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Abstract: Despite the importance of high-resolution population distribution in urban planning,
disaster prevention and response, region economic development, and improvement of urban habitant
environment, traditional urban investigations mainly focused on large-scale population spatialization
by using coarse-resolution nighttime light (NTL) while few efforts were made to fine-resolution
population mapping. To address problems of generating small-scale population distribution,
this paper proposed a method based on the Random Forest Regression model to spatialize a
25 m population from the International Space Station (ISS) photography and urban function zones
generated from social sensing data—point-of-interest (POI). There were three main steps, namely HSL
(hue saturation lightness) transformation and saturation calibration of ISS, generating functional-zone
maps based on point-of-interest, and spatializing population based on the Random Forest model.
After accuracy assessments by comparing with WorldPop, the proposed method was validated as
a qualified method to generate fine-resolution population spatial maps. In the discussion, this paper
suggested that without help of auxiliary data, NTL cannot be directly employed as a population
indicator at small scale. The Variable Importance Measure of the RF model confirmed the correlation
between features and population and further demonstrated that urban functions performed better
than LULC (Land Use and Land Cover) in small-scale population mapping. Urban height was also
shown to improve the performance of population disaggregation due to its compensation of building
volume. To sum up, this proposed method showed great potential to disaggregate fine-resolution
population and other urban socio-economic attributes.

Keywords: Random Forest Regression; ISS photography; urban functional zones; point of interest;
social sensing data; population spatialization

1. Introduction

Population is closely associated with a wide range of developmental and environmental issues
such as unbalanced region growth, urban planning, hazard response, shortage of water resources,
severe traffic congestion, and carbon-induced air pollution [1,2], especially in some international
metropolises like Beijing and Shanghai. As such, accurate and consistent information of spatial
population distribution is crucial for the analysis of population expansion and migration, coordination
of the relationship between human demands and land-provision capacity, disaster prevention and
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response planning, humanitarian relief, global environmental protection, and rational allocation
of resources.

In order to meet requirements of practical application in urban planning and disaster emergencies,
population data need to be linked to geographical distribution and high resolution [3]. These criteria
are not satisfied by traditional population censuses. Lack of spatial distribution may greatly reduce
utility and application of demographics. Besides, traditional census methods like enumeration are
labor- and time-consuming work. By contrast, remote sensing conducts simultaneous observation
over large geographic areas with repeat coverage in a cost-effective way. Therefore, satellite imageries
are widely employed at relatively low cost to compensate for the lack of spatial information of
census data [4,5]. Great strides have been made in remote sensing-based approaches for mapping
socioeconomic dynamics and monitoring urbanization attributes. Particularly, nighttime light
imageries have been widely applied due to their great ability to represent the intensity of anthropogenic
activities [6–10] since Croft [11] found that DMSP/OLS (Defense Meteorological Satellite Program
Operational Line-scan System) can detect city lights in 1978 and Miller [12] demonstrated the expanded
potential of VIIR DNB (Suomi NPP Visible-Infrared Imager-Radiometer Suite Day/Night band) in 2013.
DMSP/OLS and its successor—VIIRS DNB are popular NTL (nighttime light) data sources [13–17] for
urban studies because their signals only come from artificial sources while signals of other daytime
radiances are mixes of anthropogenic and natural surfaces. Besides, multi-temporal DMSP/OLS and
VIIRS DNB with good resolution and quality allow for globally consistent research of socioeconomic
dynamics like urbanization, population, and GDP (gross domestic product) [6].

Given aforementioned advantages of nighttime light remote sensing, it has been extensively
utilized in the study of large-scale population spatialization. Elvidge [18,19] generated
radiance-calibrated lights of DMSP/OLS and demonstrated that nocturnal light images were useful for
global population estimation. Imhoff [20] employed nighttime data to detect spatial distribution and
estimate continent-wide density of population. Sutton [21–24] proved that nighttime stable-light data
were qualified to map population, and built models of population distribution in the United Sates and
global locations respectively. There were also some studies working on generating population from
the country perspective. Bustos [7] studied the relationship between population and nighttime satellite
lighting to investigate population decline in some European countries. Amaral [25,26] employed
DMSP/OLS satellite imageries to model the distribution of human presence and energy consumption
with help of Landsat TM in Brazilian Amazonia. Zhuo [27] estimated the population of dark patches
based on Coulomb’s law, and the population of light patches based on the relationship between light
and population demographics. Almost all previous studies concerned with population spatialization
at large scales such as region, nation, continent or even global extents were conducted while few
high-resolution gridded population data were available. These fine-scale population spatialization
maps with clear internal city structure are fundamental data sources for both policymaking and
disaster response. Nevertheless, coarse resolution of DMSP/OLS (~1000 m/pixel) and VIIRS DNB
(~750 m/pixel) hampered the capability of generating high-resolution population distribution. Unlike
the previous nighttime light, the ISS (International Space Station) nighttime photography, which has
been proved to be useful in some socio-economic research [28–30], overcomes this major limitation
owing to its comparatively high resolution (~10 m/pixel). This paper proposed to utilize ISS nighttime
photography to generate 25 m gridded population distribution because of its high resolution and great
capability of delineating clear inter-urban structure.

Meanwhile, some research attempted to combine nighttime lights with auxiliary data such
as GIS-based (Geographic Information System) data and remote sensing classification results to
improve performance of population disaggregation. Yang [31] integrated DMSP/OLS, EVI (Enhanced
Vegetation Index) and DEM (Digital Elevation Model) to develop an EAHSI (elevation-adjusted human
settlement index) and then estimated population density by this novel index. Tian [32] proposed
CPDM (China’s population distribution model) to calculate population by weighted linear regression
based on land cover. Briggs [33] presented a method based on GIS by using remote sensed land use
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and nocturnal light emissions to model the European Union’s population spatial patterns at land parcel
level. Bagan [34] established the GWR (geographically weighted regression) model by a combination of
land use and DMSP/OLS nighttime lights to predict population density in Japan. Zeng [35] employed
auxiliary data of classification images to improve population linear regression model in eight zones of
China. Although several attempts have been made to map population distribution, auxiliary data of
previous studies like the Enhanced Vegetation Index, and LULC (Land Use and Land Cover) were
suitable for large-scale studies instead of high-resolution population disaggregation. By contrast,
urban functional zones greatly advanced the capability of describing human activities and urban
socio-economic dynamics [36], especially in spatializing fine-resolution urban populations at small
levels. Taking city centers as example, there is only ISA (impervious area) in terms of LULC, but several
different categories including residential areas, commercial areas, and scenic spots in terms of urban
functions. Because of their different sensitivity to population, urban functions pose greater impact
on small-scale population distribution than land use and land cover. However, as traditional urban
studies concentrated mainly on land-cover classification instead of urban functions, limited availability
and difficulty of generating functional zones challenges its applications. To tackle this problem, POI
(point-of-interest), GIS-based social sensing data provided by widely used commercial services such
as the Google Maps and Gaode Map are employed to compensate for the socio-economic context.
Furthermore, because both LULC and urban functions are types of variables, it is unreasonable to
assign numbers to different categories like previous methods. In order to transform these types of
variables to meaningful and practical numerical variables, nighttime light was extracted by urban
functions as different layers. These function layers of NTL contain both nighttime light information
and function categories. Additionally, most previous studies estimated population by traditional
regression like linear, power law, and exponential models, and some employed Geographically
Weighted Regression [37]. These traditional models require certain distribution and characteristics
of variables. By contrast, the Random Forest Regression, a potential machine-learning algorithm,
can yield reliable predictions from an ensemble of decision trees [38] without considering multiple
linear relationships between variables.

The existing studies of population distribution were rarely conducted at an urban level, mainly
because of the coarse resolution of previous nighttime light [29], the saturation resulted from DN
ranges between 0–63 [10], and a lack of social semantic information [36]. To tackle these limitations,
this paper proposed a new Random Forest -based method by combining the International Space Station
nighttime photography and social sensing data to generate fine-resolution population distribution.
Besides, to address the lack of 3D information in traditional population mapping, urban height from
SPOT-6 products were also utilized in this method to indicate building volume. This method covered
three main parts namely HSL (hue saturation lightness) transformation and saturation calibration
of ISS photography, generation of urban functional zones based on point-of-interest and the LSMM
(Linear Spectral Mixing Model), and population spatialization based on the RF model. Additionally,
the comparison of ability in population spatialization between ISS NTL and previous data, the Variable
Importance Measure of the RF model, and data detail of method were discussed.

2. Materials and Methods

2.1. Study Area and Materials

2.1.1. Study Area

Beijing, the capital of China, is located on the Northwestern edge of the Huabei plain. It has
16 urban, suburban, and rural districts. Since the reform and opening policy in 1978, considerable
urbanization has been witnessed there. In its central districts are the majority of the commercial,
political, and educational centers in the city, or even in the whole country [39]. These districts
attracted a large amount of permanent resident population with complex compositions and structure.
This high-density population distribution remains a challenge for city population management, public
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security, and urban planning. This paper selected capital-function core areas (Xicheng and Dongcheng
District) and urban functional development zones (Fengtai, Shijingshan, Haidian and Chaoyang
District) as the study area (Figure 1). Because there is overall rapid population growth and imbalanced
population aggregation across regions during the past decades, these selected districts are appropriate
for testing the feasibility and robustness of the proposed method. Successful implication of this method
in the selected areas can also expect desirable results in other regions.
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Figure 1. The International Space Station (ISS) Photography was taken on 19 April 2011, 18:23
UTC (Coordinated Universal Time) (20 April 2011, 2:23 local time). These six central districts
covering capital-function and urban development areas are selected as the study area. HD, CY,
FT, SJS, XC and DC represent the Haidian, Chaoyang, Fengtai, Shijingshan, Xicheng and Dongcheng
District respectively.

2.1.2. Data

The International Space Station photography of six central districts in Beijing, was acquired
during the space station passing over China on 19 April 2011, 18:23 UTC (20 April 2011, 2:23 local
time) by 12.1-megapixel Nikon D3S digital still camera. ISS photography is available in NASA’s
“Gateway to Astronaut Photography of Earth” database (https://eol.jsc.nasa.gov/SearchPhotos/).
It was proved that ISS photography can distinguish major lighting types and changes based on its
scotopic and photopic bands [40]. Due to the lack of geo-reference, ISS photography needs to be
attached to accurate and reliable geospatial information. In order to produce spatially-adjusted ISS
images, feature-based image registration with a third-order polynomial fit was employed by clearly
matching road intersections of images to Google Earth.

Social sensing data utilized in this paper were point-of-interest, which were obtained by API
(Application Programming Interface) from Gaode Map (https://www.amap.com/), one of the
most popular commercial map services in China. This paper collected 12 main categories about
107,606 POI records in 2013. These POI are made of a (key, value) pair, where the ‘key’ represents
categories of features and the ‘value’ represents subcategories. Types and geolocation information of
point-of-interest can compensate socio-economic details for generating urban functional zones.

The subdistrict-level and district-level demographics in the study area were collected from
the Sixth National Population Census in 2010 conducted by the National Bureau of Statistics of
China (http://data.stats.gov.cn/ and http://www.bjstats.gov.cn/tjsj/). There were two subdistricts
being excluded from this experiment because of data deficiencies or special land use like airports.
Hence, resident population of the rest 131 subdistricts in the selected districts was utilized in this
paper. Additionally, WorldPop datasets [41] (http://www.worldpop.org.uk/), reallocate contemporary
aggregated spatial population based on a range of open geospatial data. These datasets were chosen
as validation data in accuracy assessments.

https://eol.jsc.nasa.gov/SearchPhotos/
https://www.amap.com/
http://data.stats.gov.cn/
http://www.bjstats.gov.cn/tjsj/
http://www.worldpop.org.uk/
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Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images were selected to classify impervious
areas and vegetation cover from LSMM and to estimate Modified Normalized Different Water Index
(MNDWI) and Normalized Difference Vegetation Index (NDVI). Landsat 7 ETM+ images within the
study area under clear weather conditions in 2011 were downloaded from the website of United States
Geological Survey (USGS) (https://earthexplorer.usgs.gov/). Besides, products of SPOT 6 tri-linear
array images in 2014 were utilized as an indicator of urban height.

Three types of vector data including administrative boundaries, urban road network,
and architectural composition were collected from Bigemap, a widely applied commercial
map-downloading web service. Bigemap software equipped with Application Programming Interface
provided the function of map downloading from Google Earth. Administrative boundaries of six
selected districts cover district and subdistrict levels. Urban road networks were comprised by national
expressways, provincial highways, main roads, and urban roads. The architectural composition data
indicated detailed spatial distribution of urban landscape on the building level.

2.2. Methods

This proposed method was divided into three main steps: HSL transformation and saturation
calibration of ISS photography, generation of urban functional zones based on point-of-interest, and
population spatialization based on the Random Forest Regression. In order to clearly explain these
processes, detail of this method was provided in Figure 2.
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Figure 2. The flowchart of the proposed method covering three steps: HSL (hue saturation lightness)
transformation and saturation calibration, generation of urban functional zones, and population
spatialization based on Random Forest Regression. Conditions of decision-tree classification were
built according to characteristics of urban functions. POI: point-of-interest; ISS: International Space
Station; NTL: nighttime light; LSMM: Linear Spectral Mixing Model; VANUI: Vegetation Adjusted
NTL Urban Index.
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2.2.1. HSL Transformation and Saturation Calibration of ISS Photography

Although the International Space Station photography can represent detailed urban nocturnal
information, there was still difference between this RGB (red, green, blue) image and traditional NTL
data. In order to transform values of ISS imageries into brightness, the lightness transformation of
HSL defined as an average of the largest and smallest color components was employed (Equation (1)).

ISS HSLi,j =
1
2
(
max

(
ISSi,j(R, G, B)

)
+ min

(
ISSi,j(R, G, B)

))
, (1)

where i and j refer the row and column of the pixel, max and min represent the largest and smallest
color components of the pixel respectively.

After HSL transformation, it was found there were still some saturation problems around
large-scale intersections of main roads and elevated highways. To reduce this saturation, this paper
utilized the Vegetation Adjusted NTL Urban Index (VANUI) proposed by Zhang [42] (Equation (2)).
Moreover, some saturation was insensitive to vegetation cover, especially in rapidly urbanized cities
like Beijing [42]. Therefore, NDVI was not able to fully calibrate the luminosity of ISS images. It was
necessary to employ low-pass filtering, a simple and efficient way to reduce the remaining luminosity.
To tackle the saturation in central business districts after VANUI, low-pass filtering with 5 × 5 windows
of neighborhood mean algorithm was employed to the top 2% values. After being adjusted by HSL
and VANUI, the ISS RGB was altered to NTL for future population spatialization.

ISS NTL = (1 − NDVI)× ISS HSL (2)

2.2.2. Generation of Functional Zones Based on POI and LSMM

Urban functional zones were generated based on decision tree classification by combining social
sensing data and results of Linear Spectral Mixture Model (LSMM). It was necessary to regroup
12 collected subclasses into five main categories, to meet requirements of generating potentially
population-sensitive urban functions. These five categories, namely residential areas, commercial
areas, public services, scenic spots, and “others”, were selected owing to their potential association
to city functions and population distribution. However, point type of social sensing data cannot
fully match urban layouts. To address this weakness, impervious surface and vegetation percentage
were employed to provide area property. After being masked by MNDWI to exclude water cover,
Landsat 7 images were utilized in a Linear Spectral Mixture Model, a technique for estimating the
proportion of each pixel which is covered by a series of known cover types, proposed by Wu [43] to
calculate impervious surface and vegetation coverage. These results were employed to compensate for
land-cover information for the generation of urban functional zones.

Decision tree classification, an algorithm with significant potential for remote-sensing
mapping [44], was utilized to produce urban functional zones. This algorithm recursively partitions
a dataset into smaller subdivisions according to judging conditions. These rules were made after
conducting analyses of characteristics and distribution patterns of urban functions. Because there were
two types of scenic spots including green landscapes and historical interests, land cover cannot be
chosen as decision rules for this function. Except categories of scenic spots and “others”, impervious
surfaces were decided as prerequisite for function classification. Density and count of POI were
selected as category tags for urban functions. As a result, the selected study area was classified into
five functions including residential areas, commercial areas, scenic spots, public service, and “others”.

2.2.3. Population Spatialization Based on the Random Forest Regression

To conduct population disaggregation, this paper employed Random Forest [38] implemented
in a scikit-learn python library. Random forest is an ensemble of tree predictors based on CART
(Classification and Regression Tree). These trees depend on the value of a random vector sampled
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independently [38]. There are four main steps for RF regression to model the relationship between
social sensing features and population distribution.

(1) Preparation of training data: To avoid meaningless accumulation of functional types as traditional
methods did, urban functional zones were employed to slice ISS NTL into different layers.
This combination produced five NTL layers covered by functions of residential areas, commercial
areas, scenic spots, public service, and “others”. It is noted that the function of public service
was merged into commercial areas due to its small proportion and relatively similar distribution
patterns. Besides, the type of subdistricts was determined by thresholding as 16,000 people/km2,
which divided the study area into two relatively homogeneous parts including high and low
density. This paper selected four NTL function layers, population-density types, and urban
height on the district level as independent variables of training data.

(2) Samples and growth: In order to build b regression trees, b training samples were extracted from
n cases of origin dataset based on the Bootstrap method. The rest samples were employed as
out-of-bag (OOB) for validation. When constructing the Regression tree, n (n < 6) features were
randomly chosen as candidate branch nodes from 6 independent variables. They were further
determined as optimal branches based on feature bagging. Each Regression tree grew recursively
from top to bottom and the number of trees was the termination condition for this growth.

(3) OOB validation: These b Regression trees constitute the Random Forest model. The prediction
performance of this model was evaluated by accuracy of out-of-bag (Equation (3)).

R2
RF = 1 −

∑m
i=1(yi−ŷi)

2

m
σ̂2

y
(3)

where yi was response variables from OOB, ŷi was predicted value of the RF model, σ̂2
y was

variance of predicted values, and m is the number of OOB samples.
(4) Prediction: Pixel population was predicted by averaging over predictions of the Random Forest

Regression model. As a result, 25 m population distribution in the study area was generated
based on RF model.

3. Results

3.1. Results of HSL and VANUI

Figure 3 aimed at demonstrating that ISS RGB images after HSL transformation and VANUI
saturation calibration were qualified for further urban studies. The International Space Station RGB
image and its zoom-in image (a1) showed detailed urban layouts with clear road networks. This feature
was important for further disaggregation of high-resolution population. The wide range of the red
and green bands in the value distribution (a2) resulted from the bright appearance of lights in the
ISS photography. HSL transformation converted this RGB image to light data and its performance
was reported by the group of (b). The ISS HSL image indicated that after lightness transformation,
clear city internal structure was well maintained at same time. Therefore, it was proved that HSL
transformation was qualified for changing photography into nighttime lights. The group of (c)
indicated the performance of VANUI for reducing saturation and increasing variation of ISS nighttime
light. By comparing images between before and after VANUI calibration from qualitative respect
(Figure 3(b1,c1)), there were great improvements and much less saturation. In particular, some
large-scale intersections were adjusted to indicate more detail of inter-urban variation rather than
uniform clumps. Additionally, comparison between histograms of images (Figure 3(b2,c2)) showed
that after VANUI adjustment, the amount of high value was much less than before, while the shape of
the histogram was well maintained.
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Although VANUI greatly reduced saturation and increased variability, there was still some
over-glow saturation remaining in the urban center. This remaining nighttime luminosity confirmed
with Zhang [42] that the performance of VAUNI in rapidly growing cities like Beijing was not as
good as in legacy cities. It was mainly because rush urbanization in Beijing led to less vegetation
cover. This loss of diversity resulted in less sensitive to NDVI, which was the major indicator of
VANUI to increase inter-urban variability. It is worth noting that there was still some saturation
remaining, and its spatial autocorrelation could influence the accuracy of the result, especially in the
small-scale studies. However, the effect of the remaining luminosity was not very significant, because
nighttime light was not the only indicator, but worked together with urban functions and urban height
in the proposed method. Besides, to further reduce the remaining luminosity, low-pass filtering was
employed after VANUI calibration. To sum up, after HSL transformation and VANUI calibration,
ISS NTL was appropriate for the further study of population spatialization.

3.2. Urban Functional Zones Based on Social Sensing Data

To better explore the characteristics and structure of each function, Figure 4 showed results of
functional zones in term of their types (a) and combination (b). By selecting typical places in the
study area, the group of (a) reported that distribution structure of different types varied a lot from
each other. It was found that the urban function of residential areas is densely distributed in the
city center, especially within the fourth ring road (Figure 4(a1)). This was mainly because there was
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highly-developed urbanization in Beijing’s central area. In its zoomed-in image, the POI of residential
areas matched aggregated distributions of their block, indicating that one POI can represent a block of
residential quarters. Spatial patterns of scenic spots showed more complex and various distribution
than other functional types due to its two subclasses. Therein, historical interests aggregated in the
Northwest of Beijing and intersections of center axle wires, while parks and other green landscapes of
scenic spots were scattered in the study area, improving the urban environment. The Forbidden City,
selected as typical scenic spots, indicated that POI densely scattered within the boundaries of tourist
attractions. Commercial areas and public services were densely located on the sides of roads while
some factories settled in the suburbs. Social sensing data of these two functions was well matched to
urban building compositions. The type of ‘others’ covered by farmland and soil showed relatively
opposite distribution to residential areas. This open space was not labeled by POI. At last, Figure 4b
shows the complete results of urban functional zones, which were validated by Google Earth with
accuracy over 93% for 200 random points. These functional zones were employed as an auxiliary of
population indicators to help adjust population spatialization in the next step.
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3.3. Fine-resolution Population Distribution

Figure 5 showed the result of the proposed method, the 25 m population grid in the study area.
It was found that people were densely populated in the city center of Beijing, which has witnessed
the most urbanization in the country or even in the world during recent years. This distribution of
population corresponded with spatial patterns of residential areas. Especially, the Xueyuan Subdistrict,
a famous university town with college aggregations and high-density dormitories, showed the most
intensive population. Instead of being densely populated, large interest attractions in the downtown
area like the Palace Museum and Yuyuantan Park were adjusted as low-inhabitant areas by urban
functional zones. Besides, some inhabitants were scattered with low density in rural residential spots.
This distribution accorded with spatial patterns of village inhabitants particularly in the Fengtai
and Shijingshan Districts. It was mainly because there were cropland, soil, and mountainous areas
around rural areas and they were not suitable for people to densely settle down. The population of
Nanyuan Subdistrict was not disaggregated because there was data missing. Generally, high-resolution
population distribution calculated from the presented method showed rational and clear structure.
To further validate this method, accuracy assessments were conducted in the next step.
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International Space Station image and POI. The Nanyuan Subdistrict is not calculated because there
was data missing.

This method was validated by comparison with WorldPop datasets (~100 m). Due to difference
of resolution, the results of this method were accumulated by a neighborhood algorithm with 4 × 4
windows to match the resolution of the validation data. Considering the quartile of the resampled
results (28, 75, 131, 323), Root Mean Squared Error (RMSE, Equation (4)) of 43.05 was comparably
low. Relatively desirable RMSE, and high correlation (R2 = 0.82, p < 0.01) between WorldPop and the
population distribution of RF method indicated the good quality of this spatializing method.

RMSE =

√
∑n

i=1(popi − WorldPopi)
2

n
(4)

where n is the amount of pixels in the study area, i represents the ith pixel, and pop represents
population estimated by the proposed method, WorldPop represents validation data.

Furthermore, in order to find clear verification, accuracy assessments were conducted from aspects
of quantity and percentage respectively. In terms of the quantities found, (Figure 6a), the proposed
method performed well on the whole, though the population of a few subdistricts showed difference
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from the validation data. It was found that the population of Lugouqiao and Changxindian subdistricts
in the Fengtai Districts were greater than that of WorldPop. Taking the Lugouqiao subdistrict as
example to explain this problem, because there was no clear political boundary between the Lugouqiao
subdistrict and Lugouqiao town, this paper added their population to match the whole boundary
of these two parts. Despite of the fact that this way could bring error and uncertainty to their
population spatialization, treating them as one object can successfully compensate for the problem of
missing boundaries. Additionally, from the error histogram, over 92% difference within the range from
−50 to 50 further indicated that this high-resolution population achieved the desirable quality. To better
validate this method and avoid biases introduced by their original amount, accuracy assessments were
also conducted in terms of the percentage way. The validation results of the percentage way further
demonstrated that this method worked well in high-resolution population spatialization (Figure 6b).
Compared with WorldPop, adjusting scenic spots as less-populated locations in the proposed method
corresponds to the population distribution in reality. As such, this difference cannot be recognized
as an error, despite the fact that both the error percentage and quantity in scenic spots were shown
to be lower than the validation. Instead of the low accuracy mentioned in quantitative assessments,
this method performed well in the Lugouqiao and Changxindian subdistricts in percentage validation.
This finding further supported the way of combining the subdistrict and town as one object can
not only compensate for missing boundaries, but also work in population spatialization. Similarly,
the histogram of error percentage (over 90% locating from −0.5 to 0.5) illustrated the good quality
of the result. To sum up, this proposed method was validated to perform well in the generation of
population distribution with fine-resolution.
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4. Discussion

4.1. Comparing Ability of Mapping Population Between Nighttime Light Data

Despite of the fact that previous research has proved the potential of the International Space Station
photography as high-resolution nighttime light, whether ISS NTL after HSL and VANUI adjustment
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was comparable with previous generations and qualified in population disaggregation, was further
demonstrated in Figure 7. Because the ISS photography was taken by cameras instead of sensors like
DMSP/OLS and VIIRS DNB, it was necessary to validate that ISS NTL was comparable with previous
generations of nocturnal light. Comparing the relationship between two old NTL, high correlation
(R2 = 0.89 and 0.85, p < 0.01) between earlier nocturnal images and ISS NTL (Figure 7(b1,c1)) confirmed
that ISS was successfully transformed by HSL to comparable nighttime data. ISS NTL was found
not only as qualified nighttime light but also high-resolution images with a clear internal-urban
structure (Figure 7(a2)). On the contrary, the older generation and their zooming-in images especially
DMSP/OLS showed severe saturation in the urban center because of limited DN range from 0 to 63.
This saturation of luminosity limited the ability of dynamic urban mapping by DMSP/OLS [10].
Despite them being less saturated than DMSP/OLS, the ability of VIIRS DNB in fine-scale population
spatialization was limited by its lack of expressing urban internal-variation.
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Figure 7. The comparison of ISS NTL and previous generations of nighttime light images in terms of
resolution, and sensitivity to population. Scatterplots of VIIRS DNB and DMSP OLS (a1), ISS NTL
and VIIRS DNB (b1) and ISS NTL and DMSP/OLS (c1). (a2,b2,c2) represent ISS NTL, DMSP OLS and
VIIRS DNB and their zoom-in images respectively. (a3,b3,c3) show scatterplots of population and NTL
while (a4,b4,c4) represent scatter diagrams of population and NTL covered by the residential function.

After proving the quality of ISS NTL as practical and comparable data, ability of mapping
population of these data sources was compared in term of quantity. Although two previous NTL were
widely employed in large-scale population disaggregation [18–27], their absence of application in small
scales remained challenges on high-resolution population mapping. It should be noted that subdistrict
level means taking population within a subdistrict as one object of training data. Conversely, previous
large-scale research took the population of a city as one study object. Scatter plots (Figure 7(a3,b3,c3))
clarify the relation between a subdistrict-level population and different NTL data sources. Despite the
low correlation between three NTL and the small-scale population, ISS NTL expressed comparatively
high sensitivity to demographics. The finding that all three NTL, especially DMSP/OLS, showed
low correlation to population at subdistrict level was opposite to previous studies of large-scale
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population disaggregation. The reason why they lost the ability to indicate population distribution
was the different performance of nighttime light in large and small-scale research, also named scale
factors. In other words, these NTL can represent variations of population at country or global scales,
because urban internal diversity was ignored by taking a city as one study object. However, as the
scale decreases to the subdistrict-level, more detail and the noise of population distribution cannot
be directly expressed and distinguished by nighttime light. Therefore, it was found that these NTL
cannot be directly utilized in high-resolution population mapping without any auxiliary.

Furthermore, to quantify the improvement of auxiliary data, scatter plots between population
and NTL covered by the residential function were shown in Figure 4. All these NTL were great,
improved by urban functional zones as indicator of small-scale population spatialization, particularly
ISS NTL, with R2 rising from 0.27 to 0.71(p < 0.01). Great improvement of high-resolution population
mapping made by adjustment of urban functional zones was proved by taking the residential function
as an example. Although enhancement brought by auxiliary, DMSP OLS, and VIIRS DNB still
presented as weaker indicators of subdistrict-level population. Generally, Figure 7 demonstrated
that HSL was qualified for changing ISS photography into nighttime light images with inter-urban
variation well maintained, and further proved that ISS NTL was more appropriate data than the
older generations for small-scale population spatialization. Aforementioned findings confirmed by
Anderson [28] that exclusive application of high-resolution nocturnal images might not improve
the accuracy of mapping a population. However, the population sensitivity of these NTL images
was not consistent with Anderson’s results where DMSP/OLS showed greater correlation (0.6) to
the population than ISS. This difference could result from disparate method of transformation and
scales of reference. Transforming ISS RGB to comparable nighttime light by HSL rather than Principal
Components Analysis (PCA) could contribute to their different sensitivity to population. Besides,
instead of subdistrict-level populations, Anderson chose pixel and block as the scale of reference.

It was worthy to note that the ISS image employed in this method was taken in the mid-night,
which means the light was observed mostly from street lights and effected by lunar illumination
(the ISS image in this paper with 19◦ of lunar phrase angle). Admittedly, this limitation was likely to
reduce its capability of indicating intensity of human activity and population distribution. However,
there were several reasons for recognizing ISS as acceptable data sources in population spatialization.
VIIRS DNB (observation time at 1:30) extensively employed in socioeconomic studies [6,9,12,13,15,17],
supported for the application of mid-night ISS. Jing [45] found that light intensity changes are relatively
small from night to midnight in the well-urbanized and commercial cities like Beijing. Besides, ISS was
not always taken at the fixed time and most images were taken before mid-night, which provided
chances for researchers to select images with appropriate time and date for population studies to avoid
influence from street lights and lunar illumination. Despite the imperfect choice of ISS photography in
this method, the good performance of ISS further proved that with better consideration of the image’s
date and time, ISS would be a potential tool in population spatialization.

Generally, this paper suggested that ISS photography with rational transformation and auxiliary
data could improve its ability to spatialize high-resolution population. Admittedly, the lack of
periodic observations was another problems of ISS images. Nevertheless, with the strong promotion
of “Gateway to Astronaut Photography of Earth” database, numerous ISS photography would be
explored and provided to compensate the lack of periodic data.

4.2. Variable Importance of the Random Forset Model

It was necessary to prepare candidate features for the Random Forest algorithm to automatically
select as regression variables. The group of (a) in the Figure 8 was aimed to demonstrate the feature
preparation in this Method. To select the best feature candidates for the Random Forest Regression
model, this paper conducted experiments by adding features step by step. From Figure 8(a1–a4),
there were four-feature combination and their contribution to the RF model. Despite the different
quantity of feature importance, their order showed relative consistency. In fact, the residential
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function made the greatest contribution to population spatialization in all four situations, which was
confirmed with resident-population distribution. It was found that by adding more related features
the accuracy of the proposed method rose with RMSE decreasing (Figure 8(a5)) and R2 increasing
(Figure 8(a6)). Despite having the least contribution of all the types, increasing R2 demonstrated
taking the study area as two relatively homogeneous parts can improve the performance of population
spatialization. Similarly, as scenic spots and “other” were considered as potential variables in the RF
model, its accuracy was improved with obvious decrease of RMSE. Besides, since the feature of heights
can indicate the volume of urban buildings, it worked as an important improvement for traditional
2D population mapping. In brief, this experiment explained the reason why four urban functions,
type, and heights were selected as candidate features in RF regression for population disaggregation.
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Figure 8. The group of (a) shows different feature candidates in the Random Forest regression (a1–a4)
and their accuracy assessments (RMSE in a5, R2 as correlation with validation data in a6). The group
of (b) explains reasons of features importance by scatterplots between selected features and population.
(b1) shows stacked bars of features importance in all step-wise situations.

To further explain the contribution of these potential features, in the group (b) of Figure 8,
there were scatterplots between them and population. By combining the feature importance of all four
situations, the stacked plot (b1) reported the quantity and changes of these candidate features. The high
correlation (R2 = 0.7, p < 0.01) between population and NTL of the residential function quantitatively
explained the reason why this feature accounted for the greatest contribution in the RF model. In the
same manner, the contribution of residential, commercial areas, and urban height corresponded with
their correlation with population. Due to higher population-sensitivity (0.38 vs. 0.21), height made more
contribution to population spatialization than the function of commercial services. Although scenic
spots and “others” should be recognized as noise in terms of the low correlation, the aforementioned
experiment has already proved its improvement for population distribution. This contradictory
information could be explained by the black-box of the RF model, a smart deep learning algorithm.
In addition, the improvement of population-sensitivity by dividing the study area as two relatively
homogeneous parts demonstrated the feature importance of type.
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Despite the fact that applications of LULC was proved by previous research in large-scale
studies [31–33], this paper suggested that urban functions worked as better indicators than land cover
for high-resolution population mapping. Instead of distinguishing different population-sensitivity,
LULC took various urban functions as ‘impervious surface’, comprising one homogeneous class.
Taking residential areas and commercial services as examples, although they both belong to ISA in term
of LULC, they made different contribution to population disaggregation. Especially in well-urbanized
metropolises, when scaling down to a small level, ignoring these differences would bring great bias to
the result of population spatialization.

Furthermore, urban functions also held potential in the study of other socio-economic attributes
such as GDP (Gross Domestic Product) and EPC (Electricity Power Consumption). It is worthy to note
that different economic indicators are sensitive to distinctive categories of urban functions. For example,
it is speculated that EPC is influenced by commercial functions, especially heavy industries, which are
different from population sensitivity. Further studies need to be conducted to find out whether the
combination of high-resolution nighttime lights and urban functions are also an enhancement for
spatializing other economic indexes and how these impacts work.

4.3. Demographics for Spatialization and WorldPop for Validation

The aforementioned results and discussion proved that this method was qualified to spatialize
demographics by employing ISS images, functional zones and urban height as weighted indicators.
However, it is worthy to note that census population is based on residential site-derived surveys,
while nighttime light data are sensitive to ambient populations. In the urban-scale study, there is
a difference between residential population and dynamic population. Admittedly, ambient population
is more suitable for very fine-resolution demographics mapping. Instead of that, this paper selected
census population for following reasons. Firstly, it is difficult to collect information of a dynamic
population, because inputting data collections for mapping ambient population, including activity
location and mobile population, especially the last one, are challenging [46]. Secondly, previous
studies [47,48] conducting fine-scale population spatialization with subdistrict-level census population
proved that demographic can be utilized in this method. Beside, LandScan, a popular ambient
population data is spatialized from census data with help of auxiliary, which indicates that ambient
population and census population share some similarity. Generally, it is found that demographics data
are acceptable when ambient population is unavailable. To generate ambient population for better
population mapping, mobile phone counts, social media data, point-of-interest, and hotspots data can
be utilized in future study.

Although inputting data were collected at different times, with demographics collected in 2010,
the ISS photography taken in 2011, and point-of-interest assembled in 2013, this paper employed
them in the Random Forest model. This difference could have effect on the accuracy of the result
since these major weighted indicators for spatializing high-resolution population were not collected
at the same year of demographics. The reason for applying demographics in 2010 was that the Sixth
National Population Census conducted by the state guaranteed the quality of data. Because ISS
photography was taken without fixed period and point-of-interest was accessible on the website since
2013, they were the nearest-year available data. Besides, according to Beijing Municipal Bureau of
Statistics that population in the study area increased 2.5% from 2010 to 2011 (3.5% from 2009 to 2010),
there was not evident population growth. As such, ISS photography taken in 2011 can relatively match
census data surveyed in 2010. Category distribution of point-of-interest did not change significantly
from 2010 to 2013 because most changes of POI came from businesses transfer. These changes were
mostly like a bookstore transferring to a restaurant—relatively insignificant since only a distribution
of categories affected the generation of urban functional zones. In summary, this discrepancy was
acceptable in the proposed method and with the promotion of “Gateway to Astronaut Photography of
Earth” and the development of Big Data Share, data collection would be much easier in the near future.
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After discussing datasets for mapping small-scale population, the qualification of WorldPop as
validation data also needed to be elaborated because of resolution difference between the result of
this method and WorldPop (25 m/pixel vs. 100 m/pixel). There were several reasons why this paper
selected WorldPop in accuracy assessments. Difficult availability of higher resolution population
distribution not only explained the rationality of taking WorldPop as validation data but also illustrated
the necessity of this paper. Besides, in the validation of this method, upscaling the result to match the
resolution of WorldPop helped to mitigate error from the position offset of pixels. Even though higher
resolution population distribution does exist, directly conducting pixel-to-pixel accuracy assessments
could be greatly influenced by slight geographical offset, which is unavoidable. Furthermore, carrying
out accuracy assessments with coarser-resolution validation data in some previous studies of fine
population spatialization [47,48] supported the application of WorldPop in some extents. To sum up,
WorldPop was qualified for accuracy assessments in this method when better validation data were
unavailable. This method with good accuracy showed promising applications in future urban studies
and it is necessary to conduct more research of very fine-resolution population spatialization.

5. Conclusions

This paper proposed the RF-based method to generate high-resolution population distribution
by combining ISS photography and social sensing data. This presented method greatly benefited
from ISS’s high resolution and detailed information of internal-city structure which were important
for small-scale urban studies. Besides, urban functional zones based on point-of-interest acted as
important indicators to help adjust population mapping due to its abundant socio-economic semantic
information. Urban heights from SPOT-6 products further improved performance of population
mapping by providing 3D representation of urban buildings. Compared to traditional linear regression,
the Random Forest Regression model, a potential machine-learning algorithm, can better represent the
relation between candidate variables and pixel population. After accuracy assessments, the proposed
method was validated as a promising way of generating high-resolution population grids.

The selection of candidate features for the RF model, the explanation of feature contribution,
and the comparison between LULC and urban functions were discussed in this paper. Without any
adjustment, DMSP/OLS, VIIRS DNB, and ISS NTL all showed weak correlation to demographics at
subdistrict scales and cannot be directly utilized as sensitive indicators for high-resolution population
spatialization. Besides, the Variable Importance Measure of the RF model confirmed with the
correlation between features and population. This quantity assessment of feature importance further
demonstrated that urban functions performed better than Land Use and Land Cover in small-scale
population mapping. Urban height was also proved as an important indicator to compensate the
volume of urban buildings for traditional 2D population mapping. Besides, it is necessary to validate
the potential of urban functions in the study of other socio-economic attributes such as Gross Domestic
Product and Electricity Power Consumption.

At last, ISS photography is expected to be promising nighttime light data sources in the future,
because of the promotion of “the Gateway to Astronaut photography of Earth” conducted by NASA.
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