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Abstract: Accurate estimates of above ground biomass (AGB) are needed for monitoring carbon
in tropical forests. LiDAR data can provide precise AGB estimations because it can capture the
horizontal and vertical structure of vegetation. However, the accuracy of AGB estimations from
LiDAR is affected by a co-registration error between LiDAR data and field plots resulting in spatial
discrepancies between LiDAR and field plot data. Here, we evaluated the impacts of plot location
error and plot size on the accuracy of AGB estimations predicted from LiDAR data in two types of
tropical dry forests in Yucatán, México. We sampled woody plants of three size classes in 29 nested
plots (80 m2, 400 m2 and 1000 m2) in a semi-deciduous forest (Kiuic) and 28 plots in a semi-evergreen
forest (FCP) and estimated AGB using local allometric equations. We calculated several LiDAR
metrics from airborne data and used a Monte Carlo simulation approach to assess the influence
of plot location errors (2 to 10 m) and plot size on ABG estimations from LiDAR using regression
analysis. Our results showed that the precision of AGB estimations improved as plot size increased
from 80 m2 to 1000 m2 (R2 = 0.33 to 0.75 and 0.23 to 0.67 for Kiuic and FCP respectively). We also
found that increasing GPS location errors resulted in higher AGB estimation errors, especially in the
smallest sample plots. In contrast, the largest plots showed consistently lower estimation errors that
varied little with plot location error. We conclude that larger plots are less affected by co-registration
error and vegetation conditions, highlighting the importance of selecting an appropriate plot size for
field forest inventories used for estimating biomass.

Keywords: airborne laser scanner; forest biomass; plot size; co-registration error; Monte Carlo
simulation

1. Introduction

Tropical forests constitute a large proportion of the carbon stored in terrestrial ecosystems and
play a crucial role in mitigating global climate change [1]. In particular, tropical dry forests (TDF) are
the most extensive land cover type in the tropics and more than 50% of tropical dry forests are in the
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American continent [2]. However, forest conversion to other land uses exacerbates climate change;
deforestation accounts for 15 to 25% of annual global greenhouse gas emissions [3]. Tropical dry
forests (TDF) in particular combine high rates of deforestation with low coverage in protected areas [4].
Accurate estimations of aboveground biomass (AGB) are fundamental for climate change mitigation
strategies such as REDD+ (Reducing Emissions from Deforestation and Degradation plus enhancing
forest carbon stocks) and for establishing policies designed to maintain and enhance tropical forest
carbon stocks.

Remote sensing is a valuable source of information to estimate and monitor AGB, because it offers
an inexpensive means of attaining complete spatial coverage of information for large areas at regular
time intervals [5]. Reflectance values and vegetation indices from passive optical satellite imagery
have been used to estimate AGB in tropical forest [6]. However, these estimates are valid only for
relatively young secondary forests as reflectance and vegetation indices saturate at the high biomass
levels attained in older forests [7]. Another approach for AGB estimation is the use of Radar data.
This active sensor has been used to estimate the spatial distribution of biomass [8], and also has the
ability to penetrate clouds, one of the most important limitations in tropical regions. Nevertheless,
as with the passive optical sensors, this sensor also shows limited sensitivity to biomass changes
depending on the characteristics of the forest [9]. In contrast, LiDAR (Light Detection and Ranging)
data can capture the horizontal and vertical structure of vegetation, which allows estimating AGB
with a higher precision compared to approaches that used radar or optical data [10].

LiDAR is highly successful at estimating different vegetation attributes such as height, basal area,
stem density, and AGB [11,12]. This active sensor uses laser pulses that have the ability to penetrate
tropical forest canopies and detect three dimensional forest structures, allowing direct measurement of
canopy height and providing three-dimensional canopy metrics that can be used to estimate forest
vegetation structure parameters with no saturation at high biomass values [13,14]. Different studies
have demonstrated a strong relationship between AGB and LiDAR measurements across all major
forest ecosystems [14–18].

The most common approach to estimate the spatial distribution of AGB or carbon stocks from
LiDAR data links data from field plots to LiDAR metrics from the same plots is through a statistical
model. The model is then applied, together with LiDAR data, to predict biomass in un-sampled
locations. Therefore, the accuracy of AGB estimations is directly influenced by the accuracy of
co-registration of LiDAR data and field plots. However, consumer-grade GPS receivers, commonly
used to locate plots in tropical forest inventories typically exhibit location errors that range from 2 to
10 m, depending on forest canopy conditions [19]. This means that LiDAR data and field plot data
may not completely overlap spatially, potentially reducing the accuracy of predictions of forest AGB
and carbon stocks. Some studies have assessed the influence of plot location errors on the precision
of LiDAR based estimates of temperate forest structural parameters such as height, basal area, and
volume [20], as well as biomass [21]. However, to our knowledge, the effect of errors in plot location
on AGB estimations in tropical forest using LiDAR data has not been explored.

The precision of AGB estimations is also affected by plot size in two different ways. First, through
edge effects, which occur when trees located outside of the plot boundary have large parts of their
crowns inside the plot and/or trees located inside the plot have most of their crowns outside the plot.
Since the perimeter to area ratio decreases as plot size increases, this edge effect should decrease with
increasing plot size, resulting in greater overlap between plot data and LiDAR metrics data, and hence,
in a higher precision of AGB estimates. Second, the spatial distribution of large trees, which make
a disproportionally high contribution to stand AGB, is captured more accurately in larger plots than
in smaller ones. As a result, large plots enable more precise estimations of AGB than small plots [22].
Moreover, the effects of plot size and plot location error may interact, since the area of overlap between
LiDAR data and field plot data increases with plot size. Consequently, the effect of plot location error
may decrease as plot size increases [20,23].
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Finally, the effects of plot size and location error on the precision of AGB estimates from LiDAR
data may vary with forest structural characteristics. Forest structural attributes, including stem density,
basal area, and number of vertical strata among others, affect the spatial distribution of openings in
the canopy, thereby potentially affecting the percentage of LiDAR returns that can be reflected by the
canopy [23,24]. Consequently, the relationships between LiDAR metrics and vegetation structural
parameters, such as canopy height, basal area, and AGB may vary with forest type or forest condition,
as has been found in some studies [12,25]. This is important for estimating AGB at the regional level,
where a range of different forest conditions or forest types usually occur.

The general goal of this research was to assess the impacts of plot location error and plot size
on the accuracy of AGB estimations predicted from LiDAR data in two types of TDF that differ in
vegetation structural complexity and species composition: a semi-deciduous forest with a less complex
vegetation structure and lower diversity, compared to a semi-evergreen forest. To this end, five levels
of plot location errors from 2 to 10 m at 2 m intervals and three plot sizes 80, 400 and 1000 m2 were
considered. We predicted that: (1) the precision of LiDAR estimates of AGB would increase with
sample plot size, reflecting decreasing edge effects and more accurate representation of large-sized
trees. (2) The effect of sample plot location error on the precision of LIDAR estimates of AGB would
decrease with plot size because of a higher degree of spatial overlap between sample plot and LiDAR
data in larger plots. (3) The structurally more complex semi-evergreen forest, with a potentially
lower percentage of LIDAR returns reflected by the canopy, would show a lower precision of AGB
estimations from LiDAR and stronger effects of plot size and plot location error compared to the
semi-deciduous forest.

2. Materials and Methods

2.1. Study Area

The study was conducted in two sites representing the most important tropical dry forest types of
the Yucatan Peninsula (Figure 1). The Kaxil Kiuic site (Kiuic from now on) is located in the southern
part of the State of Yucatan (20◦04′N–20◦06′N, 89◦32′W–89◦34′W) where vegetation is classified as
seasonally dry semi-deciduous tropical forest (50–75% of species drop their leaves during the dry
season). This forest has a relatively low canopy stature (13–18 m), with crown diameters (mean
± 1SD: 3.2 ± 1.6 m) and is dominated by Neomillspaughia emarginata, Gymnopodium floribundum,
Bursera simaruba, Piscidia piscipula, and Lysiloma latisiliquum. The landscape consists of a mosaic of forest
patches of different ages of abandonment after traditional slash-and-burn agriculture, agricultural
fields, and small villages. The orography is characterized by hills of low elevation (60 to 180 m) and
moderate slope (10–25◦) alternating with plains. On the other hand, the Felipe Carrillo Puerto (FCP)
site is situated in the State of Quintana Roo (19◦28′N–19◦30′N, 88◦03′W–88◦05′W) and is dominated
by seasonally dry semi-evergreen tropical forest (20–30% of species drop their leaves during the
dry season). The forest has a taller canopy (15 to 25 m) with larger crown diameters (mean ± 1SD:
3.5 ± 2.2 m) and a more complex structure with two or three canopy layers. The most abundant
species are Manilkara zapota, Vitex gaumeri, Bursera simaruba, Metopium brownei and Cecropia obtusifolia.
The landscape is composed of a mosaic of open agricultural fields and vegetation at different ages of
succession [26].

2.2. Field Sampling and Aboveground Biomass Calculation

A total of 57 sample units were inventoried in both study sites: 29 units in the Kiuic site, surveyed
during the rainy season of 2015 in an area of 49 km2, and 28 units in the FCP site, sampled during
the rainy season of 2013, in an area of 9 km2. In the Kiuic site there are 20 sample units located
systematically around a flux tower within an area of 9 km2. Forest cover is relatively homogeneous
in this area, with ages from 27 to over 100 years of abandonment after traditional slash and burn
agriculture. In addition, 9 sample units were established in areas close to the 9 km2 polygon in three
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categories of successional age: 5 to 7 years, 12 to 19 years, and 20 to 27 years—3 sample units in
each category. At the FCP site, the sample units were located in a fixed grid of evenly-spaced sample
locations over the 9 km2 studied area. In both sites, each sampling unit consisted of three concentric
circular plots: all woody plants >20 cm in a diameter at breast height (DBH, 1.3 m), were sampled in
a 1000 m2 plot (17.84 m radius); whereas 7.5–20.0 cm DBH woody plants, were sampled in a nested
400 m2 plot (11.28 m radius); finally all woody plants <2.5 cm were sampled in a nested 80 m2 plot
(5.04 m radius). All sampled units were georeferenced using a differential GPS equipped with Leica
Viva GS14-GNSS antenna base-station and CS15 receiver. Collected location data were processed
using Leica Geo office Version 8.3, (Leica Geosystems AG. Heerbrugg, Switzerland) after which the
calculated positional errors were 0.1 m for Kiuic and 0.23 m for FCP. To calculate AGB from tree
diameter and height measurements, allometric equations developed for tropical forests of the Yucatan
Peninsula were employed and plot data were extrapolated to standard units (Mg ha−1). For tree
species, wood density values from local studies or from the literature were included in the allometric
equations. In the case of Kiuic, one equation was used for individuals ≥10 cm in DBH [27] and another
for trees <10 cm in DBH [28]. For FCP site a locally developed equation [29] was applied to all trees
≥2.5 cm in DBH. In both sites, the allometric equation of Schnitzer et al. [30] was used to calculate
liana biomass, and the equation of Frangi and Lugo [31] was used for palms ≥10 cm in DBH.

Figure 1. Location of the study: Kiuic and Felipe Carrillo Puerto (FCP).
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2.3. LiDAR Data Processing

LiDAR data were acquired during the rainy season of 2015 for the Kiuic site and in January of
2013 for FCP. Data acquisition was done from a private contractor, CartoData [32], using an airborne
laser scanner, RIEGL-QV-480 LiDAR. The aircraft was operated at an average height of 396.2 m above
ground level, with a 30◦ field of view and a pulse repetition frequency of 200 kHz, for which the aircraft
maintained a ground speed of 80 to 90 km/h. Adjacent flight lines had a 50% overlap, which averaged
more than 5 pulses per square meter and included 5 returns for each pulse.

LiDAR data were processed using FUSION software [33]. First, data were normalized to the
ground surface in order to express the heights of trees above the ground instead of the elevation above
sea level. To normalize the datasets, a 1 m2 resolution digital terrain model (DTM) was used. Then,
the clouds of points representing an area of 80, 400, and 1000 m2 around the center of the sampling plot
area were clipped. Next, a set of 61 LiDAR metrics were calculated using the cloud of points within
each sampling unit considering all sampling size plots. The metrics used in this study belong to two
categories; those based on height statistics and those based on canopy density metrics. Since ground
returns can be affected by low vegetation and ground imperfections, a threshold of 1.5 m height above
ground was selected as a minimum to reduce this noise. Finally, a canopy threshold of 4.0 m was
chosen in order to calculate LiDAR canopy cover metrics. For a description of the LIDAR metrics see
McGaughey [33].

2.4. Simulation of Position Errors

A Monte Carlo approach was used to study the effects of position errors on AGB estimates from
LiDAR data. The magnitude of location errors was set to 2 to 10 m (at 2 m intervals) because the
error of consumer-grade GPS receivers usually ranges from 2 to 10 m depending on the forest canopy
conditions [19]. For each of these five levels of position errors and the three plot sizes (80, 400 and
1000 m2) altered positions were computed 500 times in a Monte Carlo simulation. Altered center
positions were computed considering a randomly selected angle and a specific GPS error (2, 4, 6, 8
and 10 m) in these simulations. The clouds of points of LiDAR data representing an area of 80, 400,
and 1000 m2 around the center of the altered sample position (2, 4, 6, 8 and 10 m of error) were clipped
and LiDAR metrics were calculated.

2.5. Data Analysis

We performed a regression analysis between AGB and LiDAR metrics for each of the 3 plot sizes
using the field plot positions (measured with differential GPS). A subset regression procedure was
performed to select the best model from all possible subsets of explanatory variables using the function
regsubsets from the ‘leaps’ pack of R software [34]. Since explanatory variables can be correlated,
we chose to limit variable selection of candidate models including three or less explanatory variables.
The selection of the best candidate model was based on minimizing the Akaike Information Criterion
(AIC) value and avoiding multicolinearity between independent variables. The dependent variables
were formally tested for normality and homoscedasticity, while the response variable (AGB) was
transformed with sqrt(x) to meet linearity assumptions [35].

The performance of the models for each plot size was assessed by leave-one-out
cross-validation [36]. In this procedure, one observation is temporally removed from the data set,
and the remaining sampling plots are used to fit the model. Then, coefficients obtained are applied
to this data in order to produce a predicted value. The cross-validation yields a list of estimated
values of AGB paired to those obtained from the observed sampling plots. Predicted values were also
back-transformed to original values and corrected for bias introduced during the back-transformation
process using a method suggested by Miller [37]. The predicted and observed values of AGB were
compared using the coefficient of determination (R2) and the root mean square error (RMSE).
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To assess how plot position error and sample plot size influence the precision of estimations of
AGB using LiDAR data, we first fit linear regression models between AGB, measured in the field and
clipped LiDAR data from altered positions (2, 4, 6, 8, and 10 m of error). These regression analysis
followed the exact model specifications (same explanatory variables and transformations) obtained
with original plot positions for each sample size of 80, 400 and 1000 m2 (measured with differential
GPS) in order to avoid the confounding effect of using different regression models. Then, the R2 and
RMSE values were calculated using the leave-one-out cross validation procedure for the models fitted
to the altered positions. We then generated 95% confidence intervals and mean values for all resultant
distributions (goodness of fit, coefficient of determination from validation and RMSE).

Finally, to visually assess the effects of plot size and spatial overlap between plot and LiDAR data,
we first calculated a measure of percent overlap between altered plot positions and positions measured
with the differential GPS as follows:

% overlap = 100 * (r − d/r) (1)

where r = plot radius (5.04 m for the 80 m2 plot, 11.28 m for the 400 m2 plot and 17.84 m for the 1000 m2

plot), and d = distance between plot centers (2, 4, 6, 8 and 10 m). This measure indicates the percent
distance between LiDAR and field-plot data relative to plot radius, and can assume negative values
when there is no overlap (d > r). For example, a value of −100 indicates that there is no overlap and
the altered plot is at a distance of twice the plot radius (d = 2r).

Then, we plotted the differences (mean values and 95% confidence intervals) between RMSE of
altered positions (2, 4, 6, 8, 10 m) and RMSE values estimated with the differential GPS against %
overlap, for each plot size in each site.

3. Results

3.1. Above Ground Biomass Calculations

AGB was consistently higher in FCP than in Kiuic across the different plots sizes. Biomass also
consistently decreased as the plot sample area increased, from 163.16 to 137.06 Mg ha−1 for Kiuic and
from 397.21 to 232.45 Mg ha−1 for FCP, respectively (Table 1).

Table 1. Summary of above ground biomass statistics of field data by plot size in Kiuic and FCP.

Site Number of Plots Plot Size (m2) Plot Radius (m) Biomass (Mg ha−1)
Mean (std Deviation)

Kiuic 29
80 5.04 163.16 (127.16)

400 11.28 155.03 (84.46)
1000 17.84 137.06 (61.58)

FCP 28
80 5.04 397.21 (193.01)

400 11.28 301.21 (98.18)
1000 17.84 232.45 (58.25)

3.2. Effects of Plot Size

Multiple regression results indicated statistically significant relationships between AGB and
LiDAR metrics. Best regression models contained one or two explanatory variables (Tables 2 and 3).
The regression model fit (R2) increased markedly as plot size increased from 80 to 1000 m2 in both
studied sites: from 0.62 to 0.86 in Kiuic and from 0.38 to 0.75 in FCP. In addition, R2 values were
consistently higher for Kiuic than for FCP across plots sizes.
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Table 2. Candidate models to estimate above ground biomass from LiDAR metrics using different
sample plot sizes in Kiuic and FCP. For a description of the LIDAR metrics see McGaughey [33].

Site Plot Size
(m2)

Number of
Predictors Explanatory Variables R2 AIC

Kiuic

80

1 Elev P75 0.52 75.0

2 Elev P70 + All returns above mode 0.62 70.0

3 * Elev P70 + Elev SQRT mean SQ + All returns above mode 0.75 60.0

400

1 Percentage all returns above 4.00 0.72 46.0

2 Percentage all returns above 4.00 + Percentage first returns
above mean 0.76 43.0

3 * Elev variance + Percentage all returns above 4.00 + Percentage
first returns above mean 0.80 40.0

1000

1 Percentage all returns above 4.00 0.86 19.0

2 * Elev variance + Elev P95 0.87 17.0

3 * Elev maximum + Elev variance + Elev P90 0.89 14.0

FCP

80

1 Elev P70 0.17 87.0

2 Percentage all returns above 4.00 + First returns above mean 0.38 80.0

3 * Elev P40+ Elev P50 + Elev P60 0.46 79.0

400

1 Elev P60 0.60 38.6

2 Elev mode + (All returns above mode)/(Total first returns) × 100 0.65 39.0

3 * Elev mode + Elev MAD median + Elev P01 0.70 36.0

1000

1 Elev CV 0.75 5.9

2 * Elev L3 + Percentage first returns above mean 0.79 1.7

3 * Elev L3 + Percentage first returns above mean + (All returns
above mean)/(Total first returns) × 100 0.84 −3.0

AIC (Akaike Information criterion value) and R2 values are shown. Best models are indicated in bold; the section is
based on lower AIC values and no multicolinearity. * means with multicollinearity.

Table 3. Regression parameters of best models used to estimate above ground biomass from LiDAR
metrics using different plot sizes in Kiuic and FCP. For a description of the LIDAR metrics see
McGaughey [33].

Site Plot Size
(m2) Independent Variables β Std Error R2

Kiuc

80
Intercept 2.81 2.30 0.62
Elev P70 1.49 0.25

All returns above mode 0.004 0.001

400
Intercept 8.60 3.55 0.76

Percentage all returns above 4.00 0.25 0.03
Percentage first returns above mean −0.13 0.06

1000
Intercept 1.20 0.85 0.86

Percentage all returns above 4.00 0.19 0.02

FCP

80
Intercept 12.43 4.75 0.38

Percentage all returns above 4.00 0.34 0.09
First returns above mean −0.03 0.01

400
Intercept 1.74 2.98 0.65

Elev mode 1.05 0.17
(All returns above mode)/(Total first

returns) × 100 0.06 0.02

1000
Intercept 25.76 1.25 0.75
Elev CV −25.65 2.98

Dependent variable is SQRT of biomass, independent variables included in the model all had p < 0.01.

Cross validation analyses revealed substantial increases in the prediction accuracy of AGB as plot
size increased from 80 to 1000 m2. The R2 values increased from 0.33 to 0.75 in Kiuic and from 0.23 to
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0.67 in FCP respectively (Figure 2). Conversely, the RMSE values decreased from 103.3 to 27.9 Mg ha−1

(a 73% reduction) in Kiuic and from 167.8 to 34.5 Mg ha−1 (a 79% reduction) in FCP respectively.

Figure 2. Results of cross validation analyses used to compare the performance of observed and
predicted values of above ground biomass in Kiuic (a–c) and FCP (d–f). R2 is the determination
coefficient and RMSE is the root mean square error, expressed in Mg ha−1. All linear regression models
were significant with p < 0.01.

3.3. Effects of Plot Position Error and Plot Size

As the GPS location errors increased, the goodness of fit statistics (R2) obtained in the regression
models for both sites decreased. For example, considering the 80 m2 plot in Kiuic (see Figure 3a),
the mean R2 values decreases from 0.56 to 0.41 with GPS location errors of 2 to 10 m. However,
when we compared the location error among sample plot sizes, the differences between the R2 value
of the regression models using the differential GPS (dotted line in the graph) and the R2 values of the
simulated GPS location errors decreased as plot size increased. For instance, in the 1000 m2 plot for
Kiuic (see Figure 3c), the R2 value of the regression models with GPS location errors from 2 to 10 m
(0.85–0.84) were very close to the R2 value with the differential GPS (0.86). When comparing both sites,
the difference between the R2 values of the regression models with simulated GPS location errors and
that of the differential GPS were smaller for Kiuic than for FCP.

The cross validations showed a similar pattern to the fitted regression models with R2 values
decreasing as GPS location error increased. Conversely, mean values of RMSE increased with increasing
GPS location error, both for Kiuic (Figure 4) and for FCP (Figure 5). For example, considering the 80 m2

plot in FCP (see Figure 5a), the mean R2 values decreases from 0.19 to 0.08 and RMSE increased from
174.3 to 191.8 Mg ha−1 as GPS location error increased from 2 to 10 m. When comparing GPS location
errors among sample plot sizes, the R2 and RMSE values showed smaller differences between the
different simulated location errors and the location with the differential GPS (dotted lines in Figures 4
and 5) for the largest plot size (1000 m2), compared to the smallest size (80 m2). This means that
the effect of GPS location error is substantially smaller in larger plots. When comparing both sites,
the differences between R2 and RSME values of the procedures calculated for different GPS location
errors and with the differential GPS were smaller for Kiuic than for FCP, indicating a smaller effect of
location error and more robust models for Kiuic than for FCP.
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The effect of GPS location error is largely driven by the overlap between field plot and LiDAR data.
Thus, as the percent overlap decreases, the mean differences between RMSE of altered positions and
the RMSE calculated with the differential GPS also increase in both sites (Figure 6). Moreover, the effect
of plot size is much smaller when the percent overlap is considered. For example, for a comparable
percent overlap (60 to 66%), the differences of RMSE between simulations and differential GPS locations
are only 2.5 to 6.6 Ton/ha in Kiuic, and 4.4 to 8 Ton/ha in FCP. However, there is still a clear effect
of plot size even when comparing a similar percent overlap, with larger plots showing consistently
smaller errors in both sites. Finally, the FCP site showed larger differences between simulated and
differential GPS location errors compared to Kiuic (Figure 6).

Figure 3. Mean values and 95% confidence interval of goodness of fit statistic (R2) obtained from
regression models in plots with altered positions (2, 4, 6, 8, 10 m) generated with a Monte Carlo
simulation (500 repetitions) for different plot sizes (80, 400 and 1000 m2) in both Kiuic (a–c) and FCP
(d–f) sites. Dashed horizontal lines are the R2 values estimated with the differential GPS.

Figure 4. Mean values and 95% confidence interval of R2 (a–c) and RMSE (d–f) obtained from cross
validation data with altered positions (2, 4, 6, 8, 10 m) generated with a Monte Carlo simulation
(500 repetitions) for different plot sizes (80, 400 and 1000 m2) in Kiuic. Dashed horizontal lines are the
R2 and RMSE values estimated with the differential GPS.
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Figure 5. Mean values and 95% confidence interval of R2 (a–c) and RMSE (d–f) obtained from cross
validation data with altered positions (2, 4, 6, 8, 10 m) generated with a Monte Carlo simulation
(500 repetitions) for different plot sizes (80, 400 and 1000 m2) in FCP. Dashed horizontal lines are the R2

and RMSE values estimated with the differential GPS.

Figure 6. Mean values and 95% confidence intervals of differences between RMSE of altered simulated
positions (2, 4, 6, 8, 10 m) and RMSE values estimated with differential GPS against percent overlap
between field plot and LiDAR data, for each plot size: 80 m2 (a), 400 m2 (b) and 1000 m2 (c) in both
sites (Kiuic and FCP). The negative overlap values indicate the percent distance (d) between LiDAR
and field data relative to plot radius (r) when there is no overlap (d > r)—see Methods.

4. Discussion

Our results clearly show that sample plot size strongly influences the precision of AGB estimations
from LiDAR data as well as the effect of plot location error, and that the precision of estimations and
the effects of plot size and plot location error vary with tropical dry forest type. In agreement with
our first prediction, the models for estimating AGB and the cross validation results both indicate that
the accuracy of AGB estimates obtained from LiDAR increased with sample plot size (from 80 m2

to 1000 m2) in both types tropical dry forest investigated. The validation results showed an increase
in the R2 values from 0.33 to 0.75 in the semi-deciduous forest (Kiuic) and from 0.23 to 0.67 in the
semi-evergreen forest (FCP), as well as a concomitant decrease in the RMSE values from 103.26 to
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27.98 Mg ha−1 in Kiuic and from 167.85 to 34.47 Mg ha−1 in FCP as a plot size increased from 80 m2

to 1000 m2. These findings concur with previous studies in both temperate [20,21,38] and tropical
forests [39,40] highlighting the importance of selecting an appropriate plot size for forest inventories
used for estimating forest biomass. Studies in tropical dry forests in Malawi using photogrammetric
data showed the same trend of increasing accuracy with increasing sample plot size [41].

The effect of sample plot size on the accuracy of AGB estimates from LiDAR data can be attributed
to three main factors. First, relatively large areas must be sampled to accurately capture the patchy
spatial distribution of small- and especially large-sized trees. Small plots often fail to capture the
spatial heterogeneity of tree distribution, resulting in either over estimation—when a plot falls in
an area containing a few large tress and/or large clumps of small trees—or underestimations —when
the plot falls in an area lacking both large trees and large clumps of small trees [22]. Second, a larger
sampled area samples a greater variation in population and community attributes (such as AGB),
thereby providing a more accurate representation of the mean values of such attributes, hence more
accurate estimates, compared to a smaller sampled area. Third, the perimeter-to-area ratio decreases
with plot size, thereby reducing edge effects on AGB estimations from LiDAR. These effects result
from a mismatch between field measurements of AGB, which are based on tree stems that fall within
the plot area, and LiDAR metrics, which encompass all woody and foliar material within the plot
area. Thus, the cloud of LiDAR points generally includes parts of crowns of trees whose stems fall
outside the limits of the plot (and are therefore not included in field-based measures of AGB), and also
excludes parts of the crowns of trees that are outside the plot area, although the stems are inside (and
are therefore included in field-based measures of AGB). Since a circle is the geometric 2-D figure with
the lowest perimeter-to-area ratio [39], the use of large circular plots, as in this study, minimizes edge
effects [42], thereby improving the accuracy of AGB estimates from the LiDAR data.

Interestingly, although the accuracy of AGB estimates increased with increasing plot size,
the marginal increase in accuracy declined as plot area increased. Thus, the R2 values of cross
validations increased by 0.25 (a 76% increase) from 80 m2 (0.33) to 400 m2 (0.58) but only by 0.17 (a 29%
increase) from 400 m2 to 1000 m2 (0.75) in Kiuic, and by 0.28 (a 120% increase) from 80 m2 (0.23) to
400 m2 (0.51) but only by 0.16 (a 31% increase) from 400 m2 to 1000 m2 (0.67) in FCP. These results
are relevant because, as plot sizes increases, the cost of field sampling also increases [41]. Therefore,
the selection of an optimal plot size for AGB estimation from LiDAR data should take into account
a trade-off between estimation accuracy and plot establishment cost. Based on simulations using only
LiDAR data, Frazer et al. [21] found an asymptotic non-linear relationship of the accuracy of AGB
estimations with sample plot size and negligible increases in estimation accuracy for plots larger than
1257 m2. In our study, LiDAR estimations were based on field measurements of AGB for three sample
plot sizes, and we found R2 values for the largest plot area that are comparable to those of Frazer et
al. [21] and Mauya et al. [39], suggesting that it may not be necessary to increase the plot area much
beyond 1000 m2, since this area provides reliable estimates of AGB, especially for the semi-deciduous
tropical dry forest.

Another important finding of this study was that AGB estimations from LiDAR data are affected
by GPS location errors, and that the effect of these errors decreases with increasing sample plot size
and increasing overlap area between field and LiDAR data, supporting our second prediction. The R2

values consistently decreased as the location error increased for all three plot sizes in both forest types
(Figure 3). Conversely, across sample plot sizes and in both forest types, the RMSE values of the
cross validations increased as GPS location errors also increased (Figures 4 and 5). Similar results
have been reported by Zhang et al. [43] using Landsat TM data and by Frazer et al. [21] using LiDAR
data. However, large plots were less affected by co-registration error compared to small plots. This
is partly because an increase in plot size allows more overlap between ground plot and LiDAR data
(see values of X axes in Figure 6), thereby reducing the potential errors associated with inaccurate
GPS locations [21,44]. This is another reason why selecting the appropriate plot size for forest field
inventories is of paramount importance to accurately estimate forest biomass from remote sensing data.
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Although there are alternative approaches trying to link field-surveyed tree locations with positions
of trees identified by LiDAR and using an automatic procedure in order to reduce co-registration
errors [23,45,46], the use of large plots has the advantage of capturing an adequate amount of structural
variability in the field [22], reducing edge effects and increasing overlap area [41].

Finally, we found that the effects of sample plot size and GPS location error on estimations of AGB
from LiDAR data varied between the two main types of tropical dry forest in the Yucatan Peninsula.
In agreement with our third prediction, the accuracy of AGB estimates from LiDAR was higher,
whereas the effects of sample plot size and plot location errors were smaller in Kiuic (semi-deciduous
forest) compared to FCP (semi-evergreen forest). The smaller effect of plot size in Kiuic can be gauged
from a lower percent increase in the accuracy of AGB estimates from the 80 m2 plot size to the 1000 m2

size in Kiuic (127%), compared to FCP (191%). The effect of plot location error showed a similar
pattern, with smaller reductions in the mean R2 values and increases in RMSE values, as well as
smaller differences in RMSE between simulated and differential GPS positions in Kiuic, compared to
FCP (Figures 4–6). Considering that we used the same LiDAR sensor and flight conditions in both
sites, and that we applied local allometric equations for each site, the differences in model performance
between forest types are likely attributable mostly to differences in vegetation density and forest
structure complexity. The semi-deciduous tropical dry forest of Kiuic has a less complex vegetation
structure compared with that of FCP, a semi-evergreen tropical dry forest [26]. As the complexity
of vegetation structure increases, the probability that laser pulses penetrate the canopy decreases.
Therefore, the point density below the canopy may be reduced, which may affect the values of LiDAR
metrics [47], thereby reducing the accuracy of AGB estimations. In a meta-analysis, Zolkos et al. [23]
found significant differences in AGB estimations from remote sensing data among different vegetation
types. Moreover, the relationships between AGB field measurements and LiDAR data are also reported
to vary with disturbance and along forest succession [20,48]. These combined results indicate that
different vegetation types should be considered separately and that disturbance and forest successional
age should be taken into account to accurately estimate and map forest AGB from LiDAR and other
remote sensors.

5. Conclusions

In this study we evaluated the impacts of sample plot size and plot location errors on the accuracy
of AGB estimations predicted from LiDAR data for two different tropical dry forests. Our results
show that the accuracy of AGB estimations from LiDAR increases as plot size increases; decreases
with increasing simulated plot location error, and that the effect of location error decreases as plot size
increases. These results highlight the importance of sample plot size for AGB estimations from forest
inventories using LiDAR and that plot size has a positive influence on the accuracy of AGB estimates.
However, the selection of an optimal plot size should consider a trade-off between minimizing
estimation errors and minimizing plot establishment costs. Our results suggest that, for the seasonally
dry tropical forests studied, a plot size of 1000 m2 can provide accurate estimates of AGB that are
robust to plot location errors of up to 10 m. Finally, the accuracy of AGB estimation from LiDAR
data was higher and the effects of sample plot size and plot location errors were smaller in the
structurally less complex semi-deciduous tropical dry forest of Kiuic, compared to the more complex
semi-evergreen forest of FCP. Therefore, different vegetation types should be considered separately to
accurately estimate and map forest AGB from LiDAR and other remote sensors at the landscape and
regional levels.
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