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Abstract: Hyperspectral images (HSIs) are always corrupted by complicated forms of noise during the
acquisition process, such as Gaussian noise, impulse noise, stripes, deadlines and so on. Specifically,
different bands of the practical HSIs generally contain different noises of evidently distinct type and
extent. While current HSI restoration methods give less consideration to such band-noise-distinctness
issues, this study elaborately constructs a new HSI restoration technique, aimed at more faithfully
and comprehensively taking such noise characteristics into account. Particularly, through a two-level
hierarchical Dirichlet process (HDP) to model the HSI noise structure, the noise of each band is
depicted by a Dirichlet process Gaussian mixture model (DP-GMM), in which its complexity can be
flexibly adapted in an automatic manner. Besides, the DP-GMM of each band comes from a higher
level DP-GMM that relates the noise of different bands. The variational Bayes algorithm is also
designed to solve this model, and closed-form updating equations for all involved parameters are
deduced. The experiment indicates that, in terms of the mean peak signal-to-noise ratio (MPSNR),
the proposed method is on average 1 dB higher compared with the existing state-of-the-art methods,
as well as performing better in terms of the mean structural similarity index (MSSIM) and Erreur
Relative Globale Adimensionnelle de Synthèse (ERGAS).
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1. Introduction

Hyperspectral images (HSIs) are collected by high spectral resolution sensors, and consist of
hundreds of bands ranging from ultraviolet to infrared wavelengths. Due to the richness of spatial and
spectral information, this type of image has been widely used in many remote sensing applications [1,2].
However, HSIs inevitably suffer from various noise contamination in practice [3], which severely
influences the image quality and limits the performance of the subsequent HSI processing tasks, such
as unmixing [4], classification [5] and so on. Therefore, as a necessary pre-processing step of certain
application tasks, HSI restoration is an important research topic and has attracted much attention in
recent decades.

Regarding each band of HSIs as a gray image, we can simply use the traditional image denoising
method to reduce noise in a band-by-band fashion, such as the sparse constraint methods [6–9],
local polynomial approximation (LPA) methods [10–12] and so on. However, such methods ignore
the intrinsic characteristics of HSIs, i.e., the spatial and spectral correlation among different bands,
thus often resulting in unsatisfactory performance. To alleviate this issue, many methods have been
proposed in order to better encode the spatial and spectral correlation knowledge of HSIs, e.g., [13–16].
Besides, nonlocal similarity [17], anisotropic diffusion [18] and conditional random fields [19], have also
been utilized for the HSI restoration task recently.
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Inspired by the spectral correlation of HSIs, various methods based on low-rank matrix
factorization (LRMF) have been proposed in the past few years. For example, Zhang et al. [20]
used a rank-constrained RPCA [21] while Wu et al. [22] and Xie et al. [23] employed weighted nuclear
norm minimization (WNNM) [24,25] to enhance the restoration quality. In addition, considering the
local similarity within a patch and the non-local similarity across the patches in a group simultaneously,
a novel group low-rank representation (GLRR) model was proposed in [26]. Besides this kind of LRMF
approach, a series of methods regarding HSIs as a 3-D tensor have also been proposed in recent years.
Along this line, we can categorize these methods as tensor decomposition-based methods [27–31] and
wavlet-based methods [32–35].

The current HSI restoration methods generally assume similar complexity of noise structures
across all bands of an HSI dataset. In fact, most of them only assume simple independent and
identical Gaussian/Laplacian noise on all HSIs, which implies that the noises on all bands share
a similar noise type and extent. To make the approach better fit real noises with more complexity,
some HSI restoration methods have been constructed to consider more complex noise beyond simple
Gaussian/Laplacian [36,37]. Additionally, He et al. [38] considered the noise as a mixture of Gaussian
and Laplacian distribution while Cao et al. [39] modelled the noise using a more general mixture of
exponential power (MoEP) distributions. However, these methods all assume the noise in each HSI
band as an identical distribution. Recently, Chen et al. [40] proposed modelling the noise distribution
of each band as a mixture of Gaussian (MoG) distributions with different parameters sharing with the
unique conjugate prior. This method, however, still assumes the same complexity (i.e., the number of
components) of MoGs in all HSI bands.

For most practical HSIs, however, the noise across different bands is always evidently distinct,
both in terms of distribution type and corruption extent. As shown in Figure 1, the noises in the
shown three bands of the Urban (http://lesun.weebly.com/hyperspectral-data-set.html) HSI dataset
(Figure 1a) and the Terrain (https://www.agc.army.mil) HSI dataset (Figure 1b) exhibit very different
patterns. Specifically, band 76 of Urban and band 2 of Terrain are mainly contaminated by deadlines
and the noises resemble Laplacian distributions; band 104 of Urban and band 139 of Terrain are more
corrupted by Gaussian noise, while band 139 of Urban and band 151 of Terrain are simultaneously
contaminated by several kinds of noise, so their noise distributions are multimodal. The current HSI
restoration methods thus lack consideration on such band-noise-distinctness issue, which tends to
weaken their robustness in handling real noisy HSI.
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Figure 1. The distinctness of noises among different bands of hyperspectral images (HSIs). (a) Bands
76, 104 and 139 of the Urban HSI dataset; (b) Bands 2, 139 and 151 of the Terrain HSI dataset. (a1) and
(b1): Original images, (a2) and (b2): restored images, (a3) and (b3): noises extracted by our proposed
method, (a4) and (b4): histogram of noises in the same scale.

http://lesun.weebly.com/hyperspectral-data-set.html
https://www.agc.army.mil
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To address the aforementioned noise fitting issue, in this paper we propose a new HSI restoration
method, which can more sufficiently encode such noise characteristics underlying HSIs. The main
contribution of this work can be summarized as follows:

1. The noise in each HSI band is modelled by a Dirichlet process Gaussian mixture model
(DP-GMM), in which the Gaussian components of MoG in each band are adaptively determined
based on the specific noise complexity of this band. The distinctness of noise structures in
different bands is thus able to be faithfully reflected by the model.

2. By using the hierarchical Dirichlet process (HDP) technique, we correlate the noise of different
bands through a sharing strategy, in which the noise parameters of each band share a high-level
noise configuration of the entire HSI.

3. A variational Bayes algorithm is readily designed to solve the model, and each of the involved
parameters can be effectively updated in closed-form.

This paper is organized as follows. Section 2 provides some preliminaries on the utilized HDP
technique. Section 3 presents the main model against the investigated problem, and the variational
Bayes algorithm for solving it is given in Section 4. Experimental results on synthetic and real datasets
are demonstrated in Section 5, and finally the paper is rounded up with a conclusion.

2. Preliminaries

In this section, we review some preliminary knowledge about the Dirichlet process and
hierarchical Dirichlet process to set the stage for the presentation of our model later.

2.1. Dirichlet Process

The Dirichlet process (DP), developed firstly by Ferguson [41], is parameterized by a concentration
parameter γ and a base distribution H. Consider a measurable set Θ and any of its finite partitions
{A1, A2, . . . , Ar}; the Dirichlet process, denoted by DP(γ, H), is a unique distribution over probability
distributions on Θ such that

if G ∼ DP(γ, H), then (G(A1), G(A2), . . . , G(Ar)) ∼ Dir(γH(A1), γH(A2), . . . , γH(Ar)) (1)

where Dir(·) denotes the Dirichlet distribution.
Besides, Ferguson [41] proved two important properties of the DP. The first is that any random

sample G drawn from DP(γ, H) is a discrete distribution over Θ. The second property considers
repeated draws θ1, θ2, . . . , θn from this discrete distribution G, i.e.,

θi ∼ G, i ∈ {1, 2, . . . , n},

where these θis will exhibit a clustering property, i.e., they share repeated values with positive
probability. In the DP-GMM, θi represents the parameters (i.e., mean and variance) of the corresponding
Gaussian component to which the i-th data point belongs. Thus, the clustering property of θis can
adaptively determine the number of Gaussian components in MoG.

Sethuranman [42] provides an equivalent but more explicit representation of DP based on the
stick-breaking construction. Considering two infinite collections of independent random variables,
πi ∼ Beta(1, γ) and η∗i ∼ H, for i = 1, 2, . . ., the stick-breaking representation of G is as follows:

πi = π
′
i

i−1

∏
j=1

(1− π
′
j), G =

∞

∑
i=1

πiδη∗i

where δη∗i
represents the Dirac Delta function located at η∗i . The stick-breaking construction depicts

the DP from a different point of view, in which the clustering property of DP is realized by the mixing
coefficient πk. The parameter γ controls the dispersion level of πk, and we simulate the stick-breaking
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process under different γ in Figure 2. It is easy to see that this stick-breaking process is able to
determine the number of Gaussian components of MoG through adjusting the value of πk.
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Figure 2. Stick breaking process under different concentration parameters γ. (a) γ = 1; (b) γ = 5;
(c) γ = 10.

2.2. Hierarchical Dirichlet Process

The hierarchical Dirichlet process (HDP) [43] is originally proposed as a hierarchical Bayesian
model for natural language processing, which provides a flexible framework for sharing mixture
components among groups of related data. A two-level HDP is a collection of DPs, which is also
drawn from a higher-level DP with base distribution H, i.e.,

G ∼ DP(γ, H), Gj ∼ DP(αj, G), (2)

where j is an index for the data group. It should be noted that all distributions Gj possess different
parameters while sharing the distribution G.

3. HSIs Restoration Model Based on DP-GMM

3.1. Notation Explanation

For convenience of formulating our model, we first introduce some necessary notations to be used
in the following sections. We use light lowercase letters, bold lowercase letters and bold uppercase
letters to denote scalars, vectors and matrices, respectively. Given a matrix X, we use x·j to denote its
j-th column vector, xi· to denote its i-th row vector, and xij to denote the element in its i-th row and j-th
column. For probability distributions, N (µ, Σ) represents the multivariate Gaussian distribution with
mean vector µ and covariance matrix Σ, N (µ, ξ−1) represents the univariate Gaussian distribution
with mean µ and precision ξ, Beta(a, b) represents the Beta distribution with parameters a and b,
Gam(c, d) represents the Gamma distribution with parameters c and d, and Multi(π) represents the
multinomial distribution with parameter π.

3.2. Model Formulation

Now, we give the formulations of our proposed model. Let us present the observed HSI data
contaminated by noises as Y ∈ Rd×B, where d = hw, h and w are the height and width of the
investigated HSI, respectively, and B is the number of bands. By considering a generative model,
we can decompose the observed data into

Y = X + E, (3)

where E denotes the noise term and X is the expected restorated HSI.

3.2.1. The DP-GMM Model

In this study, we model the noise of each band as a DP-GMM, which is an advanced version of
the non-parametric GMM model capable of adaptively rectifying the number of Gaussian components
of MoG based on the data [44,45]. The noise complexity of each band can be adjusted by varying



Remote Sens. 2018, 10, 1631 5 of 18

the number of components of MoG. What is more, in order to simultaneously encode the correlation
among different bands, we associate the corresponding DP-GMM of each band at a higher level and
conduct a two-level HDP.

Specifically, we consider the noise located at the i-th row and j-th column of the noise term E.
Following the idea of [40,46], we can model it as an element-wise Gaussian mixture distribution:

eij ∼
K

∑
k=1

πjkN (0, ξ−1
k ), (4)

which can be equivalently reformulated as a two-level generative process:

eij ∼ N (0, ξ−1
zij

), zij ∼ Multi(πj), (5)

where πj is a vector of length K, 1 ≤ zij ≤ K. Then, we place a hierarchical Dirichlet distribution prior
on πj to associate the noise of different bands, i.e.,

πj ∼ Dir(αjβ), β ∼ Dir(γ/K, γ/K, . . . , γ/K). (6)

Besides, ξk is also generated from its conjugate prior, i.e.,

ξk ∼ Gam(a0, b0). (7)

To allow the model to be flexible, we further assume K → +∞. Teh et al. [47] proved that the limit
of Equations (5)–(7) is the following HDP noise model:

eij ∼ N (0, ψ−1
ij ), ψij ∼ Gj, Gj ∼ DP(αj, G), G ∼ DP(γ, H), (8)

where H = Gam(a0, b0).
The noise model of Equation (8) is too metaphysical to understand, so we reformulate it

equivalently but more explicitly with two coupled latent variables zij and cjt in a stick-breaking
constructive manner, i.e.,

cjt ∼ Multi(β), βk = β
′
k

k−1

∏
l=1

(1− β
′
l), β

′
k ∼ Beta(1, γ), ξk ∼ Gam(a0, b0),

zij ∼ Multi(πj), πjt = π
′
jt

t−1

∏
s=1

(1− π
′
js), π

′
jt ∼ Beta(1, αj), eij ∼ N (0, ξ−1

cj,zij
).

(9)

It is worth noting that the ξ in Equation (9) and the ψ in Equation (8) have the following relation:

ξcj,zij
= ψij.

We can explain the hierarchical structure of the noise model (8) using Figure 3a intuitively. In the
first level, we attempt to fit the noise of the entire HSI data by a DP-GMM. In the second level, we also
fit the noise of each band by a DP-GMM, but each of its components is shared from the first level.
This sharing strategy associates the noise of different bands, and the DP-GMM, which allows an MoG
to have a limited but unbounded number of Gaussian components, adjusts the noise complexity
adaptivity for each band.

Note that we adopt the truncation strategy [48] for the DP-GMMs in the variational inference of
Section 4, which means that the number of Gaussian components of DP-GMMs in the first and second
levels are fixed as K and T (K and T is large enough, T ≤ K) as shown in Figure 3a. Based on such a
truncation strategy, zij (1 ≤ zij ≤ T) denotes the index of the Gaussian component from which eij is
generated in the DP-GMM of band j (1 ≤ j ≤ B), and cjt (1 ≤ cjt ≤ K, 1 ≤ t ≤ T) denotes the index of
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the Gaussian component of DP-GMM in the first level, with which the t-th Gaussian component of
DP-GMM of band j in the second level is shared (cjt is marked in Figure 3a).

Finally, the concentration parameters α and γ in Equation (8) mainly affect the number of Gaussian
components of the second level MoG in each band and the first level MoG for the entire HSIs dataset,
respectively. In order to enhance the adaptability of the model complexity, we can place the Gamma
distribution on them [49], i.e.,

γ ∼ Gam(c0, d0), αj ∼ Gam(e0, f0). (10)

In the above formulations, a0, b0, c0, d0, e0, f0 are hyperparameters of prior distributions, all of
which can be easily set as small values to make the prior non-informative.

(a) (b)

Figure 3. (a): Illustration of the hierarchical DP-GMM model for HSI restoration. The ellipses with
different colors denote the Gaussian component with parameters (µk, σ2

k ). The green dotted rectangles,
representing the Gaussian compounds of each band, share Gaussian components from a top-level
MoG in the red dotted rectangle. The number of Gaussian components of MoG at the two levels are
dynamically adjusted during the HSI restoration until it converges. (b): The entire graphic model of
DP-GMM.

3.2.2. LRMF Model

As the conventional HSI restoration model, we assume that the expected HSI X in Equation (3)
has a low-rank property. Based on such an assumption, we formulate X ∈ Rd×B as the product of two
smaller matrices U ∈ Rd×l and V ∈ RB×l , i.e.,

X = UV T =
l

∑
r=1

u·rvT
·r, (11)

where l ≤ B is fixed pre-manually. Furthermore, U and V can be generated from a multivariate
zero-mean Gaussian distribution by the following method:

u·r ∼ N (0, λ−1
r Id), v·r ∼ N (0, λ−1

r IB), (12)

where Id denotes the d× d identity matrix. Furthermore, the corresponding conjugate prior on each
precision variable λr is:

λr ∼ Gam(p0, q0). (13)
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3.2.3. The Entire Graphical Model

Combining Equations (3), (9)–(13), we can construct a full Bayesian model for HSI restoration.
In brief, we call our model DP-GMM. The corresponding graphical model of our method is shown in
Figure 3b. The goal turns to infer the posteriors of all involved variables:

p(U, V , ξ, C, Z, β, π, λ, α, γ|Y). (14)

4. Variational Inference

Directly computing the posterior of Equation (14) under an HDP mixture prior is intractable,
and thus approximate inference methods need to be designed. Although the Markov chain Monte
Carlo (MCMC) sampling method can provide very accurate approximation to the posterior [50],
this method is limited for massive scale data due to its high computational cost and difficulty to detect
convergence. As a more efficient and deterministic alternative to MCMC, we adopt a Variational
Bayes (VB) method [51] to solve our model in this paper. Given the observed data Y , maximizing the
marginal log-likelihood p(Y) =

∫
p(Y |θ)p(θ)dθ directly is computationally intractable. VB attempts

to seek a lower bound of the log-likelihood and maximize it instead, i.e.,

ln p(Y) =
∫

q(θ) ln
p(Y |θ)p(θ)

q(θ)
dθ+ KL(q(θ)||p(θ|Y))

≥
∫

q(θ) ln
p(Y |θ)p(θ)

q(θ)
dθ (15)

, L(q)

where KL(·||·) denotes the Kullback-Leibler (KL) divergence of two distributions. Assuming
q(θ) = ∏i qi(θi), we can obtain the closed-form solution to qj(θj) with other factors fixed through
optimizing L(q) with respect to qj(θj), i.e.,

q∗j (θj) =
exp

{
Eθ\θj [ln p(θ, Y)]

}
∫

exp
{

Eθ\θj [ln p(θ, Y)]
}

dθj

, (16)

where Ex[·] denotes the expectation over the variable x, and θ\θj represents the set of θ with θj removed.
The entire inference can be accomplished by alternatively computing Equation (16) with respect to all
the involved variables.

Based on the stick-breaking construction and the truncation strategy [48], we can approximate the
posterior distribution of Equation (14) with the following factorized form:

q(U, V , ξ, C, Z, β, π, λ, α, γ) = ∏d
i=1 q(ui·)∏B

j=1 q(vj·)∏l
r=1 q(λr)∏K

k=1 q(ξk)q(β
′
k)∏B,T

j,t q(cjt)q(π
′
jt)∏d,B

i,j q(zij)∏B
j=1 q(αj)q(γ) (17)

Then we can analytically infer all the factorized distributions involved in Equation (17) as below.
The computational details are provided in the Supplementary Material.

Update Noise Component: The parameters involved in the noise components are ξ, C, Z, π,
β. We use the stick-breaking procedure by setting a large enough value of K and T for truncated
approximation, and then get the following updating equations on Z and C:

q(cjt) = Multi(ϕjt), q(zij) = Multi(ρij), (18)

where
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ϕjtk ∝ exp

{
d

∑
i=1

ρijt

(
1
2

E[ln ξk]−
1
2

ln 2π − 1
2

E[ξk]E[(yij − ui·vT
j· )

2]

)
+ E[ln βk]

}
,

ρijt ∝ exp

{
K

∑
k=1

ϕitk

(
1
2

E[ln ξk]−
1
2

ln 2π − 1
2

E[ξk]E[(yij − ui·vT
j· )

2]

)
+ E[ln πjt]

}
,

E[ln βk] = E[ln β
′
k] +

k−1

∑
l=1

E[ln(1− β
′
l)], E[ln πjt] = E[ln π

′
jt] +

t−1

∑
s=1

E[ln(1− π
′
js)].

As for ξ, based on its conjugate priors, we have

q(ξk) = Gam(ak, bk), (19)

where
ak =

1
2 ∑

i,j,t
ρijt ϕjtk + a0, bk =

1
2 ∑

i,j,t
ρijt ϕjtkE[(yij − ui·vT

j· )
2] + b0.

Similarly, for π, β, we have

q(π
′
jt) = Beta(r1

jt, r2
jt), q(β

′
k) = Beta(s1

k , s2
k), (20)

where

r1
jt = ∑

i
ρijt + 1, r2

jt =
d,T

∑
i,s=t+1

ρijs + αj, s1
k = ∑

j,t
ϕjtk + 1, s2

k =
d,T,K

∑
j,t,s=k+1

ϕjts + γ.

Update the Concentration Parameters: According to the conjugate priors of α and γ in
Equation (10), we can obtain the following updating equations:

q(αj) = Gam(ej, f j), q(γ) = Gam(c, d), (21)

where

ej = T + e0, f j = f0 −∑
t

E[ln(1− π
′
jt)], c = K + c0, d = d0 −∑

k
E[ln(1− β

′
k)].

Update the LRMF Components: The parameters involved in the LRMF components are U, V , λ.
For each row of U, using the factorization in Equation (11), we can obtain

q(ui·) = N (µu
i·, Σu

i ), (22)

with mean µu
i· and covariance matrix Σu

i , given by

Σu
i =

(
∑
j,t,k

ρijt ϕjtkE[ξk]E[vT
j·vj·] + Λ

)−1

, µu
i· = ∑

j,t,k
ρijt ϕjtkE[ξk]yijvj·Σ

u
i ,

where Λ = diag(E[λ1], E[λ2], . . . , E[λl ]). Similarly, for each column of V , we have

q(vj·) = N (µv
j·, Σv

j ), (23)

and the mean µv
j· and the covariance matrix Σv

j are calculated by

Σv
j =

(
∑
i,t,k

ρijt ϕjtkE[ξk]E[uT
i·ui·] + Λ

)−1

, µv
j· = ∑

i,t,k
ρijt ϕjtkE[ξk]yijui·Σ

v
j .
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For parameter λ, we have
q(λr) = Gam(pr, qr), (24)

where
pr =

d
2
+

B
2
+ p0, qr =

1
2

E[uT
·ru·r] +

1
2

E[vT
·rv·r] + q0.

Settings of Hyperparameters: We set all the hyperparameters involved in our model in a
non-informative manner to minimize their impacts on the inference of the posterior distribution [51].
Specifically, throughout our experiments, we easily set a0, b0, c0, d0, e0, f0, p0, q0 as 10−6. Our proposed
method behaves stably throughout all the experiments with this simple initialization choice.

5. Experimental Results

To demonstrate the effectiveness of the proposed DP-GMM model, we perform both synthetic
and real HSI data experiments, and evaluate the experimental results quantitatively and visually.
In order to comprehensively evaluate the performance of the proposed method, we compared the
results with eight popular HSI restoration methods: the traditional image denoising method SVD [52],
LRMF-based methods LRMR [20], LRTV [38], WNNM [24] and WSNM [23], tensor-based methods
TDL [30] and BM4D [35], and mixture noise based-method NMoG [33]. These methods represent the
state-of-the-art for the HSI restoration task. The parameters for these compared methods were manually
adjusted according to their default strategies. In addition, to facilitate the numerical calculation and
visualization, all the bands of the HSI datasets are normalized into [0,1].

5.1. Simulated Data Experiments

Two HSI datasets were employed in this experiment: Washington DC Mall (http://lesun.weebly.
com/hyperspectral-data-set.html) with size 1208× 307× 191 and RemoteImage (http://peterwonka.
net/Publications/code/LRTC_Package_Ji.zip) with size 205× 246× 96. Some bands of these two HSI
datasets are heavily contaminated by noise and cannot be regarded as clean ground truth, and thus
have to be deleted [33,36]. Due to the computer’s memory limitation, we also cropped the subimage
of the HSI and finally obtained two synthetic datasets with size 200× 200× 160 and 200× 200× 89,
respectively. These two HSI datasets are considered as clean data in this simulated experiment.

To simulate noisy HSIs, we added six types of noises to the clean HSI datasets to test the
performance of all the compared methods. The details of the added noise are listed as follows:

• Case 1: For different bands, the noise intensity was equal in this case. Furthermore, the same
zero-mean Gaussian noise N (0, σ2) with σ = 0.05 was added to all the bands

• Case 2: Entries in all bands were corrupted by zero-mean Gaussian noise but with different
intensity. Furthermore, the standard deviation of Gaussian noise that was added to each band of
HSIs was uniformly selected from 0.01 to 0.1.

• Case 3: All the bands were corrupted by Gaussian noise as Case 2. Besides, 40 bands of the DC
Mall dataset (20 bands of the RemoteImage dataset) were randomly chosen to add deadlines, and
the number of deadlines in each band is from 5 to 15 with width 1 or 2.

• Case 4: All the bands were contaminated by Gaussian noise as Case 2. Besides, 40 bands of the
DC Mall dataset (20 bands of the RemoteImage) were randomly selected to add stripes, and the
number of stripes is from 15 to 40 with width 1 or 2.

• Case 5: All the bands were corrupted by Gaussian noise as Case 2. In addition, different percentages
of impulse noises which were uniformly selected from 0 to 0.15 were added to each band.

• Case 6: Each band was contaminated by Gaussian and impulse noise as Case 5. Besides, 20 bands
of the DC Mall dataset (10 bands of the RemoteImage dataset) were randomly selected to add
deadlines as Case 3, and another 20 bands of the DC Mall dataset (10 bands of the RemoteImage
dataset) were randomly selected to add stripes as Case 4.

http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
http://peterwonka.net/Publications/code/LRTC_Package_Ji.zip
http://peterwonka.net/Publications/code/LRTC_Package_Ji.zip
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To fairly compare the overall performance of different methods, we set the rank of the expected
HSIs as 7 in the DC Mall and RemoteImage dataset for all the compared methods. Furthermore,
three measurements—the mean peak signal-to-noise ratio (MPSNR), mean structural similarity index
(MSSIM) [53] and Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) [54]—are utilized to
evaluate the restoration quality:

MPSNR =
1
B

B

∑
i

PSNRi,

MSSIM =
1
B

B

∑
i

SSIMi,

ERGAS =

√√√√ 1
B

B

∑
i

MSE(Refi, Resi)

Mean2(Refi)
,

where PSNRi and SSIMi denote the PSNR and SSIM values for the i-th band, and Refi and Resi denote
the i-th band of the reference image and the restorated image, respectively.

Tables 1 and 2 present the restoration results by all the compared methods in terms of the
aforementioned three measurements. The best results for each quality measurement are highlighted in
bold. It is clear that our proposed method provides the highest values in both MPSNR and MSSIM,
and lowest ERGAS in most of the cases, which validates the superiority of the proposed method
over the other methods. For Case 1 with the simple independent and identically distributed (i.i.d.)
Gaussian noise, most of the methods have comparable performance, which confirms the effectiveness
of these methods to some extent, especially for TDL. When the noise becomes more complex, e.g., the
intensity of noise varies by bands, more stripes, more deadlines and more impulse noises are added,
the advantages of our proposed method become more evident from Case 2 to Case 6. This advantage
substantiates the robustness of our proposed method against complex noise, owing to its adaptability
to distinguish noise complexities in different HSI bands in our model.

Figures 4 and 5 present some typical bands of the DC Mall and RemoteImage HSI dataset before
and after restoration under Case 3, Case 4 and Case 6, respectively. By comparing the restoration
results, it can be clearly seen that DP-GMM performs best, effectively removing all types of noise
while preserving more detailed information. In Case 3, the restored HSIs of almost all of the compared
methods contain some evident deadlines. Similarly, some stripes still exist in the restoration results
of most of the compared methods in Case 4. Under the mixture noise of Case 6, LRTV, NMoG and
DP-GMM all have relatively better results than the other methods. In conclusion, our proposed method
can have stable and better performance in all cases, which verifies the effectiveness of the proposed
method with better capability in fitting a much wider range of noises than current methods.

In order to further compare the performance of all the restoration methods, we also show the
spectral signatures of some pixels before and after restoration; for example, Figure 6 shows the
spectrum of pixels (55, 110) and (110, 184) for the DC Mall HSI dataset under Case 6, and Figure 7
shows similar results for the RemoteImage HSI dataset. It is easy to see that our proposed method
provides the best spectral signature among all of the compared methods, which is closest to the original
one. Besides, the NMoG method, which adopts non-i.i.d. MoG to model the noises of HSIs, also has
comparable performance. These advantages of DP-GMM and NMoG indicate the necessity of giving
more consideration to the complex noise structure of HSIs.
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Table 1. Quantitative Evaluation of different methods on the simulated DC Mall dataset in different
cases of noise.

Noise Case Evaluation Index Noise SVD BM4D TDL WNNM WSNM LRMR LRTV NMoG DP-GMM

Case 1
MPSNR (dB) 26.02 38.96 36.66 40.23 36.98 36.98 38.79 38.45 39.05 39.60

MSSIM 0.7627 0.9833 0.9728 0.9888 0.9806 0.9801 0.9848 0.9836 0.9865 0.9875
ERGAS 187.97 41.37 53.24 35.34 52.74 52.74 41.98 43.27 42.19 38.22

Case 2
MPSNR (dB) 23.37 35.79 34.25 26.99 36.38 36.28 36.38 36.88 37.70 38.59

MSSIM 0.6527 0.9600 0.9535 0.7904 0.9750 0.9732 0.9733 0.9739 0.9818 0.9842
ERGAS 280.83 67.75 70.75 191.56 55.74 56.23 55.93 59.94 49.99 43.01

Case 3
MPSNR (dB) 22.51 33.90 31.67 25.12 35.99 35.34 34.45 35.96 36.99 37.99

MSSIM 0.6317 0.9486 0.9275 0.7465 0.9730 0.9632 0.9619 0.9695 0.9767 0.9827
ERGAS 308.89 102.41 128.78 240.34 59.22 81.04 84.31 76.22 65.47 47.72

Case 4
MPSNR (dB) 22.50 33.80 31.56 24.66 34.95 35.26 34.64 35.77 37.09 37.55

MSSIM 0.6211 0.9280 0.9010 0.7035 0.9547 0.9690 0.9540 0.9642 0.9753 0.9790
ERGAS 341.01 133.14 163.27 288.97 122.49 67.43 86.43 85.27 61.36 56.19

Case 5
MPSNR (dB) 16.47 27.17 25.12 21.80 34.33 34.45 35.07 36.28 36.15 37.61

MSSIM 0.4122 0.8299 0.7339 0.5907 0.9263 0.9716 0.9644 0.9686 0.9688 0.9795
ERGAS 601.66 206.72 225.50 319.36 183.85 72.97 64.44 78.02 126.97 48.80

Case 6
MPSNR (dB) 16.07 26.86 24.54 20.59 33.04 33.79 33.76 34.60 35.88 36.98

MSSIM 0.3946 0.8202 0.7154 0.5412 0.8975 0.9616 0.9544 0.9599 0.9675 0.9782
ERGAS 625.80 209.85 240.57 368.62 240.41 104.08 83.47 112.62 469.93 54.68

Table 2. Quantitative Evaluation of different methods on the simulated RemoteImage dateset in
different cases of noise.

Noise Case Evaluation Index Noise SVD BM4D TDL WNNM WSNM LRMR LRTV NMoG DP-GMM

Case 1
MPSNR (dB) 26.02 37.02 34.50 37.97 34.61 35.58 37.04 36.22 36.83 37.37

MSSIM 0.6954 0.9655 0.9267 0.9705 0.9570 0.9575 0.9679 0.9588 0.9700 0.9700
ERGAS 124.05 37.17 50.33 33.01 50.06 43.66 36.44 40.02 38.40 35.76

Case 2
MPSNR (dB) 23.25 33.85 32.12 27.65 34.18 33.02 34.67 34.72 35.56 35.79

MSSIM 0.5554 0.9272 0.8785 0.7636 0.9399 0.8956 0.9464 0.9406 0.9610 0.9605
ERGAS 186.22 54.26 64.95 112.77 50.80 82.17 47.62 47.44 44.30 42.69

Case 3
MPSNR (dB) 21.86 30.67 28.78 24.63 33.56 30.52 32.46 33.86 34.40 35.93

MSSIM 0.5233 0.8764 0.8102 0.6693 0.9280 0.8246 0.9220 0.9314 0.9505 0.9600
ERGAS 238.56 108.86 158.23 195.47 71.79 160.74 78.50 67.54 59.01 41.9869

Case 4
MPSNR (dB) 22.40 33.28 30.03 25.44 33.54 32.77 33.47 33.72 34.54 35.11

MSSIM 0.5278 0.9056 0.8239 0.6750 0.9326 0.9152 0.9363 0.9310 0.9534 0.9575
ERGAS 213.52 81.86 106.85 162.25 61.23 85.16 59.78 66.09 55.48 47.51

Case 5
MPSNR (dB) 17.15 27.98 27.65 23.99 29.82 30.75 33.77 33.52 33.61 35.63

MSSIM 0.3155 0.7833 0.7090 0.5614 0.7858 0.8423 0.9351 0.9253 0.9490 0.9562
ERGAS 394.87 124.32 108.07 169.46 229.53 182.01 52.78 75.27 60.58 43.26

Case 6
MPSNR (dB) 16.76 27.49 26.37 22.14 28.24 29.80 32.74 32.41 33.85 35.25

MSSIM 0.3031 0.7781 0.6717 0.4797 0.7437 0.8153 0.9268 0.9151 0.9497 0.9550
ERGAS 416.01 141.00 142.33 223.21 268.10 215.28 64.88 104.31 62.96 46.65
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 4. From top to bottom: restoration results of band 118, 20 and 66 of the DCmall HSI dataset
under case 3, case 4 and case 6, respectively. (a) Original HSI; (b) Noisy HSI; (c) SVD; (d) BM4D; (e)
TDL; (f) WNNM; (g) WSNM; (h) LRMR; (i) LRTV; (j) NMoG; (k) DP-GMM.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 5. From top to bottom: restoration results of band 49, 11 and 74 of the RemoteImage HSI dataset
under Case 3, Case 4 and Case 6, respectively. (a) Original HSI; (b) Noisy HSI; (c) SVD; (d) BM4D;
(e) TDL; (f) WNNM; (g) WSNM; (h) LRMR; (i) LRTV; (j) NMoG; (k) DP-GMM.
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Figure 6. From top to bottom: Spectrum of pixels (55,110) and (110, 184) for the DC Mall HSI dataset.
From left to right: (a) Original HSI; (b) Noisy HSI; (c) SVD; (d) BM4D; (e) TDL; (f) WNNM; (g) WSNM;
(h) LRMR; (i) LRTV; (j) NMoG; (k) DP-GMM.
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Figure 7. From top to bottom: Spectrum of pixels (78,61) and (137, 41) for the RemoteImage HSI dataset.
From left to right: (a) Original HSI; (b) Noisy HSI; (c) SVD; (d) BM4D; (e) TDL; (f) WNNM; (g) WSNM;
(h) LRMR; (i) LRTV; (j) NMoG; (k) DP-GMM.
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5.2. Real Data Experiments

In this section, two real-world test HSI datasets are used in our experiments: the Hyperspectral
Digital Imagery Collection Experiment (HYDICE) Urban (http://lesun.weebly.com/hyperspectral-data-
set.html) dataset and the Army Geospatial Center (AGC) Terrain (https://www.agc.army.mil) dataset.

HYDICE Urban Dataset: The original image is 307× 307× 210 in size, and we feed the entire dataset
into the denoising algorithms directly. Some bands of Urban are seriously polluted by the atmosphere,
water absorption and other unknown noises, such as bands 104–108, 139–151 and 206–210. Additionally,
some other bands are contaminated by stripes, deadlines and Gaussian noise, such as bands 1–2, 76
and 198. In this first real data experiment, the rank is set as 7 for all the competing methods.

Figure 8 shows bands 76 (top), 104 (middle) and 139 (bottom) of the restored HSIs of the Urban
dataset, and these three bands are typically polluted to varying degrees by different types of noise as
analyzed in Figure 1a. Band 76 is relatively clean with several deadlines, and most of the competing
methods can remove these deadlines except TDL and BM4D. As for bands 104 and 139, however, some
stripes still exist in the restored images for almost all the competing methods. This is because these
bands are heavily corrupted and can provide little useful information, and these methods lack noise
adaptivity to deal with these complex cases. In contrast, our proposed DP-GMM method is able to
completely suppress the stripes and effectively preserves the detailed information. What is more, the
images restored by our proposed method are smoother than those restored by other compared methods.
These visual results show that our proposed DP-GMM method can remove more complicated noise
embedded in HSIs than other competing methods.

Figure 9 shows the vertical mean profiles of bands 76, 104 and 139, which is a quantitative comparison
of the restorated results shown in Figure 8. The horizontal axis in Figure 8 represents the column number,
and the vertical axis represents the mean digital number value of each column. Band 76 is almost
noise-free with only one deadline. There is thus no visible change between the mean profiles before
and after the restoration. When the noise becomes more complicated, the curves fluctuate rapidly in
the original images for bands 104 and 139. After the restoration processing, the fluctuations are more or
less suppressed. Obviously, the DP-GMM methods perform best and obtain the flattest curve without
fluctuations. These results are in accordance with the visual results of Figure 8.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Band 139
Band 104

Band 76

Figure 8. From top to bottom: restoration results of bands 76, 104 and 139 of the real Urban HSI dataset.
(a) Original HSI; (b) SVD; (c) BM4D; (d) TDL; (e) WNNM; (f) WSNM; (g) LRMR; (h) LRTV; (i) NMoG;
(j) DP-GMM.

http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
https://www.agc.army.mil
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Figure 9. Vertical mean profiles of some typical bands of the Urban HSI dataset. From top to bottom:
band 76 (top), band 104 (middle) and band 139 (down). From left to right: (a) Original HSI; (b) SVD;
(c) BM4D; (d) TDL; (e) WNNM; (f) WSNM; (g) LRMR; (h) LRTV; (i) NMoG; (j) DP-GMM.

AGC Terrain Dataset: The second real data experiment employed the Terrain dataset as the test dataset,
and it has 500× 307 pixels and 210 bands. The full Terrain image is mainly corrupted by deadlines,
atmosphere, water absorption and others, especially the bands 104–109, 138–152 and 204–210. We also
set the rank as 7 in this experiment for all the methods.

We selected three typical bands 2, 139 and 151 to display the performance of all the compared
methods in Figure 10. These three bands exhibit evident noise distinctness, as shown in Figure 1b, both
in terms of distribution types and corruption extent. In band 2, there are some deadlines clustered
together, as shown in the amplified area, and SVD, BM4D, WNNM, WSNM, LRMR, LRTV and our
proposed DP-GMM can all remove these deadlines completely. As for bands 139 and 151, which
contain many stripes and other mixed noise, it is easy to see that the DP-GMM removes more noise,
especially stripes, compared with the other methods, owing to its noise adaptivity for different bands.
These visual results show that our proposed DP-GMM method is more robust when dealing with the
complicated real noise of HSI data.

Figure 11 shows the vertical mean profiles comparison before and after restoration for each
competing method, corresponding to the visualization of Figure 10. The horizontal axis in this figure
represents the column number, and the corresponding vertical axis represents the mean digital number
value of each column. The curves obtained by different methods in band 2 appear to be slightly
smoother to different degrees, as compared with that of the original images. However, as for bands
139 and 151, due to the interference of the mixed noise, especially stripes and deadlines, there are
sharp fluctuations in the curve for the original images. After the restoration, the fluctuations are
suppressed by all of the competing methods to some extent. Obviously, the curves obtained by our
proposed method are smoother than others, which indicates the better restoration results of DP-GMM.
These quantitative results are also in accordance with the visual results of Figure 10.
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Band 2
Band 151

(a) (b) (d) (e) (f) (g) (j) (k)

Band 139

(c) (i)

Figure 10. From top to bottom: restoration results of bands 2, 139 and 151 of the real Terrain HSI
dataset. (a) Original HSI; (b) SVD; (c) BM4D; (d) TDL; (e) WNNM; (f) WSNM; (g) LRMR; (h) LRTV; (i)
NMoG; (j) DP-GMM.
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Figure 11. Vertical mean profiles of some typical bands in the Terrain HSI dataset. From top to bottom:
band 2 (top), band 139 (middle) and band 151 (down). From left to right: (a) Original HSI; (b) SVD;
(c) BM4D; (d) TDL; (e) WNNM; (f) WSNM; (g) LRMR; (h) LRTV; (i) NMoG; (j) DP-GMM.

6. Conclusions

We have proposed a new HSI restoration method by constructing the noise model as a DP-GMM
under the Bayesian framework. Most of the current methods do not give much consideration to the
variation of the noise complexity among the different bands of the natural HSI. In contrast, our method
uses a hierarchical structure to fit the noise so that the noise of different HSI bands can be flexibly
encoded by MoGs with different mixture component numbers. The noise distinctness among HSI
bands can thus be faithfully reflected in the model, potentially making it more robust in real HSI
scenarios. In order to validate the effectiveness of the proposed methods, we conducted a series of
experiments on synthetic and real HSI datasets. For the synthetic HSI datasets, our proposed method
performed better than all the competing methods in terms of MPSNR, MSSIM and ERGAS. Specifically,
in terms of the MPSNR, our method is on average over 1 dB higher than the current state-of-the-art
methods: LRTV and NMoG. For the real HSI dataset, our proposed method can remove almost all of
the noises, and obtain better visual restoration results compared with other methods, especially for the
heavily contaminated bands.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/10/1631/s1.
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