTEM (hybrid dual-source scheme and
trapezoid framework-based ET model) ET performed the worst and best, respectively.

Undoubtedly, ET processes and variations are of theoretical significance in the development of
disciplines and inter-disciplines and have practical application value for social sectors, especially
for China with exacerbating climate change. Therefore, evaluations of existing and newly released
ET products (e.g., the EartH2Observe ensemble) from various perspectives (e.g., performance in
various biomes and climate regimes and at various elevation levels) are essential for comprehensively
documenting the suitability of these available products and further improving them. Such evaluations
will provide more accurate ET estimates for ET-related studies, and thus, enhance the robustness
of ET-related results. For this purpose, we collected EC observations from 12 sites in China, which
generally cover common biomes, climate regimes and elevation levels, and four popular or new ET
global products (one remote sensing-based product, one LSM ensemble, and two reanalyzes-based
ET products). A stratification method using the whole of all of the EC sites, biomes, climate regimes,
and elevation levels was employed to comprehensively validate these products using EC ET as a
benchmark reference. Then, the corresponding optimal ET product (OET) was identified by comparing
the magnitude of each validation criterion. We will discuss the potential causes for the performance
outcomes, as well as various aspects of the product uncertainties.

2. Data and Methods

2.1. Global Land Evaporation Amsterdam Model ET

A remote sensing-based product, the Global Land Evaporation Amsterdam Model (GLEAM)
ET was among the products selected for this study. This model comprises a set of algorithms
with inputs of various satellite observations and reanalysis forcings (Table 1), whose rationale is to
maximize the recovery of information on ET contained in current satellite observations of climate and
environmental elements [58]. It separately estimates three sources of ET (transpiration, soil evaporation,
and interception) for bare soil, short vegetation, and vegetation with a tall canopy within each grid cell.
First, potential ET (PET) was calculated based on the Priestley-Taylor formula and measurements of
surface net radiation and near-surface temperature. For each fraction of bare soil, tall canopy, and short
canopy, the estimated PET was then converted into actual ET by applying a multiplicative stress factor,
which is a function of microwave vegetation optical depth (VOD; [59]) observations and soil moisture
(SM) estimates from a multi-layer running water balance. Specifically, to minimize uncertainties from
random forcing, satellite-based SM was assimilated into the soil profile. Regarding interception loss, a
Gash analytical model was employed by GLEAM. In contrast, ET for water bodies and regions covered
by ice and/or snow was obtained by a variant of the Priestley-Taylor equation. Three new datasets of
ET with different forcings and spatio-temporal coverage were produced by GLEAM version 3.0 (v3.0).
The GLEAM v3.0a (GLEAM3.0a) ET product was chosen because of the valuable potential of this data
in climate change studies, given that the datasets have the longest temporal and the largest spatial
spans of 1980–2014. This daily datasets have a spatial resolution of 0.25◦ × 0.25◦ and are based on
satellite-observed SM, VOD, and snow-water equivalent (SWE), reanalysis air temperature (T) and
radiation, and a multi-source precipitation product.
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Table 1. Overview of ET products, including their PET schemes, along with the number of soil layers,
precipitation and radiation datasets and other forcings.

ET Products PET Schemes
Major Forcing Datasets

References
Precipitation Radiation Others

GLEAM3.0a Priestley-Taylor MSWEP ERA-Interim

ESA GLOBSNOW and
NSIDC SWE, CCI-LPRM

VOD, CCI SM and
LIS/OTD LF

Martens et al. [58]

MERRA-Land Penman-Monteith CPC-U
MERRA

version 1.0
outputs

T, W, Q and SP Reichle et al. [60]

GLDAS2.0-Noah Penman-Monteith PUMFD PUMFD T, W, Q and SP Rodell et al. [28]

EartH2Observe-En Variable WFDEI WFDEI T, W, Q and SP Schellekens et al. [30]

Note: MSWEP: Multi-Source Weighted-Ensemble Precipitation; CPC-U: Climate Prediction Center Unified; ESA:
European Space Agency; NSIDC: National Snow and Ice Data Center; CCI-LPRM: Climate Change Initiative-Land
Parameter Retrieval Model; LIS/OTD LF: Lightning Imaging Sensor/Optical Transient Detector lighting frequency;
W: wind speed; Q: relative or specific humidity; SP: surface pressure. Among the EartH2Oberve models, the PET
schemes are different, including Penman-Monteith, Bulk ETP, Hamon (tier 1), modified Penman, Priestley-Taylor
and net radiation-based algorithms. A detailed description about these models can be found in Dutra et al. [61] and
their respective model papers (Table S1).

2.2. Modern Era Retrospective-Analysis for Research and Applications-Land ET

The Modern Era Retrospective-Analysis for Research and Applications (MERRA)-Land ET is a
reanalysis-based product. MERRA is an addition to the suite of global, long-term reanalysis products
generated by the National Aeronautics and Space Administration (NASA) Global Modeling, and
Assimilation Office (GMAO) with the Goddard Earth Observing System (GEOS-5; [62]). This system
combines the NASA Atmospheric General Circulation Model (AGCM) with a set of state-of-the-art
physics packages and the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical
Interpolation (GSI) assimilation package, and incorporates information from ground and satellite-based
observations of the atmosphere, including many modern satellite derivations (e.g., Atmospheric
Infrared Sounder (AIRS) radiances and scatterometer-based wind retrievals). In particular, MERRA
focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time
scales, and thus introduces the innovative GEOS-5 Catchment LSM [63], which can explicitly address
the subgrid-scale SM variability and its impact on runoff and ET. Unlike common LSMs, this model
is run at the basic computational unit of the topographically determined hydrological catchment or
watershed. For the original MERRA, the precipitation is simulated from the system’s AGCM following
the assimilation of the atmospheric observations; however, significant errors exist in the amounts and
timing of the model-generated precipitation and negatively influence the land surface hydrological
variables [26]. To overcome this issue, offline, land-only reanalysis data (i.e., MERRA-Land) were
produced based on merging gauge-based data from the NOAA Climate Prediction Center with
MERRA precipitation and revised parameters in the original canopy precipitation interception model.
This supplemental land surface data of the original MERRA, as noted by Reichle et al. [60], stated
that the capability of MERRA-Land in the land hydrology estimates has been significantly improved.
The monthly MERRA-Land ET, with a horizontal grid of 0.67◦ longitude × 0.5◦ latitude, is used here
and covers the period from 1980–2016.

2.3. Global Land Data Assimilation System ET

The Global Land Data Assimilation System (GLDAS) is based on the North American Land Data
Assimilation System (NLDAS), and is a global, high-resolution, offline (uncoupled to the atmosphere)
terrestrial modeling system together with data assimilation techniques for producing fields of land
surface states and fluxes (e.g., ET, SM, and latent, sensible, and ground heat flux) in near-real time.
Importantly, for more optimal land surface products from different LSMs (i.e., Mosaic, Noah, the
Community Land Model, and the Variable Infiltration Capacity model), the satellite and ground-based
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observations are used as constraints in both model forcing (to avoid biases in atmospheric model-based
forcing) and parameterization (to curb unrealistic model states; [28]). To date, two versions of the
GLDAS product (i.e., GLDAS1.0 and GLDAS2.0) have been released. Recently, increasing evidence
has reported that GLDAS1.0 products have serious discontinuity issues owing to their forcing data
(e.g., with large precipitation and temperature errors in 1996 and 2000–2005, respectively) [64].
Therefore, we use the monthly ET from the GLDAS2.0 coupled with the Noah LSM (GLDAS2.0-NOAH),
which has a spatial resolution of 0.25◦ × 0.25◦. This product is simulated using the Princeton University
meteorological forcing dataset (PUMFD), which has been bias corrected via observation-based products
for the period 1948–2010 [65].

2.4. EartH2Observe ET

Aiming to develop a global water resources reanalysis for multi-scale water resource assessments
and research projects, the EartH2Observe project uses state-of-the-art meteorological reanalysis and
five global hydrological models (GHMs), a simple water balance model, and four LSMs with extended
hydrological schemes. These models run offline and are driven by the same reanalysis-based forcing
(i.e., WATCH (Water and Global Change FP7 project) Forcing Dataset ERA-Interim (WFDEI)) [66].
This dataset is based on the European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-Interim reanalysis and has been adjusted with the Climatic Research Unit (CRU) dataset by
a sequential elevation correction of surface meteorological elements plus monthly bias correction from
gridded measurements. The simulations were performed from 1979–2012 in a continuous run. It should
be noted that because of the different nature of the models, the spin-up procedures differed and were
performed respectively to match their requirements and reach the climatic equilibrium states [30];
detailed information about these models can be found in Dutra et al. [61] and in their respective model
papers. For an individual model, the daily and monthly simulations of the state of the surface water
storage and fluxes are provided at a spatial resolution of 0.5◦ × 0.5◦, as well as the 10-model arithmetic
mean (i.e., ensemble). The monthly multi-model ensemble (named EartH2Observe-EN) ET is used in
this study, which can mitigate the potential errors and uncertainties from a single model [67].

Notably, in order to make inter-comparison possible, all selected ET products were aggregated
to the same spatial resolution (0.25◦ × 0.25◦) with a widely used bilinear interpolation method and
temporal (monthly) resolutions. More information about these products is listed in Table 1.

2.5. Eddy Covariance ET

The observed ET (generally reflected by latent heat flux) at 12 EC sites (Table 2 and Figure 1),
commonly used to monitor CO2, water vapor, and energy exchanges between the biosphere and
atmosphere, were collected to examine the performance of the four ET products. Of these sites, one,
eight, and three are from National Climatological Observatory of China Meteorological Administration
(NCO-CMA), FLUXNET (http://fluxnet.fluxdata.org/), and ChinaFlux (http://www.chinaflux.org/),
respectively. While half-hourly observations were obtained, the time spans of the EC site observations
differed, ranging from 2 (24) to 4 years (48 months). Standardized procedures [68] and the gap-filled
method [69] were used for quality control of the EC measurements. To obtain consistent temporal
resolutions for the four ET products, we also aggregated the EC half-hourly measurements to monthly
and annual values at each site for the following analyses. These sites are distributed across different
International Geosphere-Biosphere Programme (IGBP)-based biomes (i.e., mixed forest (MF), evergreen
needleleaf forest (ENF), evergreen broadleaf forest (EBF), crop-land (CRO), grassland (GRA), and
wetland (WET)), climate regimes (arid and wet regions), and elevation levels (>500 m, 500–1500 m,
and <1500 m). Notably, the aridity index, which has been widely used to create climate divisions
over the globe (e.g., Reference [70]), is employed to define climate regimes here. Arid and wet
regions correspond to climatological aridity indices (CAI; climatological value of PET divided by
that of precipitation) above and below 1.0, respectively. In this study, CAI is computed based on the
gridded monthly PET and observational precipitation with a spatial resolution of 0.25◦ × 0.25◦. PET is

http://fluxnet.fluxdata.org/
http://www.chinaflux.org/
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calculated from the Food and Agriculture Organization (FAO)-56 Penman-Monteith equation [71]
with the gridded monthly meteorological observations (i.e., sunshine duration, wind speed at 2 m
height, and maximum and minimum temperatures, and relative humidity). The gridded datasets are
produced based on routine meteorological observations at 1211 weather sites of CMA using an inverse
distance weighted interpolation method.

Table 2. Overview of EC stations selected to validate ET products.

Full (Abbreviated)
Name Lon (◦N) Lat (◦E) Altitude

(m)
Time
Span

IGBP
Biomes

Precipitation
(mm)

PET
(mm) CAI

Changbaishan (Cbs) a 128.10 42.40 738 2003–2005 MF 682.80 667.33 0.99
Qianyanzhou (Qyz) a 115.06 26.74 110.8 2003–2005 ENF 1517.2 995.29 0.65
Dinghushan (Dhs) a 112.54 23.17 300 2003–2005 EBF 1730 1064.2 0.63

Xishuangbanna (Xsbn)
b 101.27 21.95 750 2003–2005 EBF 1446.9 1130.1 0.83

Yucheng (Yc) b 116.57 36.83 28 2003–2005 CRO 531.61 822.85 1.49
Haibei Alpine Tibet

(Haa) a 101.18 37.37 3250 2002–2004 GRA 428.15 760.93 1.99

Haibei Shrub-land
(Has) a 101.33 37.61 3160 2003–2005 WET 433.08 755.62 1.85

Neimenggu (Nmg) b 116.67 44.53 1189 2004–2005 GRA 304.82 703.01 2.39
Dangxiong (Dx) a 91.07 30.50 4333 2004–2005 GRA 405.52 871.01 2.56
Changling (Cl) a 123.51 44.59 171 2007–2010 GRA 404.66 716.59 1.76

Duolun (Dl) a 116.28 42.05 1350 2006–2008 GRA 389.51 730.72 1.91
Shouxian (Sx) c 116.79 32.44 24 2007–2010 CRO 1021.1 918.35 0.92

Note: a, b and c denote that this site is from FLUXNET, ChinaFlux and NCO-CMA, respectively.
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To obtain the observed ET (mm/day), the daily EC latent heat flux (LE, W/m2) from the twelve
sites can be converted using the following equation [23,71,72]:

ET =
LE
λ

(1)

where λ is the LE of vaporization with a fixed value of 2.45 MJ/kg. In fact, this parameter changes with
temperature [22,73] and potentially influences the accuracy of the estimated EC ET with Equation (1).
To measure the impacts of λ, comparisons of the estimated EC ET, with the constant of 2.45 MJ/kg and
the variable λ (reflected by a function of temperature [73]), were conducted; detailed information is
presented in Table S2. Briefly, the differences between the two estimations for each site were much
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smaller, implying that the impacts of the λ changes on the estimated EC ET are minimal. Thus, in
this study, we do not consider the impacts of the λ changes due to temperature differences among
sites. This study focuses on monthly and annual comparisons, and thus the daily EC ET estimates are
integrated into monthly and annual values before conducting validations.

2.6. Validation Criteria

Several validation criteria are employed to comprehensively evaluate the performances of the
four ET products. Mean Error (ME) provides a way to quantify the biases of the estimates relative
to measurements, while Root-Mean-Square-Error (RMSE) can describe the accuracy of estimations.
Due to spatio-temporal differences in ET magnitudes, it is difficult to directly compare ET products’
performances among regions and during study periods using ME and RMSE, and therefore their
relative values (i.e., RME and RRMSE) are also given. Alongside the criteria above, correlation
coefficient (R) and Taylor Score (TS, between 0 and 1.0 [74]) are computed to measure the capability of
capturing spatio-temporal ET variability, and the overall performance of each product, respectively.
In general, the higher the TS, the better the ET product performs [74]. These validation metrics are
expressed as:

ME =
1
n

n

∑
i=1

(Si − Oi) (2)

RME =
ME
O

(3)

RMSE =

√
∑n

i=1(Si − Oi)
2

n
(4)

RRMSE =
RMSE

O
(5)

R =
∑n

i=1[(Si − S)(Oi − O)]√
∑n

i=1 (Si − S)2
√

∑n
i=1 (Oi − O)2

(6)

TS =
4·(1 + R)(

σ + 1
σ

)2
·(1 + R0)

(7)

where n represents the sample number; S is the mean of each ET product averaged among n samples,
while O is for the observed ET; i denotes the ith sample; R0 (=1.0 here) is the maximum theoretical R;
and σ indicates the standard deviation of a certain ET product normalized by the standard deviation
of the observed ET.

Furthermore, the mechanisms of energy and water exchanges between land and atmosphere are
complex, and are often accompanied with strong variability in both space and time. Considering
the relationships of ET with physical characteristics of land surface [75,76], it is necessary to conduct
comprehensive evaluations from various perspectives, e.g., biome, elevation level and climate regime,
which will enhance our knowledge on model performances, explaining possible causes and finally
improving models. Therefore, we will employ a stratification method using the whole of all of the
EC sites, biome, elevation level, and climate regime to conduct analyses of the four ET products in
the coming sections. For each stratification, it has different classifications, i.e., 14 (1 for all monthly
and annual data, and 12 for monthly data of 12 months) for the whole of all of the EC sites, 6 (MF,
ENF, EBF, CRO, GRA, and WET) for biome, 3 (<500 m, 500–1500 m and >1500 m) for elevation level
and 2 (wet and dry corresponding to CAI <1.0 and >1.0, respectively) for climate regime. Then, the
validation criteria are calculated for each stratification classification.
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3. Results

3.1. Validation by the Whole of All of the EC Sites

Figure 2a shows the intra-annual fluctuations of ET products and EC observations averaged over
all of the sites. Considering the site-averaged monthly EC ET, there exists an evident seasonality, which
is characterized by higher values (>40 mm) during April–September, with a peak in July of 83.69 mm.
Intuitively, all four products can effectively capture the intra-annual changes, with the maximum in July
ranging from 70.88 mm (EartH2Observe-En) to 97.76 mm (MERRA-Land). In Figure 3a–d, scatter-plots
of monthly EC ET against the products are shown based on all of the samples (n = 420 site months)
from the twelve sites. Except for EartH2Observe-En, the Rs of the other three products are all larger
than 0.80, indicating that their monthly ET estimates can effectively reproduce the spatio-temporal
variability of ET when taking all of the monthly data points as a whole. The fitted linear regression
equations suggest that, except for MERRA-Land, which always overestimates ET, the other products
underestimate ET. However, it should be noted that each product (excluding MERRA-Land) performs
differently in estimating lower and higher ET values, i.e., lower ranges are overestimated, but higher
ranges are underestimated. Moreover, MERRA-Land ET is overestimated for both lower and higher
values, implying that there are potential systemic problems within this product. To further quantify
product performance, various validation metrics were calculated against the EC data for the 420 site
months; results are presented in the top left corner of each panel of Figure 3a–d. Evidently, MEs
(RMEs) differ among these products, ranging between −5.48 mm (−12.55%) for EartH2Observe-En
and 9.93 mm (22.71%) for MERRA-Land, which are closely related to their different performances
in lower and higher ETs. For example, the negative ME of EartH2Observe-En is mainly because
of its underestimates in higher ET (Figure 3d), while the highest and the moderate ME (RME) for
MERRA-Land and GLEAM3.0a are closely associated with systemic biases (i.e., overestimates in
both lower and higher ETs) and overestimates in lower ET, respectively (Figure 3a,b). Regarding
the lowest ME (RME) of GLDAS2.0-Noah, it may be attributed to the bias offset (i.e., overestimates
and underestimates in lower and higher ETs, respectively; Figure 3c). Relative to ME (RME) for each
product, the RMSE (RRMSE) is much larger; this may be due to both random errors plus different signs
in biases, which can introduce additional randomness by aggregating EC sites from various ecosystems.
Interestingly, despite the smallest ME (RME), GLDAS2.0-Noah RMSE (RRMSE) is the largest (40.74 mm;
93.24%). Based on TS, the worst, the moderate, and the best overall performances in estimating
monthly ET were found to correspond to the MERRA-Land, GLDAS2.0-Noah and EartH2Observe-En,
and GLEAM3.0a products, respectively. On an annual scale (Figure 3e–h), lower (higher) values
are underestimated (overestimated) in GLEAM3.0a, MERRA-Land, and GLDAS2.0-Noah, whereas
EartH2Observe-En always tends to underestimate ET. The bias and error metrics indicate that the
rankings of annual performances of the ET products (Figure 3e–h) are consistent with those on the
monthly scale (Figure 3a–d). The lowest absolute value of ME (RME) exists in GLDAS2.0-Noah, but
GLEAM3.0a has the minimum value of RMSE (RRMSE). In addition, MERRA-Land outperforms the
other datasets in terms of annual R, which is in contrast to the largest R in GLEAM3.0a on the monthly
scale. This may result from the aggregation of monthly ET into annual values. Regarding the overall
performance on the annual scale, EartH2Observe-En and MERRA-Land, respectively, correspond to
the maximum and the minimum TS values.
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As noted from the scatter-plots of ET products versus EC observation (not shown) and
quantitative validation indicators at each month (Figure 4), intra-annual differences in the ET
estimation performances are obvious among the four products. Within one year, MEs (in Figure 4a;
RMEs in Figure 4b) for MERRA-Land are always positive, corresponding to larger biases during
July–October (January–March and September–November). By contrast, EartH2Observe-En shows
negative MEs (RMEs) for each month, and larger biases occur during May–August (May–August
and November–January). Signs of ME or RME for the other two products vary among months,
e.g., a negative ME or RME of GLEAM3.0a (GLDAS2.0-Noah) in January, November, and December
(March–July) suggests underestimated ET in these months, while overestimated ET is found in the
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remaining months. Additionally, based on the magnitudes of ME (RME), GLEAM3.0a has larger
values during March–May (February–May and December), but larger values for GLDAS2.0-Noah
occur in March–May and September–December (March, April and October–January). Comparing the
magnitude of monthly ME (RME) for each product, the maximum bias always occurs in MERRA-Land,
excluding March–June and December; however, the ET product with the minimum bias changes among
months. As shown in Figure 4c, the monthly RMSE for each ET product is above 10 mm, particularly
in April–October, with a value larger than 20 mm. Except for January and December (June–September),
MERRA-Land (EartH2Observe-En) always corresponds to the largest (lowest) RMSE. Due to the
differences in ET magnitudes among months, intra-annual variation of RRMSE for each product differs
from that of RMSE, mainly characterized by larger values in January–May and October–December
(Figure 4d); the largest and the lowest RRMSEs in most months occur in MERRA-Land and
EartH2Observe-En, respectively. Regarding the R for each product, it sharply declines from January
and reaches the minimum (<0.25) in June, but increases rapidly from August (Figure 4e). Overall, all
of the products have a higher R during January–April and September–December, and particularly in
February and October with the largest value (>0.80). In January–July, GLDAS2.0-Noah (excluding
January and May) and EartH2Observe-En (excluding March), respectively, correspond to the maximum
and minimum R. By contrast, the smallest (largest) R during August–October exists in GLDAS2.0-Noah
(MERRA-Land), and R in November and December is the largest in EartH2Observe-En, but the smallest
in MERRA-Land. In Figure 4f, the monthly TS is above 0.50 for all of the products, particularly for
January–May and September–December, which are generally higher than 0.70. In January–May and
September–December, there are larger differences in TS among the products, and the maximum (~0.90)
and the minimum (<0.80) are found in EartH2Observe-En (excluding April in GLDAS2.0-Noah) and
MERRA-Land (excluding January in GLDAS2.0-Noah), respectively.
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Root-Mean-Square-Error (RRMSE), Correlation coefficient (R), and Taylor Score (TS), respectively.
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3.2. Validation by Biome

The intra-annual ET variations of all biome types are illustrated in Figure 2b–g. Based on EC
ET, characteristics of intra-annual fluctuations suggest apparent differences for the six biome types,
i.e., two peaks for MF in June and August (Figure 2b), EBF in July and September (Figure 2d), and
CRO in May and August (Figure 2e), with one for the other three biomes in July (Figure 2c,f,g). In
spite of some differences in ET magnitude, intra-annual ET fluctuation can be well captured by each
product for ENF (Figure 2c), CRO (Figure 2e), GRA (Figure 2f), and WET (Figure 2g); however, for MF
(Figure 2b; EBF, Figure 2d), GLEAM3.0a and MERRA-Land (products excluding EartH2Observe-En)
cannot reproduce the two ET peaks. With the exception of GLDAS2.0-Noah (EartH2Observe-En),
which overestimates lower but underestimates higher ETs for ENF [Figure 5(b3); MF (Figure 5(a4))
and ENF (Figure 5(b4))], all of the ET products were generally overestimated for MF (Figure 5(a1–3)),
ENF (Figure 5(b1–2)), and EBF (Figure 5(c1–4)). In CRO, GLEAM3.0a near-perfectly estimated ET
(Figure 5(d1)), while MERRA-Land ET was generally overestimated (Figure 5(d2)); relative to the
EC measurement, both estimates from the other two products were larger and smaller in lower and
higher ETs, respectively (Figure 5(d3–4)). As depicted in Figure 5(e1–4) for GRA and Figure 5(f1–4)
for WET, ETs were underestimated by all of the products, especially for WET ET estimates from
GLDAS2.0-NOAH and EartH2Observe.

Quantitative validation results for different biome types are shown in the top left corner of each
panel of Figure 5. With the exception of Earth2Observe-En with smaller negative ME (RME) in MF,
the bias indicators for the other three products are close to or above 10 mm (30%; Figure 5(a1–4)).
Correspondingly, Earth2Observe-En RMSE (RRMSE) is the smallest, but the remaining products
present a comparable error. Based on R (TS), the ET products show no evident differences in
performance, with a value of 0.97 (0.95). As for ENF (Figure 5(b1–4)) and EBF (Figure 5(c1–4)), larger
differences in ME (RME) and RMSE (RRMSE) were observed among these products, respectively,
corresponding to a range of 7.39–34.76 mm (14.35–65.96%) and 17.72–41.38 mm (34.40–78.52%).
Moreover, the maximum for these four metrics always appeared in MERRA-Land, followed by
GLEAM3.0a. Despite that, R (TS) in ENF is nearly equal and above 0.85 among these products,
and this indicator in EBF is larger than 0.70, except for EartH2Observe-En (MERRA-Land). For
CRO (Figure 5(d1–4)), ME (RME) for the ET estimates is different in sign and magnitude (i.e.,
underestimation for GLEAM3.0a and EartH2Observe-En versus overestimation for MERRA-Land and
GLDAS2.0-Noah, and a larger magnitude in MERRA-Land and EartH2Observe-En versus a smaller
magnitude in GLEAM3.0a and GLDAS2.0-Noah). In contrast, excluding GLEAM3.0a with a lower
RMSE (RRMSE), the performances of the other three products are comparable based on these error
indicators (~19 mm; ~34%). Regarding R, the largest value is in GLEAM3.0a, and the next largest is in
MERRA-Land, but the other two products have the smallest R. For TS, each product corresponds to a
value of approximately 0.90. In GRA (Figure 5(e1–4)) and WET (Figure 5(f1–4)), MEs (RMEs) for all of
the products are below zero, accompanied by larger magnitudes for GRA and WET in GLDAS2.0-Noah
and EartH2Observe-En. Consistently, GLDAS2.0-Noah and EartH2Observe-En, and GLEAM3.0a
and MERRA-Land show larger and smaller errors for both GRA and WET, respectively. R for each
product is above 0.83 in GRA (0.92 in WET), of which the minimum is found in GLDAS2.0-Noah.
While all products perform differently with respect to the aforementioned five metrics for GRA, they
have a comparable TS value of around 0.90. In WET, there is a larger TS range between 0.42 in
EartH2Observe-En, and 0.96 in GLEAM3.0a.
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3.3. Validation by Elevation Level

Validation results by elevation level (Figure 6) indicate that elevation has an influence on the
performance of each ET product. For GLEAM3.0a and MERRA-Land, ET over sites below 1500 m
is consistently overestimated (Figure 6(a1–2,b1–2)), while there are different overestimations and
underestimations for lower and higher ETs at sites above 1500 m, respectively (Figure 6(c1–2)). For
GLDAS2.0-Noah (Figure 6(a3,b3,c3)), overestimated ET is found in the two elevation levels below
500 m (except for some data points with higher ET) and between 500–1500 m; however, evident
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and systematic underestimations appear at elevations higher than 1500 m. Lower and higher ETs
are, respectively, overestimated and underestimated by earth2Observe-En at a low elevation level
(Figure 6(a4)), while the other two zones show underestimated ET (Figure 6(b4,c4)), especially for
elevation levels above 1500 m.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 27 

 

6a4), while the other two zones show underestimated ET (Figure 6b4 and 6c4), especially for elevation 
levels above 1500 m. 

 
Figure 6. Scatter-plots of monthly ET products against EC ET aggregated for different elevation levels, 
accompanied by various validation criteria in the top left corner of each panel. 

At elevation levels below 500 m (Figure 6a1–4), the MEs (RMEs) of all of the ET datasets are 
positive, with a range between 0.52 mm (1.05%) in EartH2Observe-En and 13.99 mm (28.32%) in 
MERRA-Land. Comparing RMSEs (RRMSEs) of the four ET products, MERRA-Land corresponds to 
the largest value, while the other datasets have more similar values. Regarding R (TS), each product 
has a value above 0.80, in particular for GLEAM3.0a and GLDAS2.0-Noah (GLDAS2.0-Noah and 
EartH2Observe-En), which have values higher than 0.84 (0.90). Across the sites with an elevation of 
500–1500 m (Figure 6b1–4), except for EartH2Observe-En with a slight negative ME (RME), the ET 
biases of the other datasets are positive and maximized in MERRA-Land. Correspondingly, the 
largest RMSE (RRMSE) is found in MERRA-Land, followed by the minimum value in 
EartH2Observe-En. Regarding R (TS), ET products with values near 0.86 (higher than 0.83) perform 
similarly; moreover, the maximum TS (0.93) occurs in EartH2Observe-En. Unlike the performance 
based on ME (RME) at the sites below 1500 m, all of the products have a negative bias for high 
elevation levels (Figure 6c1–4); in addition, both GLDAS2.0-Noah and EartH2Observe-En show 
larger magnitudes, corresponding to the larger RMSE (Figure 6b3–4). In spite of some differences in 
the bias and error metrics, these datasets have an approximate R of 0.87. Comparing TS values, the 
maximum values (~0.90) are in GLEAM3.0a and MERRA-Land, followed by the moderate (0.76) and 
the minimum (0.62) values in GLDAS2.0-Noah and EartH2Observe-En, respectively. 

3.4. Validation by Climate Regime 

The performance of each ET product varies in different climate regimes, i.e., systematic 
overestimations and underestimations in the wet (except for EartH2Observe-En, with 
overestimations and underestimations in lower and higher ETs, respectively) and the dry climate 
regimes, respectively (Figure 7). In the wet climate regime (Figure 7a1–4), the maximum ME (RME) 
of 25.19 mm (48.87%) occurs in MERRA-Land, while the smallest value of 3.11 mm (6.02%) exists in 
EartH2Observe-En. Of all four datasets, GLEAM3.0a and MERRA-Land exhibit a larger RMSE 

Figure 6. Scatter-plots of monthly ET products against EC ET aggregated for different elevation levels,
accompanied by various validation criteria in the top left corner of each panel.

At elevation levels below 500 m (Figure 6(a1–4)), the MEs (RMEs) of all of the ET datasets are
positive, with a range between 0.52 mm (1.05%) in EartH2Observe-En and 13.99 mm (28.32%) in
MERRA-Land. Comparing RMSEs (RRMSEs) of the four ET products, MERRA-Land corresponds to
the largest value, while the other datasets have more similar values. Regarding R (TS), each product
has a value above 0.80, in particular for GLEAM3.0a and GLDAS2.0-Noah (GLDAS2.0-Noah and
EartH2Observe-En), which have values higher than 0.84 (0.90). Across the sites with an elevation of
500–1500 m (Figure 6(b1–4)), except for EartH2Observe-En with a slight negative ME (RME), the ET
biases of the other datasets are positive and maximized in MERRA-Land. Correspondingly, the largest
RMSE (RRMSE) is found in MERRA-Land, followed by the minimum value in EartH2Observe-En.
Regarding R (TS), ET products with values near 0.86 (higher than 0.83) perform similarly; moreover,
the maximum TS (0.93) occurs in EartH2Observe-En. Unlike the performance based on ME (RME) at
the sites below 1500 m, all of the products have a negative bias for high elevation levels (Figure 6(c1–4));
in addition, both GLDAS2.0-Noah and EartH2Observe-En show larger magnitudes, corresponding
to the larger RMSE (Figure 6(b3–4)). In spite of some differences in the bias and error metrics, these
datasets have an approximate R of 0.87. Comparing TS values, the maximum values (~0.90) are in
GLEAM3.0a and MERRA-Land, followed by the moderate (0.76) and the minimum (0.62) values in
GLDAS2.0-Noah and EartH2Observe-En, respectively.

3.4. Validation by Climate Regime

The performance of each ET product varies in different climate regimes, i.e., systematic
overestimations and underestimations in the wet (except for EartH2Observe-En, with overestimations
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and underestimations in lower and higher ETs, respectively) and the dry climate regimes, respectively
(Figure 7). In the wet climate regime (Figure 7(a1–4)), the maximum ME (RME) of 25.19 mm (48.87%)
occurs in MERRA-Land, while the smallest value of 3.11 mm (6.02%) exists in EartH2Observe-En. Of all
four datasets, GLEAM3.0a and MERRA-Land exhibit a larger RMSE (RRMSE), while GLDAS2.0-Noah
and EartH2Observe correspond to a smaller value. The R values indicate comparable performance
among the ET products. Except for MERRA-Land, with the minimum TS of 0.86, the remaining
products show a comparable TS of higher than 0.90. For the dry climate regime (Figure 7(b1–4)),
MERRA-Land and EartH2Observe-En correspond to the largest and the smallest magnitudes of MEs
(RMEs), respectively. For GLDAS2.0-Noah and EartH2Observe-En, RMSEs (RRMSEs) are larger
and close to each other, however, the other two datasets have smaller and approximate errors.
The performance in R (TS) obviously differs among these ET products (i.e., Rs (TS values) for
GLEAM3.0a and MERRA-Land larger than 0.85 (0.90), but those for the other products are near
0.78 (smaller than 0.90)).
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3.5. Optimal ET Products

By comparing the magnitudes of each validation criterion among the four ET products, OET was
identified for all 12 EC sites, biomes, elevation levels, and climate regimes (Figure 8). Taking all of
the EC sites as a whole (Figure 8a), monthly OETs were GLDAS2.0-Noah (GLEAM3.0a) in view of
ME/RME (other four criteria); however, annual OETs vary among these criteria (i.e., GLDAS2.0-Noah,
GLEAM3.0a, MERRA-Land, and EartH2Observe-En based on ME/RME, RMSE/RRMSE, R, and
TS, respectively). For all 12 months, the ME/RME-based OETs were GLEAM3.0a during January,
November, and December; EartH2Observe-En in February–April and October; and GLDAS2.0-Noah
from May to September, while EartH2Observe-En as the RMSE/RRMSE-based OET occurred
in most months (January–May and October–December). In addition, most months show the
R-based OETs of MERRA-Land (February, March, May, September, and October) and GLEAM3.0a
(January and June and August), and the TS-based OETs of EartH2Observe-En (January–March and
October–December) and GLEAM3.0a (June–September). As illustrated in Figure 8b, EartH2Observe-En
were the ME/RMSE- and RMSE/RRMSE-based OETs for the forest biomes (i.e., MF, ENF, and
EBF), while the R-based (TS-based) OETs were found to be GLADAS2.0-Noah (GLEAM2.0a) for
MF and ENF and MERRA-Land (GLADAS2.0-Noah) for EBF. CRO and WET OETs (excluding the
ME/RME-based OET of MERRA-Land) were found in GLEAM3.0a, based on all the validation criteria.
Except for EartH2Observe-En (the R-based OET), GRA always had the OET for MERRA-Land for each
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validation criterion. Figure 8b shows that, given the six criteria, the performances of GLDAS2.0-Noah,
EartH2Observe-En, and MERRA-Land were identified as OETs at low, moderate, and high elevation
levels, respectively. Over the wet climate regime (Figure 8b), EartH2Observe-En (GLDAS2.0-Noah)
was the OET with the smallest ME/RME and RMSE/RRMSE (the highest R and TS), but the dry
climate regime had the ME/RME-based OET of MERRA-Land and the RMSE/RRMSE-, R-, and
TS-based OET of GLEAM3.0a.

The results noted above show that the performances of each ET product and the corresponding
OET differ among classifications of each stratification and among criteria for a certain stratification
classification. The differences may be caused by uncertainties of ET products due to simplifications,
incomplete hypotheses of model structures and parameterizations, inaccurate models inputs, and
uncertainties from the reference ET (i.e., EC ET). We will, therefore, discuss the potential causes of this
in the next section.
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classification of each stratification, the OET of a given validation criteria can be specified as one product
with the smallest (ME, RME, RMSE, and RRMSE) or the largest magnitude (R and TS) of this criteria.

4. Discussion

4.1. Sources of Uncertainties in ET Products

In the present study, we comprehensively compared and evaluated GLEAM3.0a, MERRA-Land,
GLDAS2.0-Noah, and EartH2Observe-En ET products over China based on the EC measurements at
twelve sites. From the perspective of all the EC sites, biome, elevation level, and climate regime, the
performance of these products varies. Various hypotheses and simplifications of the ET processes,
which control the land-atmosphere flux exchanges (e.g., water and energy), have been conducted for
each model. Diversities in the complexity of both model structures and parameterizations among
models are closely associated with specific applications and/or purposes. Moreover, a variety of
inputs are required to run ET models; however, owing to specific requirements for each model and the
availability of inputs, the number, types, and/or sources of inputs differ among models. Therefore, we
would like to present possible explanations of uncertainties of the ET products from the perspectives
of model structures and parameterizations and inputs [4,5,77–80].

4.1.1. Model Structures and Parameterizations

As shown in Table 1, different PET schemes for estimating ET are employed among the selected
models. Thus, the behaviors of the ET products are likely to be directly related to differences in these
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schemes, which commonly have different levels of capability for capturing PET magnitude and variability
given various structural complexities and parameterizations. Regarding the Penman-Monteith scheme,
which has been widely regarded as a physically-based expression [71,81], a critical assumption and
simplification is that the surface is a “big leaf”, and thus, rv (aerodynamic resistance to water transfer
from the surface to the atmosphere) can be separated into rc (canopy resistance) and rh (aerodynamic
resistance to heat transfer from the surface to the atmosphere). Even so, to directly run this equation is
difficult because of a lack of observed relevant parameters (vegetation–specific parameters, e.g., rc [82]).
Therefore, many diagnostic and physiological equations were proposed based on environmental and
biological controls (e.g., vapor pressure deficit, T, solar radiation incident on canopy, and SM) and then
was used to estimate these parameters among different biomes [83–85]. As for the Priestley-Taylor
scheme, it is a simplified variant of the Penman-Monteith equation, in which PET is linearly expressed
as a so-called Priestley-Taylor parameter (i.e., α) multiplied by energy available to evaporate water [32].
Generally, the α parameter is between 1.2–1.3 under water unstressed conditions, but it can vary from
1.0 to 1.5; this value is mainly dependent on the degree of coupling between ET processes and the
atmosphere, which can be reflected by W, vapor pressure deficit, and SM [4,32]. Komatsu [86] stated
that to obtain this parameter, detailed information on canopy and micrometeorological conditions was
required, but this knowledge could not be directly supplied, particularly for a larger spatial extent.
For this reason alone, α is often set as 1.26 for some widely-used models, while its values of 1.26 in both
short vegetation and bare soil fractions and 0.8 for the tall fraction are given by GLEAM3.0a [21,22].
In brief, both the Penman-Monteith and Priestley-Taylor PET schemes differ in their simplifications
of some critical parameters, thus resulting in uncertainties and different performances for various
ET datasets.

After employing the specified PET scheme for a model, it is vital to calculate the ET fractions
from soil and interception evaporation and transpiration, which are summed to estimate ET. Generally
speaking, their fractions are parameterized to be jointly controlled by various environmental factors,
such as soil properties, SM, vapor pressure deficit, and vegetation parameters (e.g., Leaf Area
Index, LAI, and Normalized Difference Vegetation Index, NDVI), and vary greatly among models
due to differences and uncertainties of model parameterizations and a lack of observation-based
constraints [4]. Taking transpiration (the largest overall contributor to terrestrial ET; [87,88]) as
an example, Jasechko et al. [89] pointed out that 90% of terrestrial ET was cycled via vegetation
transpiration based on isotope techniques. However, conclusions from Miralles et al. [90] stated that the
ratio of transpiration to terrestrial ET from the GLEAM3.0a product was 76% for the whole landmass.
This implies that fractions of transpiration have larger discrepancies among models, which possibly
propagate into the ET products; the same applies for the ratio of soil or interception evaporation,
despite the values being generally smaller [90]. It is particularly noteworthy that even the estimated
interception precipitation from the most popular applied approach of the Gash analytical model may
produce substantial errors, e.g., an annual overestimation of 39.8 mm in a subtropical evergreen forest
of Central-South China [91]; thus, this causes considerable uncertainties in interception evaporation.
Therefore, if inaccurate and even incorrect functions for constraining each ET component are used by
the models, questionable ET may be provided [4].

As an aside, errors within the estimated ET originate from the neglect of some components of
ET, such as night transpiration [92,93]. Based on the assumption that plant stomata is closed at night,
and thus transpiration stops, night ET can commonly be ignored for the terrestrial ecosystem; but
recent observations have provided evidence that night transpiration is of significance across a wide
range of biomes and climate regimes [92–97]. For example, Novick et al. [92] reviewed previous
studies and pointed out that the percentage of night transpiration accounting for the daily total was
basically 10–30%; however, this varied among plant functional groups (i.e., C3 and C4; [93]) and
SM conditions [94]. Despite there being no agreement on the mechanisms of night transpiration,
it is generally believed that the processes are closely related to W, vapor deficit, SM, and circadian
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regulation of stomatal conductance [93,97]. Hence, models with no or insufficient considerations of
night transpiration processes may lead to systematically underestimated ET.

4.1.2. Model Inputs

If a given ET model is ideally full-biophysical and, thus, can comprehensively describe the ET
processes, errors in the ET estimates and differences among the ET products are mainly dependent
on various inputs, especially for precipitation and radiation [36,54,60,75,76,79]. Studies have been
extensively performed to evaluate different precipitation products (e.g., gauge-based, and reanalysis
and remote sensing-related datasets) over the globe [98–102]. For example, Nair and Indu [99]
noted that the MSWEP products (input for GLEAM3.0a) in India showed large errors in higher
precipitation (i.e., >75th and >95th quantiles), which was confirmed by Alijanian et al. [98] in Iran.
Sun et al. [102] found that the CPC-U precipitation (input for MERRA-Land) averaged over the world
was underestimated for each season and correspondingly led to the annual value being the smallest
compared to other datasets. Moreover, because of relatively limited gauge observations, the CPC-U
dataset has overall potential to smooth the precipitation structure and miss local heavy precipitation
events [103]. Based on gauge data over the Adige Basin of Italy, the PUMFD precipitation (used by
GLDAS2.0-Noah) was assessed by Duan et al. [104], and the conclusions showed that the performance
of this precipitation product was the worst relative to others, with biases in the occurrence frequency of
daily precipitation for some intensity ranges and higher errors in winter. By comparing different daily
precipitation products over Canada, Wong et al. [105] suggested that the skills of the WFDEI (used
by EartH2Observe-En) dataset differed from region to region, with underestimation in the northern
and eastern parts and overestimation in the west. As shown in Table 1, net radiation used by the
four ET models came from different datasets, including ERA-Interim, MERRA version 1.0, PUMFD,
and WFDEI for GLEAM3.0a, MERRA-Land, GLDAS2.0-Noah, and EartH2Observe-En, respectively.
With respect to the radiation datasets, assessments have been conducted across the world [4,66,79,
106–112]. In Boilly and Wald [109], ERA-Interim radiation was overestimated overall to some degree
in Europe, Africa, and the Atlantic Ocean, whereas clear and cloudy sky conditions, respectively,
corresponded to overestimation and underestimation. Regarding MERRA version 1.0, it showed
significantly overestimated net radiation at the twenty-three EC sites and aggregated over the whole
of China; moreover, the net radiation was almost 2.8 times the Global Energy and Water Exchanges
(GEWEX) value [79], which might be caused by the overestimation of the occurrence of clear sky
conditions [107,109]. Tory and Wood [106] compared and evaluated gridded radiation products across
northern Eurasia and found that there were smaller biases for the PUMFD dataset on an annual scale,
but larger errors on a seasonal scale. For the WFDEI dataset, the downwelling shortwave radiation
is higher in northern Africa but lower in northern South America, despite the effects of interannual
changes in the atmospheric aerosol optical depths being considered [110]; thus, net radiation would be
overestimated. Apart from precipitation and radiation, other meteorological forcings (e.g., T, W, Q, and
SP) are also different for MERRA-Land, GLDAS2.0-Noah, and EartH2Observe-En (Table 1), integrated
with different accuracies [6,26,66]. These studies indicated evident discrepancies among the existing
meteorological datasets in both magnitude and variability on daily to annual scales (e.g., owing to the
number and spatial coverage of surface stations, satellite algorithms, and data assimilation systems);
meanwhile, their capabilities to capture meteorological conditions differed from region to region.

It is well known that descriptions of vegetation processes, definitions of land use/cover (LUC)
and relevant vegetation character parameters (e.g., NDVI, LAI, and/or VOD) are needed; thus, their
differences and uncertainties potentially propagate into the ET estimates [113]. There are a number
of available LUC (e.g., Table S3) and NDVI/LAI/VOD products derived from different data sources
(e.g., various satellite images), algorithms, and classification schemes [114,115]. It should be noted,
however, that these datasets were produced for specific purposes and applications, including analyses
of LUC and vegetation changes and their impacts on the climate, hydrology, and ecosystem, and
the developments of various geo-scientific models; thus, obvious discrepancies and even errors in
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these products have been reported, especially at the regional scale [115–125]. Therefore, without
considering the suitability of LUC and NDVI/LAI/VOD products, biases originating from raw data
and inconsistencies among the selected products and uncertainties owing to product selection and
processing can be of the same magnitude as those from the representation of the processes under
investigation [113,121,126–129]. For example, Branger et al. [126] investigated the impact of different
LUC datasets on the long-term water balance of the Yzeron peri-urban catchment of France and
stated that most water quantities (including ET) were sensitive to LUC selections. Liu et al. [113]
quantified uncertainties of simulated water fluxes using MODIS (MOD15), GLASS, and the Four-Scale
Geometric Optical Model (FSGOM)-based LAI, and concluded that LAI products could lead to
substantial uncertainties in the ET estimates. For these selected ET products, different LUCs and
vegetation character parameters are used and cause differences in performances and uncertainties of
the ET estimates.

4.2. Uncertainties of EC ET

Since the EC technique was first applied [130], it has been used extensively to directly measure
terrestrial carbon, water, and energy cycles, and taken as ground truth values for evaluating various
ET products [4,131]. Nevertheless, there are still uncertainties regarding EC observations. Especially
problematic is energy imbalance at EC sites, mainly characterized by the energy closure ratio
(i.e., the sum of observed latent and sensible heat divided by the difference of net radiation and
ground heat flux), not being equal to one [132]. Based on numerous previous conclusions, energy
balance non-closure can generally be attributed to the missed very low and/or high-frequency
fluctuations of fluxes, measurement errors associated with sensor separation, interference from
tower or instrument-mounting structures, not fully considering the storage term (e.g., canopy and
photosynthesis storage), mismatch between the scales of energy balance components, large-eddy
transport, or secondary circulations not captured by the EC technique [37,133]. It is reported that,
in general, the sum of observed latent and sensible heat is 10–30% smaller than the difference
between net radiation and ground heat flux at EC sites [32,132]; moreover, the closure error can
vary seasonally and inter-annually and from biome to biome [32,133–135]. Scholars have often
suggested that underestimation of latent heat has largely contributed to this energy non-closure of the
EC technique [136–138]. For instance, Finkelstein and Sims [136] indicated that the normalized errors
for sensible and latent heat were 10% and 25–30%, respectively.

In addition, the spatial context of the EC measurement is limited and defined within the footprint
of a turbulent flux measurement [131,139]. For a deployed turbulent flux sensor, its detected signals
reflect influences of the underlying surface on the turbulent exchange. Over a homogeneous surface
with enough spatial extent (i.e., at least ~1 km; [111]), the measured fluxes from all parts of the surface
are, by definition, equal. However, the surface is typically inhomogeneous; the EC measurement is
dependent on which part of the surface exerts the strongest impact on the sensor and consequently on
the location and size of its footprint [139]. To reduce the influence from the inhomogeneous surface
and, thus, enhance the spatial representation, many footprint models have been developed and used
to identify and parameterize the footprint of each EC site [139–141]. Despite that, the measured signals
in most cases involve influences from the untargeted surfaces within the footprint, indicating that the
observations at the EC site cannot perfectly reflect energy and gas fluxes from the targeted surface.
Notably, the spatial extent of the footprint is not unchangeable, but can vary with W and its direction,
stability, and measurement heights [4,142,143]; therefore, the fixed parameterization of the footprint
can also introduce uncertainties into the EC observations. Besides the energy imbalance and limited
spatial representativeness, errors of EC ET can result from missing data post-processing, which are
attributed to instrument failure, poor maintenance, instances of bad weather, and data rejection [131].
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4.3. Other Factors Influencing Validation Results

In addition to uncertainties from the ET models and the EC observations, impacts from other
factors (e.g., spatial scale problems among ET estimates and necessary inputs for running models,
and data aggregation) on the validation results should be considered. In this study, the selected four
ET products have different spatial resolutions and corresponding spatial extents much larger than
the footprint of the EC site. Given the larger grid, greater potential exists for spatial heterogeneity in
surface characteristics (e.g., LUC, vegetation parameters, and elevation) and meteorological inputs for
estimating ET. The estimated ET value by the models actually reflects the combination of influences
from different landscapes rather than any single landscape. By contrast, the EC measurement
corresponds to a relatively homogenous footprint (even though it is not perfectly uniform) and
represents the ET from a given landscape to a great extent. As a result, not considering impacts from
the spatial scale mismatch, conducting a direct comparison between the ET products and the EC
measurements is likely to influence the validation results [23,76,144]. To qualitatively compare the
impacts of different LUCs, we have collected most (i.e., GLEAM3.0a, MERRA-Land, GLDAS2.0-Noah,
and seven models within EartH2Observe-En) of the LUC maps used by these ET products, including
MODIS (i.e., MOD12Q1, MCD12Q1, and MOD44B), and the Global Land Cover Characterization
(GLCC) Version 2 and GlobCover 2009 v2.3 products, which are produced at different spatial
resolutions and classification systems (i.e., IGBP, Simple Biosphere 2 Model, and GlobCover legends).
Corresponding LUC types at 12 EC sites are identified (Table S3). As depicted in Figure 8b, GLEAM3.0a
ET outperforms other products in each validation criterion. This result may be related to the reasonable
treatment on vegetation types at Yc and Sx sites in GLEAM3.0a [i.e., dominant type of low vegetation
(e.g., grassland) versus IGBP CRO]. The EC sites with MF, ENF, or EBF correspond to the dominant
types of tall vegetation (except for Qyz) in GLEAM3.0a (Table S3). However, based on RME and
RRMSE (which can partly remove regional differences), the performance of GLEAM3.0a ET is better
than MERRA-Land, with smaller differences among the forest sites. This may be associated with the
GLEAM3.0a ET algorithms for tall vegetation. As another example, WET at the Has site is simply
specified as low vegetation, agriculture, or C3 grassland, and GRA by the ET products (Table S3).
As a result, the ETs are underestimated at this site due to large discrepancies of ET mechanisms
between WET and other vegetation types (i.e., generally there are no water limits for evaporation and
transpiration in WET). Because of the lack of detailed descriptions of the digital elevation model (DEM)
datasets used by some ET models, we would like to discuss the impacts of mismatch in elevation
levels from several popular DEM datasets (Table S4) on validation results. Obviously, there is perfect
agreement on elevation levels based on grid mean elevations over all the EC sites. However, we found
that within the 0.25◦ × 0.25◦ grid at the Qyz and Dhs sites, there exists larger spatial variability in
elevations for each DEM dataset compared to the corresponding grid mean values (the ratio between
mean and spatial variability is less than 2.5); this suggests that the representativeness of the topography
at these two sites is lower, and consequently influences the evaluation results at low elevation levels.
Generally, we found that elevations from EC metadata have limited impacts on the results at moderate
and high elevation levels; however, future studies should examine to what magnitude the higher
spatial variability of the elevation at the Qyz and Dhs sites impacts validations at low elevation levels.

To make a comparison and evaluation possible, all of the ET products were aggregated to the same
spatial (0.25◦ × 0.25◦) and temporal (monthly) resolutions, and the EC measurements were integrated
into monthly values. The aggregations of the ET products and EC ET can impact the comparisons and
often reduce the confidence in any subsequent model performance ranking [75,76,145]. Among the
ET models, we can find different spatial resolutions for the driving factors, which are dependent on
the specified requirements of the ET model. Several studies have examined the impacts of spatial
resolutions of inputs on the estimated ET [32,146,147]. McCabe and Wood [147] calculated the ET based
on the Surface Energy Balance method and necessary inputs derived from three satellite platforms
with different spatial resolutions, and compared the results with the flux tower ET on the Walnut
Creek watershed in Iowa. They found that despite the comparable accuracy of the regional mean
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MODIS-based ET relative to the other two higher resolution estimates, the MODIS-based retrievals
could not effectively reproduce the flux tower ET, mainly because the MODIS inputs were unable to
discriminate the influence of land surface heterogeneity at field scales. Thus, the influences of the
different spatial scales of the inputs for driving models would be reflected in the ET products.

5. Conclusions

In this study, we conduct point-scale evaluations of four ET global products [one remote
sensing-based product (GLEAM3.0a), two reanalysis-based product (MERRA-Land and GLDAS2.0-Noah),
and one LSM ensemble dataset (EartH2Observe-En)] at 12 EC sites across China, focusing on the
bias, error, and overall performance of the datasets, as well as their capabilities in capturing the
spatio-temporal variability of ET. The major results are summarized below:

• Validation using all of 12 EC sites: Generally, these products reproduce intra-annual ET
fluctuations but perform differently in view of each validation criterion. GLDAS2.0-Noah
(GLEAM3.0a) shows minimum monthly biases (annual errors). The highest monthly and annual
Rs (TS values) occur in GLEAM3.0a and MERRA-Land (GLEAM3.0a and EartH2Observe-En),
respectively. The metrics vary among all 12 months.

• Validation by biome: ETs in MF, ENF, and EBF are generally overestimated, but underestimated
in GRA and WET. In CRO, MERRA-Land, and GLDAS2.0a-Noah (remaining two products)
overestimate (underestimate) ET. Except for GLEAM3.0a and MERRA-Land in ENF and EBF,
and GLDAS2.0-Noah and EartH2Observe-En in WET, a comparable error exists among the six
biomes. Relative to EBF, the products in the remaining biomes (excluding GLDAS2.0-Noah and
EartH2Observe-En in WET) show higher Rs and TS values.

• Validation by elevation level: All products underestimated and overestimated ET, respectively,
for high and medium/low elevations (excluding EartH2Observe-En for moderate elevations).
Each product showed comparable error, except for the RMES values of MERRA-Land for low and
moderate elevations and errors of GLDAS2.0-Noah and EartH2Observe-En for high elevations.
Compared to low elevation levels, Rs for medium and high elevation levels were slightly
larger. Larger TS values were found in all elevation levels, except for GLDAS2.0-Noah and
EartH2Observe-En for high elevation levels.

• Validation by climate regime: ETs in wet (dry) regions were always overestimated
(underestimated). In wet regions, GLEAM3.0a and MERRA-Land (remaining two products)
show larger (smaller) errors, in contrast to dry regions. Excluding GLDAS2.0-Noah and
EartH2Observe-En in dry regions (MERRA-Land and EartH2Observe-En in wet and dry regions,
respectively), Rs (TS values) are larger for each climate regime.

• OETs: Overall, the OETs varied among stratification classifications (the selected six criteria).
In other words, no product always performed best in terms of the validation criteria.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/11/
1692/s1, Table S1: Members of Eearth2Observe-En ET product, with their PET schemes and references. Table
S2: Monthly comparisons of the estimated EC ET with the constant and the variable λ at 11 sites. Table S3:
Comparisons of LUC types used by the four ET products at EC sites. Table S4: Comparisons of elevation levels
from several popular digital elevation model (DEM) datasets at EC sites.

Author Contributions: S.L., G.W. and S.S. conceived and designed this study. S.L., S.S. and P.B. were the
main authors, whose works included data collection and analysis, interpretation of the results and manuscript
preparation. G.W. and H.C. played a supervisory role. S.Z. and Y.H. contributed by processing data and providing
EC observations at Shouxian site, respectively. All authors discussed the results and revised the manuscript.

Funding: This work was jointly supported by the National Key Research and Development Program of China
(Grant NO. 2017YFA0603701), the Natural Science Foundation of China (Grant NOs. 41875094, 41605042, and
41501029), the Natural Science Foundation of Jiangsu Province, China (Grant NOs. BK20151525 and BK20150922),
the Qinglan Project of Jiangsu Province of China and the Priority Academic Program Development (PAPD) of
Jiangsu Higher Education Institutions, China.

http://www.mdpi.com/2072-4292/10/11/1692/s1
http://www.mdpi.com/2072-4292/10/11/1692/s1


Remote Sens. 2018, 10, 1692 21 of 28

Acknowledgments: This work used eddy covariance data acquired and shared by the FLUXNET community,
including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont,
ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC.
The FLUXNET eddy covariance data processing and harmonization was carried out by the European Fluxes
Database Cluster, the AmeriFlux Management Project, and the Fluxdata project of FLUXNET, with the support of
the CDIAC and the ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices. Following
the fair use policy (see website at http://fluxnet.fluxdata.org/data/data-policy/), these EC measurements at
FLUXNET (8 sites) and ChinaFlux datasets (3sites) are open and free for scientific and educational purpose.
Notably, the EC measurements at Shouxian site and the meteorological variables at 1211 weather sites are not
available for the public, but which can be obtained and used through cooperation with the CMA. The four
ET global products are downloaded from different websites, i.e., GLEAM3.0a from https://www.gleam.eu/,
MERRA-Land from https://disc.gsfc.nasa.gov/datasets?keywords=merra-land&page=1, GLDAS2.0-Noah from
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS, and EartH2Observe-En from http://www.earth2observe.
eu/. The land cover/use products of MODIS (e.g., MOD44B, MOD12Q1 and MCD12Q1; https://lpdaac.usgs.gov/
dataset_discovery/modis/modis_products_table/), GLCC v2 (https://lta.cr.usgs.gov/glcc) and GLobCover2009
(http://due.esrin.esa.int/page_globcover.php), and the DEM datasets of GTOPO30 (https://lta.cr.usgs.gov/
GTOPO30), HYDRO1k (https://lta.cr.usgs.gov/HYDRO1K), GMTED2010 (https://topotools.cr.usgs.gov/gmted_
viewer/) and SRTM3 (http://srtm.csi.cgiar.org/index.asp) are available according to the specific data use and
citation policies. We thank all the data developers and their managers and funding agencies, whose work and
support were essential for obtaining the datasets, without which the analyses conducted in this study would
not be possible. The authors appreciate the very constructive suggestions and comments from two anonymous
reviewers, and our colleague of Ph.D Li Qingqing at NUIST. In addition, the source codes for conducting the
evaluations are available from the authors upon request (gwang@nuist.edu.cn and ppsunsanlei@126.com).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wild, M.; Grieser, J.; Schär, C. Combined surface solar brightening and increasing greenhouse effect support
recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett. 2008, 35, L17706.
[CrossRef]

2. Sun, S.L.; Chen, H.S.; Ju, W.M.; Yu, M.; Hua, W.J.; Yin, Y. On the attribution of the changing hydrological
cycle in Poyang Lake Basin, China. J. Hydrol. 2014, 514, 214–225. [CrossRef]

3. Miralles, D.G.; van den Berg, M.J.; Gash, J.H.; Parinussa, R.M.; De Jeu, R.A.M.; Beck, H.E.; Holmes, T.R.H.;
Jiménez, C.; Verhoest, N.E.C.; Dorigo, W.A.; et al. El Niño-La Niña cycle and recent trends in continental
evaporation. Nat. Clim. Chang. 2014, 4, 122–126. [CrossRef]

4. Wang, K.C.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling,
climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [CrossRef]

5. Sörensson, A.A.; Ruscica, R.C. Intercomparison and uncertainty assessment of nine evapotranspiration
estimates over South America. Water Resour. Res. 2018, 54, 2891–2908. [CrossRef]

6. Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012,
491, 435–438. [CrossRef] [PubMed]

7. Mueller, B.; Hirschi, M.; Jimenez, C.; Ciais, P.; Dirmeyer, P.A.; Dolman, A.J.; Fisher, J.B.; Jung, M.; Ludwig, F.;
Maignan, F.; et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis.
Hydrol. Earth Syst. Sci. 2013, 17, 3707–3720. [CrossRef]

8. Majozi, N.P.; Mannaerts, C.M.; Ramoelo, A.; Mathieu, R.; Mudau, A.E.; Verhoef, W. An intercomparison
of satellite-based daily evapotranspiration estimates under different eco-climatic regions in South Africa.
Remote Sens. 2017, 9, 307. [CrossRef]

9. Sun, S.L.; Chen, H.S.; Ju, W.M.; Wang, G.J.; Sun, G.; Huang, J.; Ma, H.D.; Hua, W.J.; Yan, G.X. On the coupling
between precipitation and potential evapotranspiration: Contributions to decadal drought anomalies in the
Southwest China. Clim. Dyn. 2017, 48, 3779–3797. [CrossRef]

10. Kousari, M.R.; Ahani, H. An investigation on reference crop evapotranspiration trend from 1975 to 2005 in
Iran. Int. J. Climatol. 2012, 32, 2387–2402. [CrossRef]

11. Andam-Akorful, S.A.; Ferreira, V.G.; Awange, J.L.; Forootan, E.; He, X.F. Multi-model and multi-sensor
estimations of evapotranspiration over the Volta Basin, West Africa. Int. J. Climatol. 2015, 35, 3132–3145.
[CrossRef]

12. Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration
estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [CrossRef]

http://fluxnet.fluxdata.org/data/data-policy/
https://www.gleam.eu/
https://disc.gsfc.nasa.gov/datasets?keywords=merra-land&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
http://www.earth2observe.eu/
http://www.earth2observe.eu/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
https://lta.cr.usgs.gov/glcc
http://due.esrin.esa.int/page_globcover.php
https://lta.cr.usgs.gov/GTOPO30
https://lta.cr.usgs.gov/GTOPO30
https://lta.cr.usgs.gov/HYDRO1K
https://topotools.cr.usgs.gov/gmted_viewer/
https://topotools.cr.usgs.gov/gmted_viewer/
http://srtm.csi.cgiar.org/index.asp
http://dx.doi.org/10.1029/2008GL034842
http://dx.doi.org/10.1016/j.jhydrol.2014.04.013
http://dx.doi.org/10.1038/nclimate2068
http://dx.doi.org/10.1029/2011RG000373
http://dx.doi.org/10.1002/2017WR021682
http://dx.doi.org/10.1038/nature11575
http://www.ncbi.nlm.nih.gov/pubmed/23151587
http://dx.doi.org/10.5194/hess-17-3707-2013
http://dx.doi.org/10.3390/rs9040307
http://dx.doi.org/10.1007/s00382-016-3302-5
http://dx.doi.org/10.1002/joc.3404
http://dx.doi.org/10.1002/joc.4198
http://dx.doi.org/10.1002/wat2.1168


Remote Sens. 2018, 10, 1692 22 of 28

13. Jian, D.; Li, X.; Sun, H.; Tao, H.; Jiang, T.; Su, B.; Hartmann, H. Estimation of actual evapotranspiration by
the complementary theory-based advection-aridity model in the Tarim River Basin, China. J. Hydrometeorol.
2018, 19, 289–303. [CrossRef]

14. Allen, R.G.; Howell, T.A.; Pruitt, W.O.; Walter, I.A.; Jensen, M.E. (Eds.) Lysimeters for Evapotranspiration and
Environmental Measurements; ASCE Publication: Reston, VA, USA, 1991; p. 444.

15. Bowen, I.S. The ratio of heat loss by conduction and by evaporation from any water surface. Phys. Rev. 1926,
27, 779–787. [CrossRef]

16. Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics; Edword Arnold: London, UK, 1990.
17. Everson, C.S.; Clulow, A.; Mengitsu, M. Feasibility Study on the Determination of Riparian Evaporation

in Non-Perennial Systems; WRC Report No. TT 424/09; Water Research Commission: Pretoria,
South Africa, 2009.

18. Xu, C.-Y.; Singh, V.P. Evaluation of three complementary relationship evapotranspiration models by water
balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005,
308, 105–121. [CrossRef]

19. Su, Z. The surface energy balance system SEBS for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci.
2002, 6, 85–99. [CrossRef]

20. Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly
AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919.
[CrossRef]

21. Miralles, D.G.; de Jeu, R.A.M.; Gash, J.H.; Holmes, T.R.H.; Dolman, A.J. Magnitude and variability of land
evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [CrossRef]

22. Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global
land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15,
453–469. [CrossRef]

23. Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm.
Remote Sens. Environ. 2011, 115, 1781–1800. [CrossRef]

24. Onogi, K.; Tsutsui, J.; Koide, H.; Sakamoto, M.; Kobayashi, S.; Hatsushika, H.; Matsumoto, T.; Yamazaki, N.;
Kamahori, H.; Takahashi, K.; et al. The JRA-25 Reanalysis. J. Meteorol. Soc. Jpn. 2007, 85, 369–432. [CrossRef]

25. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.;
Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [CrossRef]

26. Reichle, R.H.; Draper, C.S.; Liu, Q.; Girotto, M.; Mahanama, S.P.P.; Koster, R.D.; de Lannoy, G.J.M. Assessment
of MERRA-2 land surface hydrology estimates. J. Clim. 2017, 30, 2937–2960. [CrossRef]

27. Bosilovich, M.G.; Robertson, F.R.; Takacs, L.; Molod, A.; Mocko, D. Atmospheric water balance and variability
in the MERRA-2 reanalysis. J. Clim. 2017, 30, 1177–1196. [CrossRef]

28. Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.;
Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004,
85, 381–394. [CrossRef]

29. Haddeland, I.; Clark, D.B.; Franssen, W.; Ludwig, F.; Voß, F.; Arnell, N.W.; Bertrand, N.; Best, M.; Folwell, S.;
Gerten, D.; et al. Multimodel estimate of the global terrestrial water balance: Setup and first results.
J. Hydrometeorol. 2011, 12, 869–884. [CrossRef]

30. Schellekens, J.; Dutra, E.; Martínez-de la Torre, A.; Balsamo, G.; van Dijk, A.; Sperna Weiland, F.; Minvielle, M.;
Calvet, J.-C.; Decharme, B.; Eisner, S.; et al. A global water resources ensemble of hydrological models:
The eartH2Observe Tier-1 dataset. Earth Syst. Sci. Data 2017, 9, 389–413. [CrossRef]

31. Jung, M.; Reichstein, M.; Bondeau, A. Towards global empirical upscaling of FLUXNET eddy covariance
observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences 2009, 6,
2001–2013.

32. Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating remote sensing and ground
methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 2007, 26, 139–168. [CrossRef]

33. Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A Review of methods using
remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [CrossRef]

34. Ershadi, A.; McCabe, M.; Evans, J.; Chaney, N.; Wood, E. Multi-site evaluation of terrestrial evaporation
models using FLUXNET data. Agric. For. Meteorol. 2014, 187, 46–61. [CrossRef]

http://dx.doi.org/10.1175/JHM-D-16-0189.1
http://dx.doi.org/10.1103/PhysRev.27.779
http://dx.doi.org/10.1016/j.jhydrol.2004.10.024
http://dx.doi.org/10.5194/hess-6-85-2002
http://dx.doi.org/10.1016/j.rse.2007.06.025
http://dx.doi.org/10.5194/hess-15-967-2011
http://dx.doi.org/10.5194/hess-15-453-2011
http://dx.doi.org/10.1016/j.rse.2011.02.019
http://dx.doi.org/10.2151/jmsj.85.369
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1175/JCLI-D-16-0720.1
http://dx.doi.org/10.1175/JCLI-D-16-0338.1
http://dx.doi.org/10.1175/BAMS-85-3-381
http://dx.doi.org/10.1175/2011JHM1324.1
http://dx.doi.org/10.5194/essd-9-389-2017
http://dx.doi.org/10.1080/07352680701402503
http://dx.doi.org/10.1007/s10712-008-9037-z
http://dx.doi.org/10.1016/j.agrformet.2013.11.008


Remote Sens. 2018, 10, 1692 23 of 28

35. Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors
governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [CrossRef]

36. Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.; Hook, S.; Baldocchi, D.;
Townsend, P.A.; et al. The Future of Evapotranspiration: Global requirements for ecosystem functioning,
carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53,
2618–2626. [CrossRef]

37. Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [CrossRef]
[PubMed]

38. Kim, H.W.; Hwang, K.; Mu, Q.; Lee, S.O.; Choi, M. Validation of MODIS 16 global terrestrial
evapotranspiration products in various climates and land cover types in Asia. KSCE J. Civ. Eng. 2012,
16, 229–238. [CrossRef]

39. Zhang, F.; Zhou, G.; Wang, Y.; Yang, F.; Nilsson, C. Evapotranspiration and crop coefficient for a temperate
desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrol. Process. 2012, 26, 379–386.
[CrossRef]

40. Michel, D.; Jiménez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.;
Fisher, J.B.; Mu, Q.; et al. The WACMOS-ET project-Part 1: Tower-scale evaluation of four
remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 2016, 20, 803–822. [CrossRef]

41. Numata, I.; Khand, K.; Kjaersgaard, J.; Cochrance, M.; Silva, S. Evaluation of Landsat-based METRIC
modeling to provide high-spatial resolution evapotranspiration estimates for Amazonian forests. Remote Sens.
2017, 9, 46. [CrossRef]

42. Yang, X.; Yong, B.; Ren, L.; Zhang, Y.; Long, D. Multi-scale validation of GLEAM evapotranspiration products
over China via ChinaFLUX ET measurements. Int. J. Remote Sens. 2017, 38, 5688–5709. [CrossRef]

43. Fu, G.; Yu, J.; Zhang, Y.; Hu, S.; Ouyang, R.; Liu, W. Temporal variation of wind speed in China for 1961–2007.
Theor. Appl. Climatol. 2010, 104, 313–324. [CrossRef]

44. Xie, B.; Zhang, Q.; Ying, Y. Trends in precipitable water and relative humidity in China: 1979–2005. J. Clim.
2011, 50, 1985–1994. [CrossRef]

45. Huang, J.; Sun, S.; Xue, Y.; Li, J.; Zhang, J. Spatial and temporal variability of precipitation and
dryness/wetness during 1961–2008 in Sichuan Province, West China. Water Resour. Manag. 2014, 28,
1655–1670. [CrossRef]

46. Huang, J.; Sun, S.; Xue, Y.; Zhang, J. Changing characteristics of precipitation during 1960–2012 in Inner
Mongolia, northern China. Meteorol. Atmos. Phys. 2015, 127, 257–271. [CrossRef]

47. Huang, J.; Sun, S.; Zhang, J. Detection of trends in precipitation during 1960–2008 in Jiangxi province,
southeast China. Theor. Appl. Climatol. 2013, 114, 237–251. [CrossRef]

48. Liao, W.; Wang, X.; Fan, Q.; Zhou, S.; Chang, M.; Wang, Z.; Wang, Y.; Tu, Q. Long-term atmospheric visibility,
sunshine duration and precipitation trends in South China. Atmos. Environ. 2015, 107, 204–216. [CrossRef]

49. Wang, K.C.; Ma, Q.; Li, Z.; Wang, J. Decadal variability of surface incident solar radiation over China:
Observations, satellite retrievals, and reanalyses. J. Geophys. Res. 2015, 120, 6500–6514. [CrossRef]

50. Cao, L.; Yan, Z.; Zhao, P.; Zhu, Y.; Yu, Y.; Tang, G.; Jones, P. Climatic warming in China during 1901–2015
based on an extended dataset of instrumental temperature records. Environ. Res. Lett. 2017, 12, 064005.
[CrossRef]

51. Feng, F.; Wang, K. Merging satellite retrievals and reanalyses to produce global long-term and consistent
surface incident solar radiation datasets. Remote Sens. 2018, 10, 115. [CrossRef]

52. Schneider, K.; Ketzer, B.; Breuer, L.; Vaché, K.B.; Bernhofer, C.; Frede, H.G. Evaluation of evapotranspiration
methods for model validation in a semi-arid watershed in northern China. Adv. Geosci. 2007, 11, 37–42.
[CrossRef]

53. Xiao, J.; Sun, G.; Chen, J.; Chen, H.; Chen, S.; Dong, G.; Gao, S.; Guo, H.; Guo, J.; Han, S.; et al. Carbon fluxes,
evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agric. For. Meteorol. 2013,
182–183, 76–90. [CrossRef]

54. Chen, Y.; Xia, J.; Liang, S.; Feng, J.; Fisher, J.B.; Li, X.; Li, X.; Liu, S.; Ma, Z.; Miyata, A.; et al. Comparison of
satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens. Environ. 2014,
140, 279–293. [CrossRef]

http://dx.doi.org/10.1016/j.agwat.2010.12.015
http://dx.doi.org/10.1002/2016WR020175
http://dx.doi.org/10.1890/06-0922.1
http://www.ncbi.nlm.nih.gov/pubmed/18767615
http://dx.doi.org/10.1007/s12205-012-0006-1
http://dx.doi.org/10.1002/hyp.8136
http://dx.doi.org/10.5194/hess-20-803-2016
http://dx.doi.org/10.3390/rs9010046
http://dx.doi.org/10.1080/01431161.2017.1346400
http://dx.doi.org/10.1007/s00704-010-0348-x
http://dx.doi.org/10.1175/2011JAMC2446.1
http://dx.doi.org/10.1007/s11269-014-0572-8
http://dx.doi.org/10.1007/s00703-014-0363-z
http://dx.doi.org/10.1007/s00704-013-0831-2
http://dx.doi.org/10.1016/j.atmosenv.2015.02.015
http://dx.doi.org/10.1002/2015JD023420
http://dx.doi.org/10.1088/1748-9326/aa68e8
http://dx.doi.org/10.3390/rs10010115
http://dx.doi.org/10.5194/adgeo-11-37-2007
http://dx.doi.org/10.1016/j.agrformet.2013.08.007
http://dx.doi.org/10.1016/j.rse.2013.08.045


Remote Sens. 2018, 10, 1692 24 of 28

55. Tang, R.; Shao, K.; Li, Z.L.; Wu, H.; Tang, B.-H.; Zhou, G.; Zhang, L. Multiscale validation of the 8-day
MOD16 evapotranspiration product using flux data collected in China. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 1478–1486. [CrossRef]

56. Yang, Y.; Long, D.; Guan, H.; Liang, W.; Simmons, C.; Batelaan, O. Comparison of three dual-source
remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics.
Water Resour. Res. 2015, 51, 3145–3165. [CrossRef]

57. Zhou, Y.; Li, X.; Yang, K.; Zhou, J. Assessing the impacts of an ecological water diversion project on water
consumption through high-resolution estimations of actual evapotranspiration in the downstream regions
of the Heihe River Basin, China. Agric. For. Meteorol. 2018, 249, 210–227. [CrossRef]

58. Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.;
Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture.
Geosci. Model Dev. 2017, 10, 1903–1925. [CrossRef]

59. Liu, Y.Y.; de Jeu, R.A.M.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Global long-term passive microwave
satellite based retrievals of vegetation optical depth. Geophys. Res. Lett. 2011, 38, L18402. [CrossRef]

60. Reichle, R.H.; Koster, R.D.; de Lannoy, G.J.M.; Forman, B.A.; Liu, Q.; Mahanama, S.P.P.; Touré, A. Assessment
and enhancement of MERRA land surface hydrology estimates. J. Clim. 2011, 24, 6322–6338. [CrossRef]

61. Dutra, E.; Balsamo, G.; Calvet, J.-C.; Minvielle, M.; Eisner, S.; Fink, G.; Pessenteiner, S.; Orth, R.; Burke, S.;
van Dijk, A.I.J.M.; et al. Report on the current state-of-the-art Water Resources Reanalysis. Available
online: http://earth2observe.eu/files/PublicDeliverables/D5.1_ReportontheWRR1tier1.pdf (accessed on
31 March 2015).

62. Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.;
Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for research and
applications. J. Clim. 2011, 24, 3624–3648. [CrossRef]

63. Koster, R.D.; Suarez, M.J.; Ducharne, A.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling
land surface processes in a general circulation model: 1. Model structure. J Geophys. Res. 2000, 105,
24809–24822. [CrossRef]

64. Wang, W.; Cui, W.; Wang, X.; Chen, X. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model
simulations over China at the monthly scale. J. Hydrometeorol. 2016, 17, 2815–2833. [CrossRef]

65. Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological
forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [CrossRef]

66. Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing
data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res.
2015, 50, 7505–7514. [CrossRef]

67. Gosling, S.N.; Bretherton, D.; Haines, K.; Arnell, N.W. Global hydrology modelling and uncertainty: Running
multiple ensembles with a campus grid. Philos. Trans. R. Soc. A 2010, 368, 4005–4021. [CrossRef] [PubMed]

68. Vuichard, N.; Papale, D. Filling the gaps in meteorological continuous data measured at FLUXNET sites
with ERA-Interim reanalysis. Earth Syst. Sci. Data 2015, 7, 157–171. [CrossRef]

69. Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.;
Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem
respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [CrossRef]

70. Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn.
2016, 46, 1131–1150. [CrossRef]

71. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop
Requirements, Irrigation and Drainage Paper 56; FAO: Roma, Italia, 1998.

72. Senay, G. Modeling landscape evapotranspiration by integrating land surface phenology and a water balance
algorithm. Algorithms 2008, 1, 52–68. [CrossRef]

73. Henderson-Sellers, B. A new formula for latent heat of vaporization of water as a function of temperature.
Q. J. R. Meteorol. Soc. 1984, 110, 1186–1190. [CrossRef]

74. Taylor, K. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001,
106, 7183–7192. [CrossRef]

75. Jiménez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.;
Betts, A.K.; Dirmeyer, P.A.; et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res.
2011, 116, 3–25. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2015.2420105
http://dx.doi.org/10.1002/2014WR015619
http://dx.doi.org/10.1016/j.agrformet.2017.11.011
http://dx.doi.org/10.5194/gmd-10-1903-2017
http://dx.doi.org/10.1029/2011GL048684
http://dx.doi.org/10.1175/JCLI-D-10-05033.1
http://earth2observe.eu/files/Public Deliverables/D5.1_Report on the WRR1 tier1.pdf
http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://dx.doi.org/10.1029/2000JD900327
http://dx.doi.org/10.1175/JHM-D-15-0191.1
http://dx.doi.org/10.1175/JCLI3790.1
http://dx.doi.org/10.1002/2014WR015638
http://dx.doi.org/10.1098/rsta.2010.0164
http://www.ncbi.nlm.nih.gov/pubmed/20679119
http://dx.doi.org/10.5194/essd-7-157-2015
http://dx.doi.org/10.1111/j.1365-2486.2005.001002.x
http://dx.doi.org/10.1007/s00382-015-2636-8
http://dx.doi.org/10.3390/a1020052
http://dx.doi.org/10.1002/qj.49711046626
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.1029/2010JD014545


Remote Sens. 2018, 10, 1692 25 of 28

76. McCabe, M.F.; Ershadi, A.; Jimenez, C.; Miralles, D.G.; Michel, D.; Wood, E.F. The GEWEX LandFlux project:
Evaluation of model evaporation using tower-based and globally-gridded forcing data. Geosci. Model Dev.
2016, 9, 283–305. [CrossRef]

77. Xue, B.-L.; Wang, L.; Li, X.; Yang, K.; Chen, D.; Sun, L. Evaluation of evapotranspiration estimates for two
river basins on the Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [CrossRef]

78. Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling,
remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [CrossRef]

79. Badgley, G.; Fisher, J.B.; Jiménez, C.; Tu, K.P.; Vinukollu, R. On uncertainty in global terrestrial
evapotranspiration estimates from choice of input forcing datasets. J. Hydrometeorol. 2015, 16, 1449–1455.
[CrossRef]

80. Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Famiglietti, J.S. Ground heat flux: An analytical review of 6 models
evaluated at 88 sites and globally. J. Geophys. Res. 2016, 121, 3045–3059. [CrossRef]

81. Deardorff, J.W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of
vegetation. J. Geophys. Res. 1978, 83, 1889–1903. [CrossRef]

82. Beven, K. Sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J. Hydrol. 1979,
44, 169–190. [CrossRef]

83. Ball, J.T.; Woodrow, I.E.; Berry, J.A. A model predicting stomatal conductance and its contribution to
control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research;
Biggins, J., Ed.; Martinus Nijhof: Zoetermeer, The Netherlands, 1987; pp. 221–234.

84. Stewart, J.B. Modelling surface conductance of pine forest. Agric. For. Meteorol. 1988, 43, 19–35. [CrossRef]
85. Alves, I.; Pereira, L.S. Modelling surface resistance from climatic variables. Agric. Water Manag. 2000, 42,

371–385. [CrossRef]
86. Komatsu, H. Forest categorization according to dry-canopy evaporation rates in the growing season:

Comparison of the Priestley-Taylor coefficient values from various observation sites. Hydrol. Process.
2005, 19, 3873–3896. [CrossRef]

87. Dirmeyer, P.A.; Gao, X.; Zhao, M.; Guo, Z.; Oki, T.; Hanasaki, N. GSWP-2: Multimodel analysis and
implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 2006, 87, 1381–1397. [CrossRef]

88. Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The partitioning of evapotranspiration into
transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction.
J. Hydrometeorol. 2007, 8, 862–880. [CrossRef]

89. Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by
transpiration. Nature 2013, 496, 347–350. [CrossRef] [PubMed]

90. Miralles, D.G.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.F.; Hirschi, M.; Martens, B.;
Dolman, A.J.; Fisher, J.B.; et al. The WACMOS-ET project. Part 2: Evaluation of global terrestrial evaporation
data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842. [CrossRef]

91. Zhang, G.; Zeng, G.M.; Jiang, Y.M.; Huang, G.H.; Li, J.B.; Yao, J.M.; Tan, W.; Xiang, R.; Zhang, X.L. Modelling
and measurement of two-layer-canopy interception losses in a subtropical evergreen forest of central-south
China. Hydrol. Earth Syst. Sci. 2006, 10, 65–77. [CrossRef]

92. Novick, K.A.; Oren, R.; Stoy, P.C.; Siqueira, M.B.S.; Katul, G.G. Nocturnal evapotranspiration in
eddy-covariance records from three co-located ecosystems in the Southeastern U.S.: Implications for annual
fluxes. Agric. For. Meteorol. 2009, 149, 1491–1504. [CrossRef]

93. O’Keefe, K.; Nippert, J.B. Drivers of nocturnal water flux in a tallgrass prairie. Funct. Ecol. 2018. [CrossRef]
94. Snyder, K.A.; Richards, J.H.; Donovan, L.A. Night-time conductance in C3 and C4 species: Do plants lose

water at night? J. Exp. Bot. 2003, 54, 861–865. [CrossRef] [PubMed]
95. Fisher, J.B.; Baldocchi, D.D.; Misson, L.; Dawson, T.E.; Goldstein, A.H. What the towers don’t see at night:

Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiol. 2007, 27, 597–610.
[CrossRef] [PubMed]

96. Zippel, M.; Tissue, D.; Macinnis-Ng, C.; Eamus, D. Rates of nocturnal transpiration in two evergreen
temperate woodland species with differing water-use strategies. Tree Physiol. 2010, 30, 988–1000. [CrossRef]
[PubMed]

97. De Dios, V.R.; Roy, J.; Ferrio, J.P.; Alday, J.G.; Landais, D.; Milcu, A.; Gessler, A. Processes driving nocturnal
transpiration and implications for estimating land evapotranspiration. Sci. Rep. 2015, 5, 10975. [CrossRef]
[PubMed]

http://dx.doi.org/10.5194/gmd-9-283-2016
http://dx.doi.org/10.1016/j.jhydrol.2013.04.005
http://dx.doi.org/10.1002/2013WR014581
http://dx.doi.org/10.1175/JHM-D-14-0040.1
http://dx.doi.org/10.1002/2016JG003591
http://dx.doi.org/10.1029/JC083iC04p01889
http://dx.doi.org/10.1016/0022-1694(79)90130-6
http://dx.doi.org/10.1016/0168-1923(88)90003-2
http://dx.doi.org/10.1016/S0378-3774(99)00041-4
http://dx.doi.org/10.1002/hyp.5987
http://dx.doi.org/10.1175/BAMS-87-10-1381
http://dx.doi.org/10.1175/JHM596.1
http://dx.doi.org/10.1038/nature11983
http://www.ncbi.nlm.nih.gov/pubmed/23552893
http://dx.doi.org/10.5194/hess-20-823-2016
http://dx.doi.org/10.5194/hess-10-65-2006
http://dx.doi.org/10.1016/j.agrformet.2009.04.005
http://dx.doi.org/10.1111/1365-2435.13072
http://dx.doi.org/10.1093/jxb/erg082
http://www.ncbi.nlm.nih.gov/pubmed/12554729
http://dx.doi.org/10.1093/treephys/27.4.597
http://www.ncbi.nlm.nih.gov/pubmed/17242001
http://dx.doi.org/10.1093/treephys/tpq053
http://www.ncbi.nlm.nih.gov/pubmed/20566582
http://dx.doi.org/10.1038/srep10975
http://www.ncbi.nlm.nih.gov/pubmed/26074373


Remote Sens. 2018, 10, 1692 26 of 28

98. Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology
using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37,
4896–4914. [CrossRef]

99. Nair, A.; Indu, J. Performance Assessment of multi-source weighted-ensemble precipitation (MSWEP)
product over India. Climate 2017, 5, 2. [CrossRef]

100. Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP:
3-hourly 0.25 degrees global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis
data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [CrossRef]

101. Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.;
Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using
gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [CrossRef]

102. Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A review of global precipitation datasets:
Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [CrossRef]

103. Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over mainland
China. Int. J. Climatol. 2016, 36, 252–265. [CrossRef]

104. Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded
precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016,
573, 1536–1553. [CrossRef] [PubMed]

105. Wong, J.S.; Razavi, S.; Bonsal, B.R.; Wheater, H.S.; Asong, Z.E. Inter-comparison of daily precipitation
products for large-scale hydro-climatic applications over Canada. Hydrol. Earth Syst. Sci. 2017, 21, 2163–2185.
[CrossRef]

106. Tory, T.J.; Wood, E.F. Comparison and evaluation of gridded radiation products across northern Eurasia.
Environ. Res. Lett. 2009, 4, 045008. [CrossRef]

107. Bosilovich, M.G.; Robertson, F.R.; Chen, J. Global energy and water budgets in MERRA. J. Clim. 2011, 24,
5721–5739. [CrossRef]

108. Zhao, L.; Lee, X.; Liu, S. Correcting surface solar radiation of two data assimilation systems against FLUXNET
observations in North America. J. Geophys. Res. 2013, 118, 9552–9564. [CrossRef]

109. Boilley, A.; Wald, L. Comparison between meteorological re-analyses from ERA-Interim and MERRA and
measurements of daily solar irradiation at surface. Renew. Energy 2015, 75, 135–143. [CrossRef]

110. Schmied, H.M.; Müller, R.; Sanchez-Lorenzo, A.; Ahrens, B.; Wild, M. Evaluation of radiation components in
a global freshwater model with station-based observations. Water 2016, 8, 450. [CrossRef]

111. Draper, C.S.; Reichle, R.H.; Koster, R.D. Assessment of MERRA-2 Land Surface Energy Flux Estimates.
J. Clim. 2018, 31, 671–691. [CrossRef]

112. Jia, A.; Liang, S.; Jiang, B.; Zhang, X.; Wang, G. Comprehensive assessment of global surface net radiation
products and uncertainty analysis. J. Geophys. Res. 2018, 123, 1970–1989. [CrossRef]

113. Liu, Y.; Xiao, J.; Ju, W.; Zhu, G.; Wu, X.; Fan, W.; Li, D.; Zhou, Y. Satellite-derived LAI products exhibit large
discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens.
Environ. 2018, 206, 174–188. [CrossRef]

114. McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1 km
global land cover datasets. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 246–255. [CrossRef]

115. Kaptué, T.A.T.; Roujean, J.-L.; de Jong, S.M. Comparison and relative quality assessment of the GLC2000,
GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl.
Earth Obs. Geoinf. 2011, 13, 207–219. [CrossRef]

116. Liu, R.; Liang, S.; Liu, J.; Zhuang, D. Continuous tree distribution in China: A comparison of two estimates
from Moderate-Resolution Imaging Spectroradiometer and Landsat data. J. Geophys. Res. 2006, 111, D08101.
[CrossRef]

117. Fritz, S.; See, L. Identifying and quantifying uncertainty and spatial disagreement in the comparison of
Global Land Cover for different applications. Glob. Chang. Biol. 2008, 14, 1057–1075. [CrossRef]

118. Herold, M.; Mayaux, P.; Woodcock, C.E.; Schmullius, C. Some challenges in global land cover mapping:
An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112,
2538–2556. [CrossRef]

http://dx.doi.org/10.1002/joc.5131
http://dx.doi.org/10.3390/cli5010002
http://dx.doi.org/10.5194/hess-21-589-2017
http://dx.doi.org/10.5194/hess-21-6201-2017
http://dx.doi.org/10.1002/2017RG000574
http://dx.doi.org/10.1002/joc.4341
http://dx.doi.org/10.1016/j.scitotenv.2016.08.213
http://www.ncbi.nlm.nih.gov/pubmed/27616713
http://dx.doi.org/10.5194/hess-21-2163-2017
http://dx.doi.org/10.1088/1748-9326/4/4/045008
http://dx.doi.org/10.1175/2011JCLI4175.1
http://dx.doi.org/10.1002/jgrd.50697
http://dx.doi.org/10.1016/j.renene.2014.09.042
http://dx.doi.org/10.3390/w8100450
http://dx.doi.org/10.1175/JCLI-D-17-0121.1
http://dx.doi.org/10.1002/2017JD027903
http://dx.doi.org/10.1016/j.rse.2017.12.024
http://dx.doi.org/10.1016/j.jag.2005.12.002
http://dx.doi.org/10.1016/j.jag.2010.11.005
http://dx.doi.org/10.1029/2005JD006039
http://dx.doi.org/10.1111/j.1365-2486.2007.01519.x
http://dx.doi.org/10.1016/j.rse.2007.11.013


Remote Sens. 2018, 10, 1692 27 of 28

119. Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term
vegetation trends: Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR
GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [CrossRef]

120. Beck, H.E.; McVicar, T.R.; van Dijk, A.I.J.M.; Schellekens, J.; de Jeu, R.A.M.; Bruijnzeel, L.A. Global
evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery.
Remote Sens. Environ. 2011, 115, 2547–2563. [CrossRef]

121. Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change
studies. Glob. Chang. Biol. 2011, 17, 974–989. [CrossRef]

122. Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables
and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison
with reference products. Remote Sens. Environ. 2013, 137, 310–329. [CrossRef]

123. Xiao, Z.; Liang, S.; Jiang, B. Evaluation of four long time-series global leaf area index products.
Agric. For. Meteorol. 2017, 246, 218–230. [CrossRef]

124. Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy assessment of seven global land cover datasets over China.
ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [CrossRef]

125. Li, X.; Lu, H.; Yu, L.; Yang, K. Comparison of the spatial characteristics of four remotely sensed leaf area index
products over China: Direct validation and relative uncertainties. Remote Sens. 2018, 10, 148. [CrossRef]

126. Branger, F.; Kermadi, S.; Jacqueminet, C.; Michel, K.; Labbs, M.; Krause, M.; Kralisch, S.; Braud, I. Assessment
of the influence of land use data on the water balance components of a peri-urban catchment using a
distributed modelling approach. J. Hydrol. 2013, 505, 312–325. [CrossRef]

127. Polhamus, A.; Fisher, J.B.; Tu, K.P. What controls the error structure in evapotranspiration models?
Agric. For. Meteorol. 2013, 169, 12–24. [CrossRef]

128. Ghilain, N.; Gellensmeulenberghs, F. Assessing the impact of land cover map resolution and geolocation
accuracy on evapotranspiration simulations by a land surface model. Remote Sens. Lett. 2014, 5, 491–499.
[CrossRef]

129. Madhusoodhanan, C.G.; Sreeja, K.G.; Eldho, T.I. Assessment of uncertainties in global land cover products
for hydro-climate modeling in India. Water Resour. Res. 2017, 53, 1713–1734. [CrossRef]

130. Högström, U.; Bergström, H. Organized turbulence structures in the near-neutral atmospheric surface layer.
J. Atmos. Sci. 1996, 53, 2452–2464. [CrossRef]

131. Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.;
Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem scale carbon
dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [CrossRef]

132. Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.;
Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113,
223–243. [CrossRef]

133. Xu, Z.; Ma, Y.; Liu, S.; Shi, W.; Wang, J. Assessment of the energy balance closure under advective conditions
and its impact using remote sensing data. J. Appl. Meteorol. Climatol. 2017, 56, 127–140. [CrossRef]

134. Moderow, U.; Aubinet, M.; Feigenwinter, C.; Kolle, O.; Lindroth, A.; Molder, M.; Montagnani, L.;
Rebmann, C.; Bernhofer, C. Available energy and energy balance closure at four coniferous forest sites
across Europe. Theor. Appl. Climatol. 2009, 98, 397–412. [CrossRef]

135. Sánchez, J.M.; Caselles, V.; Rubio, E.M. Analysis of the energy balance closure over a FLUXNET boreal forest
in Finland. Hydrol. Earth Syst. Sci. 2010, 14, 1487–1497. [CrossRef]

136. Finkelstein, P.L.; Sims, P.F. Sampling error in eddy correlation flux measurements. J. Geophys. Res. Atmos.
2001, 106, 3503–3509. [CrossRef]

137. Castellvi, F.; Martinez-Cob, A.; Perez-Coveta, O. Estimating sensible and latent heat fluxes over rice using
surface renewal. Agric. For. Meteorol. 2006, 139, 164–169. [CrossRef]

138. Castellvi, F.; Snyder, R.L.; Baldocchi, D.D. Surface energy-balance closure over rangeland grass using the
eddy covariance method and surface renewal analysis. Agric. For. Meteorol. 2008, 148, 1147–1160. [CrossRef]

139. Schmid, H.P. Footprint modeling for vegetation atmosphere exchange studies: A review and perspective.
Agric. For. Meteorol. 2002, 113, 159–183. [CrossRef]

140. Kormann, R.; Meixner, F.X. An Analytical footprint model for non-neutral stratification. Bound. Layer Meteorol.
2001, 99, 207–224. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2009.04.004
http://dx.doi.org/10.1016/j.rse.2011.05.012
http://dx.doi.org/10.1111/j.1365-2486.2010.02307.x
http://dx.doi.org/10.1016/j.rse.2013.02.030
http://dx.doi.org/10.1016/j.agrformet.2017.06.016
http://dx.doi.org/10.1016/j.isprsjprs.2017.01.016
http://dx.doi.org/10.3390/rs10010148
http://dx.doi.org/10.1016/j.jhydrol.2013.09.055
http://dx.doi.org/10.1016/j.agrformet.2012.10.002
http://dx.doi.org/10.1080/2150704X.2014.927081
http://dx.doi.org/10.1002/2016WR020193
http://dx.doi.org/10.1175/1520-0469(1996)053&lt;2452:OTSITN&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082&lt;2415:FANTTS&gt;2.3.CO;2
http://dx.doi.org/10.1016/S0168-1923(02)00109-0
http://dx.doi.org/10.1175/JAMC-D-16-0096.1
http://dx.doi.org/10.1007/s00704-009-0175-0
http://dx.doi.org/10.5194/hess-14-1487-2010
http://dx.doi.org/10.1029/2000JD900731
http://dx.doi.org/10.1016/j.agrformet.2006.07.005
http://dx.doi.org/10.1016/j.agrformet.2008.02.012
http://dx.doi.org/10.1016/S0168-1923(02)00107-7
http://dx.doi.org/10.1023/A:1018991015119


Remote Sens. 2018, 10, 1692 28 of 28

141. Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. The simple two-dimensional parameterisation for Flux
Footprint Predictions FFP. Geosci. Model Dev. 2015, 8, 3695–3713. [CrossRef]

142. Kanemasu, E.T.; Verma, S.B.; Smith, E.A.; Fritschen, L.J.; Wesely, M.; Field, R.T.; Kustas, W.P.; Weaver, H.;
Stewart, J.B.; Gurney, R.; et al. Surface flux measurements in FIFE: An overview. J. Geophys. Res. 1992, 97,
18547–18555. [CrossRef]

143. Castelli, M.; Anderson, M.C.; Yang, Y.; Wohlfahrt, G.; Bertoldi, G.; Niedrist, G.; Hammerle, A.; Zhao, P.;
Zebisch, M.; et al. Two-source energy balance modeling of evapotranspiration in Alpine grasslands.
Remote Sens. Environ. 2018, 209, 327–342. [CrossRef]

144. Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.; Nickless, A.; Dzikiti, S. Validation of global
evapotranspiration product (MOD16) using flux tower data in the African savanna, South Africa. Remote Sens.
2014, 6, 942–945. [CrossRef]

145. Ershadi, A.; Mccabe, M.F.; Evans, J.P.; Walker, J.P. Effects of spatial aggregation on the multi-scale estimation
of evapotranspiration. Remote Sens. Environ. 2013, 131, 51–62. [CrossRef]

146. Hall, F.; Huemmrich, K.; Goetz, S.; Sellers, P.; Nickeson, J. Satellite remote sensing of surface energy balance:
Success, failures and unresolved issues in FIFE. J. Geophys. Res. 1992, 97, 19061–19090. [CrossRef]

147. McCabe, M.F.; Wood, E.F. Scale influences on the remote estimation of evapotranspiration using multiple
satellite sensors. Remote Sens. Environ. 2006, 105, 271–285. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5194/gmd-8-3695-2015
http://dx.doi.org/10.1029/92JD00254
http://dx.doi.org/10.1016/j.rse.2018.02.062
http://dx.doi.org/10.3390/rs6087406
http://dx.doi.org/10.1016/j.rse.2012.12.007
http://dx.doi.org/10.1029/92JD02189
http://dx.doi.org/10.1016/j.rse.2006.07.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Global Land Evaporation Amsterdam Model ET 
	Modern Era Retrospective-Analysis for Research and Applications-Land ET 
	Global Land Data Assimilation System ET 
	EartH2Observe ET 
	Eddy Covariance ET 
	Validation Criteria 

	Results 
	Validation by the Whole of All of the EC Sites 
	Validation by Biome 
	Validation by Elevation Level 
	Validation by Climate Regime 
	Optimal ET Products 

	Discussion 
	Sources of Uncertainties in ET Products 
	Model Structures and Parameterizations 
	Model Inputs 

	Uncertainties of EC ET 
	Other Factors Influencing Validation Results 

	Conclusions 
	References

