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Abstract: Early-summer melt pond fraction is predicted using late-winter C-band backscatter of
snow-covered first-year sea ice. Aerial photographs were acquired during an early-summer 2012 field
campaign in Resolute Passage, Nunavut, Canada, on smooth first-year sea ice to estimate the melt
pond fraction. RADARSAT-2 Synthetic Aperture Radar (SAR) data were acquired over the study area
in late winter prior to melt onset. Correlations between the melt pond fractions and late-winter linear
and polarimetric SAR parameters and texture measures derived from the SAR parameters are utilized
to develop multivariate regression models that predict melt pond fractions. The results demonstrate
substantial capability of the regression models to predict melt pond fractions for all SAR incidence
angle ranges. The combination of the most significant linear, polarimetric and texture parameters
provide the best model at far-range incidence angles, with an R2 of 0.62 and a pond fraction RMSE of
0.09. Near- and mid- range incidence angle models provide R2 values of 0.57 and 0.61, respectively,
with an RMSE of 0.11. The strength of the regression models improves when SAR parameters are
combined with texture parameters. These predictions also serve as a proxy to estimate snow thickness
distributions during late winter as higher pond fractions evolve from thinner snow cover.
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1. Introduction

The spatial distribution, evolution, and extent of melt ponds on sea ice are functions of snow
thickness and snow redistribution processes through the preceding winter and spring, ice surface
roughness, and ice type [1–4]. For spatially varying snow covers on sea ice, thicker snow takes longer
to melt than thinner snow under consistent atmospheric forcing [1,5,6]. Prior studies advocate that
a thinner snow cover leads to dominant surface flooding (i.e., larger areal melt pond fraction, fp),
whereas a thick winter snow cover leads to a greater fraction of snow patches and thus less surface
flooding (i.e., smaller fp) [7,8]. Thicker snow covers generally accumulate on comparatively rough
first-year sea ice (FYI), as the uneven surface topography effectively captures wind-blown snow [9].
The relatively smooth topography of FYI causes thinner snow covers, with consistent drifting of snow
following the wind direction during depositional storm events [10]. Therefore, smooth FYI, with an
associated thin snow cover, leads to the horizontal spreading of ponds over a larger area, with fp as
high as 80% [3,4,11]. Since the formation of FYI melt ponds is influenced by winter snow thickness,
fp could provide a proxy for winter ice surface roughness and snow thickness.
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After melt onset, melt ponds gradually develop over four successive stages. These stages have
been previously identified as: (1) topographic control, (2) hydrostatic balance, (3) ice freeboard control
and (4) fall freeze up or ice break up [6,8,12]. During stage 1, melt ponds start to form and eventually
fill topographic depressions with minimal drainage through the ice. At this stage, the structure of the
melt ponds is very unstable and is actually controlled by the pre-melt ice topography [1]. Stage 2 begins
when melt ponds have the same production and drainage rates, and lateral melt water flows towards
macroscopic fractures and seal holes promote the formation of melt pond networks by interconnecting
melt ponds. Consequently, the geometric structure of melt pond covers becomes prominent during this
stage [1,12]. Stage 3 is characterized by increased vertical drainage and decreased horizontal discharge
to macroscopic fractures. Surface topography of melting and decaying ice cover controls the melt pond
coverage in this stage [6]. Finally, during stage 4, complete decay or disintegration of FYI, or fall freeze
up of multiyear sea ice begins.

Estimating melt pond fraction over large areas requires satellite-based methods. Optical
approaches [13–18] are hampered by cloud cover and are thus limited by the accuracy of cloud
identification and screening techniques. They must also contend with regional differences in spectral
properties [18], and issues related to sub-pixel variation. The root-mean-squared error (RMSE) for
optical approaches is 0.08 to 0.16. Approaches using passive microwave data [19] are limited by the
sensor resolution, especially in narrow channels where land contamination is likely. They are also
only applicable to very high sea ice concentrations; even small areas of open water would dominate
the signal.

Approaches using active microwave data have provided varying results. Barber and Yackel [20]
report a relationship between ERS-1 backscatter and fp, but note a limitation related to wind
roughening of melt ponds. Mäkynen et al. [21] report poor skill in connecting changes in fp with
backscatter magnitude and texture using ENVISAT WSM images of sea ice during the ponding stages.
Scharien et al. [22] report on the usefulness of co-polarization and cross-polarization ratios in estimating
fp during ponding using RADARSAT-2 quad-pol data; their RMSE values range from 0.05 to 0.43.
Using TerraSAR-X, Fors et al. [23] also find the co-polarization ratio useful during the ponding stage,
at intermediate wind speeds, with an RMSE is 0.4; they also evaluate four polarimetric parameters and
find reasonable correlations. To evaluate prediction of fp from winter images, Scharien et al. [24,25]
use ENVISAT-ASAR and Sentinel-1 co- and cross-polarized backscatter and texture measures thereof.
They report overall RMSE values of 0.08 and 0.09, but acknowledge model underestimation of fp for
smooth FYI related to sensor noise floors.

Estimating melt pond fraction over smaller areas and for validation of the techniques above rely
on in-situ observations [11,22], or low-level aerial photographs [26,27]. A recent study using low-level
aerial photographs showed that, due to their fine spatial and temporal resolutions, they are an ideal
data source for estimating fp since image classification accuracies are as high as 97% [22].

Using winter imagery to predict fp implies an association of sea ice roughness and/or its snow
cover variability with subsequent fp. Comprehensive studies on the degree of winter snow thickness
spatial variability, as well as relationships with fp, are essential to better understand radiative transfer
processes leading to snow and sea ice ablation rates during the spring melt transition. However,
studying snow thickness variability on sea ice is complicated. The accumulation and redistribution
of snow on FYI exhibits high spatio-temporal variability [9], and logistical challenges, resulting in
a shortage of in-situ data [10]. Snow thickness distributions have been obtained in-situ [9,28–30],
using laboratory-based procedures [31,32], and using remote sensing methods based on passive
microwave data [33–35], frequency-modulated continuous-wave airborne radar returns [36,37] and
Synthetic Aperture Radar (SAR) data [7,38,39], and using a combination of active microwave
scatterometer and optical data [40].

The use of SAR backscatter must also contend with variability in backscatter with incidence angle
(θ). Kim et al. [41] identified the θ effect on backscatter intensity, as it strongly influences surface
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and volume scattering processes. Microwaves are dominated by surface scattering at lower θ (<30◦);
whereas at higher θ (>30◦), volume scattering dominates over surface scattering [42,43].

The advent of polarimetric SAR data provide additional parameters for characterizing sea ice
surfaces. Polarimetric parameters such as the Co-polarized phase difference, Co-polarized correlation
coefficient, Entropy, Anisotropy, and Alpha angle can be calculated from second-order derivatives
of the scattering matrix (i.e., covariance and coherency) to obtain enhanced information about both
surface and volume scattering mechanisms of snow and sea ice [39,44–47].

In addition to linear and polarimetric parameters, SAR image texture also provides valuable
structural information, leading to higher winter sea ice classification accuracy when compared to
backscatter intensity alone [48–51]. Second-order texture measures, derived from the gray-level
co-occurrence matrix (GLCM) introduced by Haralick et al. [52], were evaluated for sea ice
classification [49], showing that the combination of σ0 (tone/grey-level) and texture measures (spatial
dependence in tone) gives better results than using texture measures alone. GLCM texture is the most
commonly used texture analysis technique; as it takes into account the spatial organization of grey
tones within a moving window and offers a second-order statistical technique for extracting texture
features [49,52]. Image texture of snow covered sea ice is a function of its near surface characteristics
e.g., snow properties, snow thickness variability, and ice roughness [53]. Several studies successfully
demonstrated the potential of GLCM texture measures, calculated from SAR images, to improve
classification/segmentation of snow covered sea ice [49,51,53,54].

Given that the most consistent skill in estimating fp is reported by winter prediction of fp [24],
we build on the winter prediction technique in this paper. We maintain the use of texture parameters
as in Mäkynen et al. [21] and Scharien et al. [24] and expand on the analysis by evaluating the
contributions of polarimetric parameters as per Fors et al. [23], and we assess texture measures of the
polarimetric parameters. Furthermore, given the relationship of winter snow thickness and subsequent
fp, we attempt an initial inversion of fp to estimate snow thickness.

Objectives

The primary objective of this study is to predict early summer fp from winter C-band SAR
polarimetric backscatter. A secondary objective is to relate the predicted fp to the spatial distribution
of snow thickness. Meeting these objectives will aid in understanding the relationship between snow
thickness variability on FYI during winter and its evolution into a melt pond icescape in early summer.
Since the SAR backscatter coefficient σ0 is largely a function of θ, this study will also examine the θ

dependency on backscatter and its relationship with fp. The following research questions towards
these objectives are stated:

1. What are the relationships between winter C-band RADARSAT-2 (RS-2) SAR backscatter (linear
and polarimetric parameters and texture parameters) and fp?

2. How does the relationship between RS-2 SAR backscatter and fp change with θ?
3. Can we predict fp based on linear, polarimetric and texture parameters, and can predicted fp be

used to infer the late winter snow thickness variability?

2. Methodology

2.1. Study Area

The study area is located in Resolute Passage, Nunavut, Canada and comprises of a large area of
landfast FYI. The study area was imaged by the RADARSAT-2 SAR satellite during late-winter and
by aerial photography during the melt pond season (Figure 1). Analyzing the melt pond evolution
stages, we consider that stage 2 is a suitable time to examine aerial images of fp and its relationship
with late winter snow thickness. In-situ observations were carried out from late-winter through the
melt pond season at a field site ~4 km southwest of Sheringham Point, Cornwallis Island. Fieldwork
was conducted in two coordinated sampling periods (Legs). Leg 1 field work was conducted during
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the late-winter/early-spring period (8 to 29 May 2012), while Leg 2 was during late-spring/summer
(4 June to 2 July 2012). Melt-onset was observed on 1 June 2012. Throughout Leg 1, the snow thickness
range in the study region was 1.5 cm to 40 cm. Snow depths from snow pits and 5 transect lines 100
to 150 m long were collected. One snow depth measurement was acquired from each pit (a total of
102), and 565 snow depth measurements were sampled from all transects at 1 m spatial intervals.
For this study, we used 202 samples of snow depth, including 102 measurements from the snow pits,
and 100 measurements randomly selected from the snow transects to minimize spatial autocorrelation
(Figure 2a) [9]. SAR acquisitions and snow samples were obtained at air temperatures between −20 ◦C
and −3 ◦C (Figure 2b). An autonomous 2.75 m tall micro-meteorological station was installed on
the sea ice from 18 May to 25 June 2012 to monitor air temperature, wind speed, and direction at
1-min intervals.
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Figure 1. Study area in Resolute Passage, Nunavut, illustrating the in-situ field site, the flightpath of
the aerial survey, and the region covered by RADARSAT-2 scenes. The red box in the inset map of the
Canadian Arctic Archipelago delineates the location of the study area.

2.2. Data

2.2.1. Aerial Surveys

In early summer, the field site was initially characterized by a very shallow and wet snow cover
overlying a rough superimposed ice layer. Melt ponds started to form on 10 June 2012, were fully
formed on 15 June reaching at a maximum pond fraction of 78%, and remained above 50% until
25 June [12]. To quantify the evolution of melt ponds, their morphology, and fp at a regional scale,
four aerial photography surveys were flown between 13 and 29 June 2012 via fixed-wing Twin Otter
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aircraft. A Canon G10 camera attached to an opening in the hindmost of the plane acquired digital
optical images at nadir viewing angle, with a sampling rate resulting in 0% to ~10% image overlap.
Data from the second survey flight on 22 June 2012, 01:43 UTC (Figure 1) are used in this study,
while the melt ponds were fully formed and the geometric structures of the melt ponds were established.
The survey was flown at an altitude of 610 m in a grid pattern that also coincided with the field study
site. The image data has a swath width of 750 m and pixel size of 0.22 m [22]. At the time of acquisition,
the surface air temperature was approximately 2.6 ◦C, and the melt ponds were liquid and moderately
wind roughened over the entire region; the wind speed was 3.2 m/s at the on-ice meteorological
station and 5.3 m/s at the Resolute weather station.
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Figure 2. (a) Distribution of 202 in-situ snow thickness measurements collected on FYI acquired
from the field site during Leg 1. (b) Hourly air temperature at the Resolute CARS weather station,
Nunavut (blue), and once a minute on-ice air temperature (green).

2.2.2. RADARSAT-2 Data

RS-2 SAR scenes were acquired in fine quad-pol mode over the aerial flightpath at near-range
(18◦–29◦) (NR), mid-range (30◦–39◦) (MR) and far-range (40◦–49◦) (FR) θ. Each scene consists of a
polarimetric (HH + VV + HV + VH and inter-channel phase information) data set, with a nominal
5.2 m × 7.7 m resolution in range and azimuth, respectively, and covers a 25 km × 25 km area (MDA,
2014). This study uses seven RS-2 scenes acquired during Leg 1, that encompass the majority of aerial
photographs of melt ponded sea ice acquired during Leg 2 (Table 1).

Table 1. 25 km by 25 km RS-2 scenes used in this study and the number of 750 m by 750 m aerial
photographs that fall within each SAR scene.

SAR Scene Acquisition Date
(yyyy-mm-dd) Incidence Angle (Range) Number of Aerial Photographs

FQ4 2012-05-10 23.1◦ (NR) 78
FQ8 2012-05-24 27.8◦ (NR) 97
FQ13 2012-05-21 33.2◦ (MR) 97
FQ15 2012-05-21 35.2◦ (MR) 87
FQ18 2012-05-18 38.1◦ (MR) 102
FQ22 2012-05-17 41.7◦ (FR) 87
FQ23 2012-05-15 42.6◦ (FR) 102

2.3. Methods

2.3.1. Estimation of Melt Pond Fraction from Aerial Photographs

fp was calculated from aerial photographs using a decision-tree classification approach [22].
Melt ponds are distinguished from adjacent ice/snow patches because the albedo of ponds is
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significantly lower than the snow and/or ice. The resulting classification (e.g., Figure 3a) has an
error of 0.03 [22]. The distribution of fp for the 22 June 2012 flightpath is presented in Figure 3b.Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 22 
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Figure 3. (a) Sample of a classified aerial photograph with melt ponds (grey areas) and snow patches
(white areas); (b) histogram of pond fraction distribution for the flightpath on 22 June 2012.

2.3.2. RADARSAT-2 Data Processing

RS-2 data were calibrated, and speckle filtered using a 5 × 5 boxcar filter to reduce the speckle
effect while preserving image information [55,56]. Four linear and five polarimetric parameters
were derived (Table 2). Polarimetric parameters were derived from covariance (1) and coherency
matrices (2), as applicable [57,58]. Eight GLCM texture parameters (Table 3) were calculated for each
linear and polarimetric parameter (Table 2) using a 5 × 5 moving window. Therefore, a total of
81 parameters (image bands) were generated. All parameter images were projected to a common
geographic coordinate system using nearest neighbor intensity interpolation, at 5 m pixel spacing.

[C] =

∣∣∣∣∣∣∣
〈|SHH |2〉

√
2〈SHHS∗HV〉 〈SHHS∗VV〉√

2〈SHVS∗HH〉 2〈|SHV |2〉
√

2〈SHVS∗VV〉
〈SVVS∗HH〉

√
2〈SVVS∗HV〉 〈|SVV |2〉

∣∣∣∣∣∣∣ (1)

[T] =

∣∣∣∣∣∣∣
〈|(SHH + SVV)|2〉 〈(SHH + SVV)(SHH − SVV)

∗〉 2〈(SHH + SVV)S∗HV〉
〈(SHH − SVV)(SHH + SVV)

∗〉 2〈|(SHH − SVV)|2〉 2〈(SHH − SVV)S∗HV〉
2〈SHV(SHH + SVV)

∗〉 2〈SHV(SHH − SVV)
∗〉 4〈|SHV |2〉

∣∣∣∣∣∣∣ (2)

2.3.3. Image Sampling

Polygons corresponding to each 750 m by 750 m aerial photograph were used to extract spatially
coincident SAR backscatter statistics from the seven RS-2 SAR scenes. The number of samples varied
according to the portions of the RS-2 scenes that overlapped aerial photographs (Table 1). The total
number of samples is 650, distributed across three different θ ranges.

Sample means of the nine linear and polarimetric parameters and eight GLCM parameters were
calculated. Therefore, each of the 650 samples contains 81 associated mean values, corresponding
to the nine linear and polarimetric parameters and their 72 derived texture parameters. Given that
many adjacent aerial photographs overlap each other by up to approximately 10%, not all samples are
entirely independent. However, the sample means and texture parameters represent the polygons as
a whole, with no single-sample redundancy. Samples were divided into two equally sized training
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and test sets using a random sampling approach. A set of 325 training samples were used for model
development, and 325 test samples were used to validate the derived models.

Table 2. Parameters employed in this study. Matrix elements are obtained from a standard covariance
matrix (1) and coherency matrix (2) (Adapted from Gill et al., 2015).

Nomenclature Notation Reference

Co-polarized power (horizontal) (in dB) σ0
HH (linear)

[57]

Co-polarized power (vertical) (in dB) σ0
VV (linear)

Cross-polarized power (in dB) σ0
HV (linear)

Co-polarized ratio (in dB) RVVHH =
〈SVV S∗VV 〉
〈SHH S∗HH〉

(linear)

Co-polarized phase difference φ = tan−1
[

Im〈SHH S∗VV 〉
Re〈SHH S∗VV 〉

]
(polarimetric)

Co-polarized correlation co-efficient ρ =

∣∣∣∣ 〈SHH S∗VV 〉√
〈SHH S∗HH SVV S∗VV 〉

∣∣∣∣ (polarimetric)

Entropy H (polarimetric)
[58]Anisotropy A (polarimetric)

Alpha angle α (polarimetric)

Table 3. GLCM texture parameters used in the study.

Terminology Theoretical Description References

Entropy (ENT) Detects the randomness of grey level distribution. Entropy
will be higher for nearly random or noisy images. [59]

Angular second moment (ASM) Detects disorder in texture. High energy values represent the
constant of periodic form of gray level distribution [53,60]

Contrast (CON)
The difference between the highest and the lowest values of a
connecting set of pixels. Contrast is greater for images that
have rapidly fluctuating intensities.

[61]

GLCM variance (VAR) The degree of heterogeneity. Variance increases when the gray
level values differ from their mean. [62]

Correlation (COR) Measures linear-dependencies of gray tone in the image. [63]

Homogeneity (HOM) Gives maximum value when all elements in the image
are same. [49]

Dissimilarity (DIS) Assists to distinguish most surface features. [64]

GLCM Mean (MEAN) Measures the mean of Grey level co-occurrences values.
Generally least correlated with other texture parameters. [65]

2.3.4. Regression Model Development

Multivariate linear regression was employed to generate combined backscatter, polarimetric
parameter, and texture-based models to predict fp. Spearman’s rank correlation analysis was used to
assess correlation between parameters and with fp while accounting for any non-normal distributions.
A coefficient threshold of 0.7 was used to identify multicollinearity between parameters. Correlated
parameter pairs were assessed against fp, and the parameter with the higher correlation with fp

was kept for regression model development. Model selection was then accomplished using forward
stepwise regression analysis with an entry p-value of 0.05. These analyses were performed separately
for the three θ ranges (NR, MR and FR). Therefore, a different model is derived for each of the three
θ ranges.

To identify any misspecifications in the multivariate regression models, and to support the
accuracy values obtained with multivariate regression, a random forest regression [66] was also
performed, using the random Forest package in the statistical package-R. The number of parameters
used at each split was set to the number of parameters divided by 3, and 500 trees were used.
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The reduced parameter set, following removals due to correlation, was used for the random forest
regression as well, since multicollinearity has been found to be detrimental [67].

Model accuracy was evaluated via RMSE analysis of predicted fp values versus observed values
in the test set. This was done for both multivariate and random forest regressions. Multivariate
regression models were used to estimate fp for RS-2 SAR scenes resampled to coarser 750 m by 750 m
pixels to match the scale of the input sample data. To examine whether model estimates are sensitive
to scale, images were also resampled to 500 m and 250 m pixel spacings.

2.3.5. Snow Thickness Images

Given the association of fp and winter snow thickness [7,8], we infer the spatial distribution of
relative snow thickness based on predicted fp. To constrain the snow thickness, we assume that our
in-situ-measured range of snow thickness (1.5 cm to 40 cm) is representative of the SAR scene extents
(25 km by 25 km), which encompasses the study area. We linearly categorized the in-situ-measured
snow thickness into eight classes, evenly-distributed across the snow thickness range, and related
them to eight fp classes ranging from 0.25–0.85 (i.e., lowest fp class is equivalent to the highest class of
snow thickness). This provides a rudimentary hindcast of snow thickness.

3. Results and Discussion

3.1. Relationship between Winter SAR Backscatter and Pond Fraction

Spearman rank correlation coefficients between RS-2 parameters and fp are shown in Table 4.
σ0

HH is correlated with one or more parameters in each θ range and is thus not included in model
development; it is shown in Table 4 for comparison. In the NR, σ0

HV and MEANRVVHH exceed 0.5,
as does σ0

HH . The value for σ0
HV (−0.652) is within the range reported in Scharien et al. [24] (−0.647

to −0.792), but the value for σ0
HH (−0.540) is slightly lower than their range (−0.590 to −0.824).

Our relatively higher correlation value for σ0
HV may relate to the lower noise floor of our data;

suggesting that σ0
HV was limited by the noise floor in Scharien et al. [24]. Our study examines

data at a much lower noise floor: −37 dB (NR) to −33 dB (FR) for RS-2 fine quad-polarization mode
(MDA, 2014), versus −20 dB to −22 dB for Envisat-ASAR and Sentinel-1 [68,69]. For σ0

HV , our mean
backscatter exceeds the RS-2 fine quad-polarization noise floor by 6.4 dB at NR, by 4.0 dB at MR,
and by 3.1 dB at FR. In the MR, three parameters exceed 0.5: MEANHV , MEANHH and ASMHV , plus
σ0

HH . Our correlation for σ0
HH (−0.552) is lower than the range reported by Scharien et al. [24] (−0.695

to −0.810). However, our lower noise floor is likely the cause of our texture parameters derived from
σ0

HV exhibiting relatively strong correlation with fp at MR when using RS-2, whereas the noise floor
was found to be a limiting factor in Scharien et al. [24]. In the FR, three parameters exceed 0.5: σ0

VV ,
VARVV and MEANA, plus σ0

HH . We find σ0
VV to consistently have higher correlation with fp than

σ0
HH , suggesting that employing σ0

VV instead of σ0
HH may improve the results of Scharien et al. [24].

Overall, our correlation values are not as high as those found by Scharien et al. [24], which may be the
result of their object-based approach versus our polygon-based approach. In comparison to Fors et
al. [23], we find higher correlations for H, α, ρ and φ at FR, but lower correlations for H, α, ρ and φ at
NR. Given that their X-band correlations are for sea ice with existing melt ponds, versus our C-band
correlations for snow covered sea ice during winter, discrepancies are not unexpected.

The correlation analysis reveals multicollinearity between many parameters (r ≥ 0.7). Of the
original 81 parameters, 64 are correlated at NR, 57 at MR and 62 at FR; the remaining less-correlated
parameters are used for model development; these are shown in Table 4.

Given that late winter σ0
VV and σ0

HV exhibit negative correlation with melt season fp (Table 4;
e.g., Figures 4 and 5), and that fp is inversely correlated with late winter snow thickness [7], we infer
that σ0

VV , and σ0
HV increase with snow thickness in a manner similar to previous studies [2,39].RVVHH

exhibits substantial negative correlation with fp at MR (e.g., Figure 6). RVVHH pixel values are primarily
negative, indicating that σ0

HH > σ0
VV , suggesting that Fresnel reflection effects associated with a smooth
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dielectric interface are responsible [70]. RVVHH tends toward 0 dB as fp decreases, pointing to reduced
Fresnel reflection, which, in turn, may be associated with rougher FYI and thicker snow.

Table 4. Parameters used for model development. Parameters have low correlation with each other
(Spearman’s r < 0.7). Parameters are shown in descending order of absolute correlation (Spearman’s)
with fp. NR = near-range, MR = mid-range, and FR = far-range incidence angles. σ0

HH (value in italics)
is included for comparison.

NR Parameters r MR Parameters r FR Parameters r

σ0
HV −0.652 MEANHV −0.627 σ0

VV −0.584
σ0

HH −0.540 MEANHH −0.579 MEANA −0.550
MEANRVVHH −0.532 σ0

HH −0.552 σ0
HH −0.540

CORA 0.473 ASMHV 0.500 VARVV −0.501
CORRVVHH −0.336 RVVHH −0.497 MEANφ −0.464
HOMHH −0.323 CORHV −0.427 HOMHV 0.440
ENTHH 0.304 VARVV −0.361 H 0.382

MEANVV −0.285 MEANφ −0.351 HOMVV 0.364
VARRVVHH −0.271 MEANRVVHH −0.344 RVVHH −0.312

CORVV −0.253 A −0.299 ASMρ −0.293
CORα −0.224 φ −0.285 HOMα −0.211
CORφ −0.196 VARHH −0.259 CORA −0.156
CORρ −0.177 MEANA −0.242 ASMA −0.116

HOMHV 0.164 VARA −0.241 VARA −0.105
HOMρ −0.135 VARφ −0.229 HOMH −0.072

MEANφ 0.080 CORα −0.206 DISH 0.066
α 0.065 CORHH −0.180 ASMH −0.058

VARRVVHH −0.164 CONA −0.052
ASMφ 0.154 HOMA −0.04

ASMVV 0.152
ASMRVVHH 0.113

CORφ −0.105
ASMHH 0.073

α −0.050
ρ 0.042

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 22 

 

with 𝜎   are sensitive to ice and snow surface structure and related melt season  𝑓 . Texture 
parameters based on 𝜙 and 𝐴 are present in all three 𝜃 ranges, suggesting that these parameters 
may be sensitive to snow thickness differences and are therefore correlated with  𝑓 . 

Table 4. Parameters used for model development. Parameters have low correlation with each other 
(Spearman’s r < 0.7). Parameters are shown in descending order of absolute correlation (Spearman’s) 
with 𝑓 . NR = near-range, MR = mid-range, and FR = far-range incidence angles. 𝜎  (value in italics) 
is included for comparison. 

NR Parameters r MR Parameters r FR Parameters r 𝜎  −0.652 𝑀𝐸𝐴𝑁  −0.627 𝜎  −0.584 𝜎  −0.540 𝑀𝐸𝐴𝑁  −0.579 𝑀𝐸𝐴𝑁  −0.550 𝑀𝐸𝐴𝑁  −0.532 𝜎  −0.552 𝜎  −0.540 𝐶𝑂𝑅  0.473 𝐴𝑆𝑀  0.500 𝑉𝐴𝑅  −0.501 𝐶𝑂𝑅  −0.336 𝑅  −0.497 𝑀𝐸𝐴𝑁  −0.464 𝐻𝑂𝑀  −0.323 𝐶𝑂𝑅  −0.427 𝐻𝑂𝑀  0.440 𝐸𝑁𝑇  0.304 𝑉𝐴𝑅  −0.361 𝐻 0.382 𝑀𝐸𝐴𝑁  −0.285 𝑀𝐸𝐴𝑁  −0.351 𝐻𝑂𝑀  0.364 𝑉𝐴𝑅  −0.271 𝑀𝐸𝐴𝑁  −0.344 𝑅  −0.312 𝐶𝑂𝑅  −0.253 𝐴 −0.299 𝐴𝑆𝑀  −0.293 𝐶𝑂𝑅  −0.224 𝜙 −0.285 𝐻𝑂𝑀  −0.211 𝐶𝑂𝑅  −0.196 𝑉𝐴𝑅  −0.259 𝐶𝑂𝑅  −0.156 𝐶𝑂𝑅  −0.177 𝑀𝐸𝐴𝑁  −0.242 𝐴𝑆𝑀  −0.116 𝐻𝑂𝑀  0.164 𝑉𝐴𝑅  −0.241 𝑉𝐴𝑅  −0.105 𝐻𝑂𝑀  −0.135 𝑉𝐴𝑅  −0.229 𝐻𝑂𝑀  −0.072 𝑀𝐸𝐴𝑁  0.080 𝐶𝑂𝑅  −0.206 𝐷𝐼𝑆  0.066 𝛼 0.065 𝐶𝑂𝑅  −0.180 𝐴𝑆𝑀  −0.058 
  𝑉𝐴𝑅  −0.164 𝐶𝑂𝑁  −0.052 
  𝐴𝑆𝑀  0.154 𝐻𝑂𝑀  −0.04 
  𝐴𝑆𝑀  0.152   
  𝐴𝑆𝑀  0.113   
  𝐶𝑂𝑅  −0.105   
  𝐴𝑆𝑀  0.073   
  𝛼 −0.050   

  𝜌 0.042   

 
Figure 4. Late winter  𝜎 dB  as a function of  𝑓  at NR. The solid line represents the linear 
dependency, and r is the Spearman correlation. 

r = −0.65 

Figure 4. Late winter σ0
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Figure 6. Late winter RVVHH(dB) as a function of fp at MR. The solid line represents the linear
dependency, and r is the Spearman correlation.

Texture parameters most correlated with fp are primarily based on σ0
HV , σ0

VV σ0
HH , RVVHH , φ

and A (Table 4, Figures 7–9). Texture parameters that are correlated with fp and derived from σ0
HV

are present in all three θ ranges. Their correlation with fp suggests that σo
HV might be sensitive to

different snow thicknesses as well. σo
HV is influenced by surface roughness, volume scattering and

multi-bounce scattering [71]; as snow thickness increases, the potential for increased volume scattering
increases [72]. Thicker snow covers are associated with rougher sea ice [9], which may also influence
σo

HV because cross polarization is the result of multiple volume scattering enhanced by the presence of
uneven surfaces [73]. Therefore, it is not surprising that texture parameters associated with σ0

HV are
sensitive to ice and snow surface structure and related melt season fp. Texture parameters based on
φ and A are present in all three θ ranges, suggesting that these parameters may be sensitive to snow
thickness differences and are therefore correlated with fp.



Remote Sens. 2018, 10, 1603 11 of 21

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 22 

 

 
Figure 5. Late winter  𝜎 dB  as a function of  𝑓  at FR. The solid line represents the linear 
dependency, and r is the Spearman correlation. 

 
Figure 6. Late winter 𝑅 dB  as a function of 𝑓  at MR. The solid line represents the linear 
dependency, and r is the Spearman correlation. 

 
Figure 7. Late winter  𝑀𝐸𝐴𝑁 , as a function of 𝑓  at MR. The solid line represents the linear 
dependency, and r is the Spearman correlation. 

r = −0.58 

r = −0.50 

r = −0.63 

Figure 7. Late winter MEANHV , as a function of fp at MR. The solid line represents the linear
dependency, and r is the Spearman correlation.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 

 

 
Figure 8. Late winter 𝑀𝐸𝐴𝑁 , as a function of 𝑓  at FR. The solid line represents the linear 
dependency, and r is the Spearman correlation. 

 
Figure 9. Late winter  𝐶𝑂𝑅 , as a function of  𝑓  at NR. The solid line represents the linear 
dependency, and r is the Spearman correlation. 

3.2. Prediction of Pond Fraction 

The regression analysis produced the following models for predicting  𝑓  at NR, MR and FR, 
respectively:  𝑓 0.897 0.048𝜎 0.726𝐸𝑁𝑇 0.059𝑀𝐸𝐴𝑁 2.939𝐶𝑂𝑅 0.020𝛼   (3) 𝑓 2.912 0.022𝑀𝐸𝐴𝑁   0.052𝑀𝐸𝐴𝑁 0.012𝑀𝐸𝐴𝑁 0.787𝐶𝑂𝑅0.094𝑅    

(4) 

𝑓 2.227 0.015𝜎 0.059𝑀𝐸𝐴𝑁 2.837𝐴𝑆𝑀 0.015𝑀𝐸𝐴𝑁0.174𝑉𝐴𝑅   
(5) 

The models, as represented by Equations (3)–(5), exhibit  𝑅  values of 0.57, 0.61, and 0.62 
respectively. The FR model exhibits the highest  𝑅  and contains a linear parameter and four texture 
parameters. The MR model exhibits the second highest  𝑅  and contains one linear parameter and 
four texture parameters. All models make use of polarimetric data for the contributing texture 

r = −0.46 

r = 0.47 

Figure 8. Late winter MEANφ, as a function of fp at FR. The solid line represents the linear dependency,
and r is the Spearman correlation.

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 

 

 
Figure 8. Late winter 𝑀𝐸𝐴𝑁 , as a function of 𝑓  at FR. The solid line represents the linear 
dependency, and r is the Spearman correlation. 

 
Figure 9. Late winter  𝐶𝑂𝑅 , as a function of  𝑓  at NR. The solid line represents the linear 
dependency, and r is the Spearman correlation. 

3.2. Prediction of Pond Fraction 

The regression analysis produced the following models for predicting  𝑓  at NR, MR and FR, 
respectively:  𝑓 0.897 0.048𝜎 0.726𝐸𝑁𝑇 0.059𝑀𝐸𝐴𝑁 2.939𝐶𝑂𝑅 0.020𝛼   (3) 𝑓 2.912 0.022𝑀𝐸𝐴𝑁   0.052𝑀𝐸𝐴𝑁 0.012𝑀𝐸𝐴𝑁 0.787𝐶𝑂𝑅0.094𝑅    

(4) 

𝑓 2.227 0.015𝜎 0.059𝑀𝐸𝐴𝑁 2.837𝐴𝑆𝑀 0.015𝑀𝐸𝐴𝑁0.174𝑉𝐴𝑅   
(5) 

The models, as represented by Equations (3)–(5), exhibit  𝑅  values of 0.57, 0.61, and 0.62 
respectively. The FR model exhibits the highest  𝑅  and contains a linear parameter and four texture 
parameters. The MR model exhibits the second highest  𝑅  and contains one linear parameter and 
four texture parameters. All models make use of polarimetric data for the contributing texture 

r = −0.46 

r = 0.47 

Figure 9. Late winter CORA, as a function of fp at NR. The solid line represents the linear dependency,
and r is the Spearman correlation.



Remote Sens. 2018, 10, 1603 12 of 21

3.2. Prediction of Pond Fraction

The regression analysis produced the following models for predicting fp at NR, MR and FR,
respectively:

fp(NR) = 0.897− 0.048σ0
HV + 0.726ENTHH − 0.059MEANφ − 2.939CORα + 0.020α (3)

fp(MR) = 2.912− 0.022MEANHV − 0.052MEANφ − 0.012MEANA − 0.787CORHV − 0.094RVVHH (4)

fp(FR) = 2.227− 0.015σ0
VV − 0.059MEANφ + 2.837ASMH − 0.015MEANA − 0.174VARVV (5)

The models, as represented by Equations (3)–(5), exhibit R2 values of 0.57, 0.61, and 0.62
respectively. The FR model exhibits the highest R2 and contains a linear parameter and four texture
parameters. The MR model exhibits the second highest R2 and contains one linear parameter and four
texture parameters. All models make use of polarimetric data for the contributing texture parameters.
The robustness of the models is consistent with previous findings in that the inclusion of texture with
linear and/or polarimetric parameters improves classification results [48–51].

Differing scattering mechanisms at NR, MR and FR are very likely responsible for the three
different models. Surface roughness changes depending on the local θ [74]; surface scattering
dominates at NR, and volume scattering dominates at FR [41,43]. In addition, the polarimetric
parameters that were found to have low correlation with other parameters are likely sensitive to
specific scattering mechanisms; this may explain their inclusion in the models even if their correlation
with fp is low (Table 4). In comparison to the models developed by Scharien et al. [24], the model
parameters here suggest that the addition of polarimetric capabilities can be a benefit, and a lower
noise floor is a benefit when using HV. However, the use of additional model parameters may lead
to over-fitting.

Random forest regression analysis provides predictive ability similar to the linear regression
(see Section 3.3). An assessment of random forest parameter importance supports the parameter
selection in the linear regression models (Table 5); most of the linear regression parameters are found
in the top five important positions. Differences between models are expected due to their different
selection techniques. Give the random forest results, no gross misspecification is anticipated in the
linear models.

Table 5. Random forest regression parameters in order of parameter importance (increase in
mean-squared-error with removal (IncMSE)), for NR, MR and FR models. The top 13 important
positions are shown. Shaded parameters are found in the respective linear regression models.

NR IncMSE MR IncMSE FR IncMSE
σ0

HV 0.0116 MEANHV 0.0058 MEANφ 0.0046
MEANRVVHH 0.0036 ASMHV 0.0038 MEANA 0.0039

MEANVV 0.0015 MEANHH 0.0036 σ0
VV 0.0035

ENTHH 0.0010 RVVHH 0.0029 HOMVV 0.0021
CORα 0.0010 MEANA 0.0021 VARVV 0.0018

HOMHH 0.0009 A 0.0021 HOMHV 0.0017
CORA 0.0009 MEANφ 0.0017 RVVHH 0.0008

α 0.0005 φ 0.0013 CORA 0.0007
CORVV 0.0004 CORHV 0.0012 H 0.0006

VARRVVHH 0.0004 VARA 0.0008 ASMρ 0.0003
MEANφ 0.0004 VARVV 0.0007 ASMH 0.0002
HOMρ 0.0003 VARRVVHH 0.0006 ASMA 0.0002

HOMHV 0.0002 ASMRVVHH 0.0005 HOMA 0.0002

3.3. Error Analysis

Predicted fp, using Equations (3)–(5), is compared with measured fp for the 325 test samples,
for each θ range (Figure 10). The RMSE was found to be 0.106 for NR, 0.108 for MR, and 0.094 for FR.
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The RMSE values obtained with random forest regression are 0.109, 0.091 and 0.092, for NR, MR and
FR models, respectively. The NR linear model exhibits greater skill than the random forest model;
however, the MR linear model is substantially worse that for random forest. Nevertheless, these values
indicate that the multivariate linear regression models have predictive capabilities similar to that of
random forest models and can thus be used without significant loss of skill.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 22 
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Figure 10. Observed (estimated via aerial photography) and regression model predicted fp at (a)
NR, (b) MR and (c) FR. The dashed line is the linear dependency of the comparison. The solid line
represents the 1:1 relationship.

It is apparent that the models overestimate lower fp and underestimate higher fp Figure 10.
The underestimation of higher fp is most pronounced at MR (Figure 10b). However, the linear
dependencies are consistent across the three θ ranges.

3.4. SAR Scene Pond Fraction Estimates

The NR, MR and FR fp prediction models are applied to late winter SAR scenes with pixel spacing
of 750 m, 500 m and 250 m to assess the dependency of pixel size (Figures 11–13). The areas represented
by the models at lower and higher resolution indicate similar pattern and variability, indicating that
the models are appropriate at higher resolution. The higher resolution SAR scene displays higher
variability than the 750 m or 500 m scenes, which is logical as 250 m pixel spacing would reveal more
detail. There are possible mixed-pixel effects where sea ice abuts land because the land mask used may
not be perfectly accurate in all cases. However, these effects only impact the sea ice pixels immediately
adjacent to the coastlines. Buffering the coastline would mitigate this issue, if needed.

Within the area of overlapping scenes (red outline in Figure 11a), some differences in the estimates
can be observed. In general, the NR estimates (Figure 11) exhibit lower pond fractions than do the MR
(Figure 12) and FR (Figure 13) estimates; especially at the north end of Griffith Island and associated
with the linear feature extending from Sheringham Point. The latter is a region of rougher, ridged,
sea ice which is expected to have thicker snow cover and smaller fp. The efficacy of the NR model
to show such smaller fp is supported by the error analysis which shows that NR exhibits somewhat
less bias at small fp (Figure 10a). Conversely, the FR estimates show larger areas of higher fp than
MR and NR. This is also supported by the error analysis, which shows a smaller bias at high fp

for FR (Figure 10c). The MR estimates appear to lack the range of fp, compared to the NR and FR
estimates; this is also displayed in the error analysis (Figure 10b). Given these observations, it may be
beneficial to make use of combined NR and FR estimates. The estimates of fp with regard to incidence
angle are very likely a function of the different scattering mechanisms that dominate at the respective
incidence angle ranges and the sensitivity of the different parameter combinations in the models to
these scattering mechanisms.
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Based on RS-2 FQ4 2012-05-10 data. The red outline in (a) delineates the area where the NR, MR and
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Arctic Archipelago; however, the mean snow thickness is lower than values previously found for 
relatively smooth FYI [75]. Considering the range of snow thickness in our study area, first-order 
hindcasts of snow thickness distribution were generated (Figures 14–16) based on the association of 
snow thickness and 𝑓 . The prediction maps provide insight into the snow thickness distribution 
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Figure 12. Predicted melt fp at 750 m (a), 500 m (b) and 250 m (c) pixel spacing, respectively, at MR.
Based on RS-2 FQ15 2012-05-21 data.
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Figure 13. Predicted melt fp at 750 m (a), 500 m (b) and 250 m (c) pixel spacing, respectively, at FR.
Based on RS-2 FQ23 2012-05-15 data.

3.5. SAR-Based Estimation of Snow Thickness

The snow thickness of our in-situ sample site ranges from 1.5 cm to 40 cm, with a mean thickness of
10.9 cm± 7.7 cm (Figure 2). This range of snow thickness is representative of FYI in the Canadian Arctic
Archipelago; however, the mean snow thickness is lower than values previously found for relatively
smooth FYI [75]. Considering the range of snow thickness in our study area, first-order hindcasts of
snow thickness distribution were generated (Figures 14–16) based on the association of snow thickness
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and fp. The prediction maps provide insight into the snow thickness distribution within a 25 km by
25 km SAR scene. Of note is the higher accumulation of snow near the coastlines. This is because
during wind drift, the uneven land surface topography causes more snow to accumulate on the leeward
side [76] than in the homogeneous and smooth areas of FYI. The models illustrate a similar pattern of
snow thickness distribution and show snow thickness variability at both fine and coarser resolution.
Snow accumulation also depends on ice deformation [77], with snow catchment higher in deformed
ice areas compared to smooth ice surfaces. The model hindcast maps indicating appreciably higher
snow thickness along linear features near to the Cornwallis Island coastline appear to be reasonably
well associated with the spatial location of narrow sea ice ridges as observed in the winter SAR imagery.
Most of the study area exhibits a thin snow cover consistent with a relatively smooth surface. At both
750 m and 250 m pixel spacing, the models show similar pattern and variability of snow thickness.
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Between the NR, MR and FR snow thickness estimates, NR (Figure 14) exhibits the greatest snow
depths. This relates directly to the smaller fp estimates with the NR model as discussed in the previous
section. The reduced bias at small fp with NR (Figure 10a) likely provides the best estimates of thick
snow. Thinner snow estimates appear to have the most realistic spatial distribution at FR (Figure 16).
Again, this relates directly to the smaller bias at large fp with FR (Figure 10c), where thinner snow
is expected.

4. Conclusions

This paper presents an approach utilizing late winter C-band RADARSAT-2 SAR linear,
polarimetric and texture parameters of snow covered first-year sea ice to predict early summer
melt pond fraction. Predictions were then used to examine relationships between early melt pond
fraction and late winter snow thickness. We estimated melt pond fractions from the aerial photographs
collected over first-year sea ice. The correlation of melt pond fraction and late winter backscatter
parameters provided us with to the ability to hindcast snow thickness. Nine linear and polarimetric
parameters and 72 texture parameters were evaluated for their relationship with pond fraction.

Multivariate models comprised of linear, polarimetric and/or texture parameters are derived at
near-, mid- and far-range incidence angles. The best pond fraction prediction capability is exhibited by
the model at far-range incidence angles (RMSE = 0.09).

By relating late winter snow thickness and fp, these predictions help us to understand the winter
snow thickness variability. The models are able to distinguish higher snow thickness along sea ice
ridges, coastlines and relatively thinner snow cover on smooth surfaces of first-year sea ice, which is
consistent with previous findings.

Moreover, the models show that the combination of SAR linear and polarimetric backscatter and
texture parameters enhance the strength of the models compared to utilizing them separately for the
prediction of pond fraction. The estimation of pond fraction over an entire SAR scene based on the
models show logical distributions of melt ponds and snow thickness.

The results of this study add to the suite of seasonal sea ice forecasting tools, and thus can aid ship
navigability since melt ponds are associated with advanced sea ice melt and significant weakening of
sea ice mechanical strength. At the same time, it provides insight into the late winter snow thickness
distribution on first year sea ice. The method is tested on landfast sea ice, is sensitive to the time
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periods of the collected aerial melt pond distributions and SAR scene acquisitions, and is likely not
applicable to drift ice. Future research should test this model on a regional scale, and similar models
should also be evaluated for their application over multi-year sea ice and more deformed types of
first-year sea ice.
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