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Abstract: Utilizing reanalysis and high sensitivity W-band radar observations from CloudSat, this
study assesses simulated high-latitude (55–82.5◦) precipitation and its future changes under the
RCP8.5 global warming scenario. A subset of models was selected based on the smallest discrepancy
relative to CloudSat and ERA-I reanalysis using a combined ranking for bias and spatial root mean
square error (RMSE). After accounting for uncertainties introduced by internal variability due to
CloudSat’s limited four year day-night observation period, RMSE provides greater discrimination
between the models than a typical mean state bias criterion. Over 1976–2005 to 2071–2100, colder
months experience larger fractional modelled precipitation increases than warmer months, and
the observation-constrained models generally report a larger response than the full ensemble.
For everywhere except the Southern Hemisphere (SH55, for 55–82.5◦S) ocean, the selected models
show greater warming than the model ensemble while their hydrological sensitivity (fractional
precipitation change with temperature) is indistinguishable from the full ensemble relationship.
This indicates that local thermodynamic effects explain much of the net high-latitude precipitation
change. For the SH ocean, the models that perform best in the present climate show near-median
warming but greater precipitation increase, implying a detectable contribution from processes other
than local thermodynamic changes. A Taylor diagram analysis of the full CMIP5 ensemble finds
that the Northern Hemisphere (NH55) and SH55 land areas follow a “wet get wetter” paradigm.
The SH55 land areas show stable spatial correlations between the simulated present and future
climate, indicative of small changes in the spatial pattern, but this is not true of NH55 land. This
shows changes in the spatial pattern of precipitation changes through time as well as the differences
in precipitation between wet and dry regions.
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1. Introduction

Warming in high latitudes is faster than in lower latitudes partly due to meridional heat transport
and positive snow/ice-albedo feedback [1,2]. In the Northern Hemisphere, rapid reductions in snow
cover, sea-ice extent [3], and thawing permafrost [4] have been observed and an intensification of
the hydrological cycle is expected [5]. Warming has also increased sea level through terrestrial ice
and glacier loss, but this can be locally mitigated by an increase in snowfall in regions that remain
below freezing even under warming [6,7], meaning that understanding high-latitude precipitation is
important for calculations of future global-scale risks.
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Climate models are key to understanding future precipitation changes but produce a wide
range of values, especially on regional scales [8]. Meanwhile, precipitation observations show large
spread, especially in high latitudes (e.g., [9]), which is related to limitations in sensors, retrieval
techniques, poor understanding of precipitation microphysics, unknown surface emissivity (i.e., over
snow and ice), and difficulties in distinguishing between light rain and cloud [10,11]. In recent years,
advanced sensors such as CloudSat (Stephens et al., 2008) have improved our quantification of the
amount and distribution of high-latitude precipitation. CloudSat has high sensitivity to detect light
rainfall and snowfall, two major types of precipitation in high latitudes. Behrangi et al. [12] performed
a comparative analysis between CloudSat total precipitation estimates and other products for the
regions 55–82.5◦S/N (henceforth “SH55” and “NH55”, the polar limit is based on the CloudSat orbit
on a 2.5◦ × 2.5◦ latitude-longitude grid). The products used were the monthly Global Precipitation
Climatology Project (GPCP) V2.3 [13,14], Global Precipitation Climatology Centre (GPCC) full data
reanalysis V7 [15], National Centers for Environmental Prediction–Department of Energy Reanalysis
2 (NCEP-DOE R2) [16], ERA-interim [17], and Modern Era Retrospective-Analysis for Research and
Applications (MERRA) [18,19]. Mean precipitation and spatial statistics showed that both ERA-I
and GPCP generally agreed well with CloudSat, although CloudSat does not have a formal rainfall
product over land and so it was not considered robust over NH55 land. One area of disagreement
was winter precipitation over northern Eurasia, where GPCP was a high outlier relative to the other
non-CloudSat products, and where independent GRACE data did not show a mass increase consistent
with GPCP accumulations.

Here our objective is to use the updated understanding of precipitation over SH55 and NH55
land and ocean from Behrangi et al. [12] to assess model performance and determine how current
understanding of the amount and spatial distribution of high-latitude precipitation can be used to
add insights onto projected future changes in precipitation under global warming. Other studies have
assessed how Coupled Model Intercomparison Project, phase 5 (CMIP5) models simulate precipitation
(e.g., [20–22]), but here we specifically consider higher latitudes.

One approach to potentially narrow ranges in climate projections is to sub-select models based
on how well they simulate properties or processes in the current climate. One example of this
approach is that of “emergent constraints” in research related to climate or hydrological sensitivity [23].
With regards to precipitation, Palerme et al. [24] compared CloudSat snowfall with that of CMIP5
models over Antarctica and identified that sea-ice extent is a key predictor of simulated Antarctic
snowfall. They also considered a subset of CMIP5 models whose mean Antarctic precipitation was
within ±20% of that from the CloudSat 2C-SNOW product. Here we consider land and ocean in both
hemispheres, rather than just Antarctica, and assess whether the observation-based spatial pattern
of precipitation can be used as an additional constraint to reduce the modelled spread of future
high-latitude changes.

The use of spatial distribution of precipitation in principle means that greater information can
be extracted from a relatively short period, such as the 4 full years for which CloudSat operated both
day and night. Some previous studies (i.e., [25]) have found a dominant role of bias in determining
model skill scores. We find that models disagree more strongly in terms of their simulated spatial
pattern of precipitation than in terms of their means, relative to the uncertainties introduced over a
4-year period by internal variability. This indicates that additional use of spatial information provides
a more robust method for ranking models by performance and determining whether better performing
models indicate different future changes.

2. Dataset

Building on Behrangi et al. [12], we select reference observation datasets as follows: (1) CloudSat
for rain and snowfall over ocean and precipitation over Antarctica where snowfall accounts for 99%
of total precipitation, and (2) ERA-interim (here after ERA-I) over Northern Hemisphere land where
rainfall is a major contributor and a reliable CloudSat retrieval is not available. Note that while GPCP
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showed similar agreement with CloudSat for Antarctic precipitation, several studies suggest that
GPCP over estimates precipitation in parts of Eurasia, which may be related to biases in the correction
for gauge undercatch. We selected ERA-I as it was more consistent compared to CloudSat over both
NH55 ocean and SH55 land and ocean. Data were mapped onto a 2.5◦ × 2.5◦ latitude-longitude grid,
which allows sufficient CloudSat samples to stabilize grid-box-level statistics.

2.1. CloudSat

Due to its high sensitivity to light rain and snowfall, which occur frequently in high
latitudes, CloudSat has been widely used in analysis of high latitude precipitation [26–29]. This
is particularly important due to the sparseness of stations and inherent limitations of other
satellite-based precipitation estimates in high latitudes [26,27]. Three CloudSat products are
used here: 2C-PRECIP-COLUMN R04 (henceforth “2c-column”; [30]), 2C-RAIN-PROFILE R04
(henceforth “2c-rain”) [11], and 2C-SNOW-PROFILE (henceforth “2c-snow”) [31] along with the
CloudSat auxiliary AMSR-E product CS_AMSRE-AUX (henceforth “AMSR-E”). All data are available
at: http://www.cloudsat.cira.colostate.edu. 2c-column provides precipitation occurrence, phase
(rain, snow or mixed), and likelihood (certain, probable, possible). We restrict our analysis to “certain”
for all phases. Non-certain events tend to be of low intensity and in the case of 2c-snow, including
non-certain events only increases mean snowfall rate in the SH55 region by +2.9% and in the NH55
region by +4.5%.

It should be noted that while CloudSat provides a viable source for precipition estimation in
high latitudes, it may also face some limitations. In very intense rain the radar signal is saturated and
the CloudSat algorithm may provide a lower limit on the rain intensity. This may limit the ability
of CloudSat at the higher end of snowfall intensity distribution [32,33]. Signal saturation is often
infrequent in high latitudes (especially poleward of latitude 60◦ [26]), but when it does, coincident
AMSR-E estimates from CS_AMSRE-AUX can be used similar to Behrangi et al. [26]. Addition
of AMSR-E is particularly effective over ocean where AMSR-E precipition retrievals are based on
both emission and scattering signals. Accordingly, the CloudSat estimates used in the present study
employs AMSR-E data when signal saturation is noted. CloudSat may also miss shallow precipitation.
In CloudSat product, near surface precipitation is estimated at about 1.0 km above the ocean surface
(and ~1.5 km over land) to avoid contamination of the reflectivity profile by surface returns [34] that
can result in missing shallow precipitation. This limitation has been shown by comparing CloudSat
estimates with ground stations and radars (e.g., [32]), although as stated by the authors identifying
a reliable ground truth for evaluation of light-snowfall events is difficult. In another study over
Antarctica, it was shown that near surface sublimation of snowfall could be large thus CloudSat
precipitation estimates at about 1.5 km over land might produce larger rates than what is observed on
ground, mitigating part of the missed shallow precipitation by CloudSat [35].

CloudSat products are available from the summer of 2006 but battery problems forced
daylight-only operation since April 2011. As in Behrangi et al. [12], we use the complete years
2007–2010 inclusive.

2.2. ERA-Interim

ERA-interim [16] is a European Center for Medium-Range Weather Forecasts (ECMWF) global
atmospheric reanalysis that uses a 4D-VAR scheme to assimilate observations from radiosondes,
commercial aircraft, and satellites in a numerical model. Precipitation data are not directly incorporated.
This study uses daily precipitation from http://apps.ecmwf.int/datasets/ at 2.5◦ × 2.5◦ spatial
resolution. Previous evaluation has shown good performance of ERA-I in various high-latitude
locations. For example, Medley et al. [36] showed that ERA-I’s mean snow accumulation was within
approximately 1σ of airborne radar observations over Thwaites Glacier in West Antarctica. Other
work suggests that ERA-I likely more realistically depicts precipitation changes in Antarctica [37] and
high-latitude precipitation amount [12] compared to several other reanalyses. The choice ERA-I over
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NH55 land is mainly based on Behrangi et al. [12] which highlighted potential errors such as gauge
undercatch issues in GPCP and GPCC, and the lack of reliable CloudSat rain retrievals over land.
Nevertheless, we recognize that the use of ERA-I is also not ideal as ERA-I and CMIP5 models could
potentially share similar parameterizations.

2.3. CMIP5 Models

We used output from the 36 CMIP5 climate models listed in Table 1. From the middle of the
nineteenth century to 2005, the models are forced by known solar output and atmospheric composition,
this is the “historical” experiment [38]. From 2005 until the end of the 21st century, the models
are forced under a scenario of high emissions called Representative Concentration Pathway 8.5
(RCP8.5, [39]). This choice is not a statement about the likelihood of RCP 8.5 over other potential
pathways, but as it provides a forcing that is both credible and large, giving a larger signal-to-noise
ratio for interpreting forced response. After assessing the general high-latitude performance of the
models we sub-select 5 for each region (SH55 and NH55 land and ocean, plus Greenland) based on
their combined performance in terms of spatial RMSE and mean bias relative to the observation-based
product. SH55 land corresponds to Antarctica, and Greenland is separated from the rest of NH55
land for two main reasons. Firstly, it is a unique measurement challenge with its perennial ice and
snow cover and poor gauge coverage. Secondly, its potential contribution to sea level change is of
great interest and is the focus of an active research community. We therefore separate Greenland to
avoid cross-contamination of region-specific errors with other NH55 land, and to provide more easily
applied information for ice sheet modelers and sea level rise specialists. The selection methodology is
described in Section 3.

Table 1. The list of the models used in this study. For each study region the selected models based
on Bias, RMSE, or both are labeled by “B”, “R”, or “X”, respectively. ANT and GL are for Antarctica
and Greenland.

Models ANT NH
Ocean

SH
Ocean

NH
Land GL Models ANT NH

Ocean
SH

Ocean
NH

Land GL

NorESM1-M X GFDL-ESM2M X

CMCC-CMS X X bcc-csm1-1-m

NorESM1-ME X X CNRM-CM5

MPI-ESM-MR MRI-CGCM3 X X

GISS-E2-R MIROC-ESM

MPI-ESM-LR MIROC-ESM-CHEM

GISS-E2-R-CC MRI-ESM1

GFDL-CM3 HadGEM2-CC X X X X

CSIRO-Mk3-6-0 X GISS-E2-H X

CMCC-CESM HadGEM2-ES

CMCC-CM ACCESS1-0 X

bcc-csm1-1 X ACCESS1-3 X

CCSM4 X X FGOALS-g2

CESM1-CAM5 X X X inmcm4

CESM1-BGC HadGEM2-AO

GFDL-ESM2G MIROC5 X X

CanESM2 X FIO-ESM

GISS-E2-H-CC BNU-ESM

2.4. Other Datasets

The present work also uses precipitation data from GPCP, GPCC, MERRA, and NCEP-DOE R2.
GPCP is a merged product using data from gauges over land and from satellite over both land and
ocean. We used the latest version of the monthly 2.5◦ × 2.5◦ resolution GPCP product (version 2.3; [12]).



Remote Sens. 2018, 10, 1583 5 of 17

GPCC integrates a large pool of station data from various networks, organizations, and additional
resources under support of WMO and produces gridded products at a range of spatial resolutions at
daily and monthly time scales [14]. Here we used GPCC Full Data Reanalysis version 7.0 at 2.5◦ × 2.5◦

resolution. MERRA [18] uses the Goddard Earth Observing System Data Assimilation System version 5
and assimilates observations for the retrospective analyses. Here we used monthly MERRA V5.2 with
0.66◦ longitude × 0.50◦ latitude resolution. The NCEP-DOE R2 product [15] is an improved version of
the NCEP product and includes fixed errors and updated parameterizations of physical processes. We
used monthly data at T62 spatial resolution (~1.875◦ × 1.875◦).

3. Method

Model ensembles such as CMIP5 are often used to characterise potential future climate change,
although as an ensemble of opportunity, CMIP5 cannot be used to calculate formal errors. However,
investigating its simulation of the present day climate may reveal model-observation discrepancies
that indicate poor model performance and it may also be possible to reduce the range of projections
through observation-based constraints that exclude poorly performing models.

Here we investigate the CMIP5 ensemble simulation of high-latitude precipitation based on
the observation-based product selection justified in Behrangi et al. [12], and then consider whether
the present day simulation of high-latitude precipitation is informative regarding future changes
within the ensemble. We do so by selecting models that show the smallest discrepancy relative to
CloudSat and ERA-I in both the total amount and spatial distribution of high-latitude precipitation.
However, the observational data choice, model selection criteria, and the number of models to include
in this subset are subjective. Palerme et al. [24] selected models with a mean discrepancy in mean
Antarctic precipitation of ±20% versus CloudSat 2C-snow. Here we include spatial information by
using centered and area-weighted RMSE as well as bias. All models are ranked separately for each of
SH55 and NH55 land and ocean, and for Greenland, and those within the five lowest sum of rankings
for bias + RMSE are used in our primary analysis. Table 1 lists all 36 models used along with labels for
those which were within the top 5 rankings for bias, RMSE or bias + RMSE. In many cases a model that
is selected based on bias is also picked in the RMSE ranking, but this is not always the case. We present
results for both the full ensemble and our 5-member subset, and to address potential sensitivities of
our method we also show some results when selecting on bias alone.

While CloudSat provides advanced precipitation data to evaluate the models, only 2007–2010
provide full day-night coverage. For all other datasets we use 1986–2005 which raises questions about
the stability and reliability of our rankings. We address this by using GPCP as a test of variability
introduced by sub-selecting smaller time periods by comparing 4-year statistics with the values inferred
over 1990–2010. This comparison includes the CloudSat period and is of the same length as the other
periods used. A further advantage of the later selection is to avoid discontinuities early in the GPCP
record, where our analysis shows a larger disagreement in spatial pattern between pre-1990 and later
years. These larger changes are more likely to be due to discontinuities introduced by changes in data
sources rather than real changes in precipitation distribution.

We calculate running 4-year means and RMSEs relative to the 1990–2010 mean pattern for each
region and the time series of these statistics are shown in Figure 1. These represent an estimate of the
variance introduced due to selecting a four year period compared with the 21-year periods used in our
other comparisons.

The standard deviation of the 4-year mean precipitation values provides an estimate of uncertainty
in the bias due to the limit of a 4-year CloudSat period whereas the mean value of the RMSE is an
estimate of the uncertainty in the RMSE statistic. The variation in the mean precipitation over the oceans
and Greenland is similar to the threshold bias used for selecting the top 5 models, indicating that this
short time period does not provide a particularly useful constraint on the CMIP5 models. However, the
mean RMSE statistic is consistently smaller than that which occurs when comparing CMIP5 simulations
with CloudSat. For example, the mean RMSE over SH55 oceans is 0.08 mm day−1, compared with
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CMIP5 simulations which range from 0.41 to 0.61 mm day−1. Meanwhile, over NH55 oceans the
4-year CloudSat RMSE is 0.18 mm day−1 while the CMIP5 values range from 0.66–0.93 mm day−1.
Our use of spatial information through the RMSE therefore allows more consistent discrimination
between CMIP5 models despite the short time period of the available CloudSat record. Our use of the
additional bias criterion simply ensures that the total precipitation is within a realistic range.Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 17 
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Figure 1. (a) mean 4-year average precipitation for each labelled region in GPCP and (b) mean 4-year
RMSE compared with the 1990–2015 average in GPCP. The points are plotted at the center of each
4-year period.

4. Results

4.1. Mean Precipitation Rate in Observations and Models

Figure 2 shows the time series of total regional precipitation with the CMIP5 5–95% ensemble
range in blue and median as bold blue line for years 1850–2100. Observations and reanalyses (GPCP,
CloudSat, MERRA, NCEP, ERA-I) values for 2007–2010 (and based on [12]) are shown as the vertical
line with the reference observational product (CloudSat over oceans and Antarctica, and ERA-I
over NH land) as a black circle. While in NH the models’ median fall in the range determined by
observations and reanalyses, in SH the models’ median exceed this range. Specifically, CloudSat’s
Antarctic precipitation estimate is below the 5th percentile of CMIP5, as reported in Palerme et al. [24].
While Behrangi et al. [12] showed agreement between CloudSat and GPCP over Antarctica, CloudSat
likely underestimates total snowfall, particularly in the Antarctic interior due to ground clutter and
missing shallow precipitation [31].
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Figure 2. Time series of total regional precipitation with CMIP5 5–95% ensemble range in blue and
median as bold blue line for years 1850–2100. Observations and reanalyses (GPCP, CloudSat, MERRA,
NCEP, ERA-I) values for 2007–2010 (and based on Behrangi et al., 2016) are shown as the vertical
line with the reference observational product (CloudSat over oceans and Antarctica, and ERA-I over
NH land) as a black circle.

Figure 3 compares normalized density plots of linear trends in precipitation for models, GPCP,
ERA-I, and GPCC. The model ensemble 5–95% range is shown in pink and the median as a red line for
1976–2005. GPCP and GPCC plots are constructed from 1980 to 2009 and are shown in blue and green
lines, respectively. GPCC is only available for NH land. The dashed magenta lines show the same
properties for the five selected models listed in Table 1. The highest model-observation agreement
occurs over NH land, where observation products benefit from the availability of ground stations.
The trends are least consistent over SH ocean, where GPCP often shows larger positive slopes in winter
and spring, and larger negative slopes in summer and fall. ERA-I trends are generally more consistent
with models than GPCP, especially over ocean.

4.2. Future Precipitation Changes

Figure 4 shows maps of annual mean precipitation for 2007–2010 from CloudSat (Figure 4a,b)
and ERA-I (Figure 4c,d). It also shows maps of all-model annual mean precipitation for 1976–2005
(Figure 4e,f) and percent precipitation change (by comparing 1971–2100 with 1976–2005) for all
(Figure 4g,h) and the selected subset (Figure 4i,j) of models in NH and SH. Figure 4 suggests that while
the overall mean precipitation pattern is comparable among the studies products, ERA-I clearly shows
lower mean precipitation rate than other products over the Southern Oceans. It can be clearly seen that
the selected models suggest a generally larger percentage increase in precipitation than full ensemble
average, especially over the Arctic Ocean and Eastern Antarctic ice sheet. The readers are referred
to our earlier publication [12] for more detailed comparison between CloudSat precipitation maps
and other satellite and reanalysis products. In Figure 5, the fractional regional precipitation changes
are plotted separately for each calendar month. The median and 20–80% ensemble range are shown
in blue (for all models) and red (for the subset). Also displayed is the median of the same value for
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the 5 models selected based on bias alone. Figure 5 suggests that modelled colder months experience
larger fractional precipitation increases than warmer months, and that the NH regions see greater
increases than those in the SH. The selected models generally report larger fractional increase than
the full ensemble, with a larger response than that seen when selecting only based on bias. This is
more distinct over the Antarctic and SH ocean where the range is above the full ensemble median
across almost all months. Meanwhile, this difference is minimal over Greenland compared to the
other regions.
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Figure 3. Normalized density plot of precipitation slopes calculated in each grid using 30 years of
model (1976–2005), GPCP (1980–2009), GPCC (1980–2009), and ERA-I (1980–2009) data. Models 5–95%
ensemble range is shown in pink shades and median as red line. Density plots are shown for four
geographical regions. NH land includes land areas north of 55◦N and Greenland.

The observed larger rate of precipitation increase over land in cold months is consistent with
long-term analysis of station data in NH (e.g., [40]) and with the argument that Clausius–Clapeyron
relationship determines the increase of large-scale precipitation in winter, while the availability of
moisture is the dominant limiting factor in summer [41,42]. However, the largest fractional increase
in precipitation also occurs in the cooler months over oceans where moisture supply is not a strong
constraint. This implies stronger warming during winter, such as that occurred in past reanalysis
for oceans over 20–90◦N [43]. Stronger winter warming, relative to summer warming, is also found
across the CMIP5 ensemble for high northern latitudes [2]. This is why a common method for
assessing precipitation changes is to consider the percentage change per degree of warming [44], and
to distinguish between thermodynamic and dynamic contributions to this change [45].

Our combined RMSE + bias method selects a subset that generally shows more warming and
faster winter precipitation increase than that based on bias alone. From this we can conclude that
those models which better represent the current spatial pattern of precipitation result in greater future
warming. The field of emergent constraints, in which observable properties of the current climate state
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are used to infer future changes, may provide insights on this in future. However, we do not speculate
here on why because recent research has shown that identifying robust constraints requires intensive
investigation and physical backing [46].Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 17 
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Figure 4. Maps of annual mean precipitation for 2007–2010 from CloudSat (a,b) and ERA-I (c,d). It also
shows maps of all-model annual mean precipitation for 1976–2005 (e,f) and percent precipitation
change (by comparing 1971–2100 with 1976–2005) for all-model (g,h) and the selected subset (i,j) of
models in NH and SH. The areas near the North and South poles that are not covered by CloudSat
maps are shown in white color.

4.3. Mean Precipitation vs. Surface Temperature Change

The hydrological sensitivity can be defined by the increase in global mean precipitation for a
given change in global mean temperature, and this value can be constrained by the global atmospheric
energy budget [23]. The local response of this (∆P/P)/∆T can also be estimated, but is not subject
to such constraints due to moisture divergence at the boundaries of the region. However, Figure 6
shows that there tend to be consistent responses across the CMIP5 ensemble for each region. In each
case, the subset of selected models is shown by filled circles with the others as empty circles. The full
ensemble fits are shown for each region, and for the Antarctic, SH ocean, NH land, NH Ocean, and
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Greenland are 8.8 ± 1.20, 1.37 ± 1.34, 3.04 ± 1.20, 2.59 ± 0.76, and 7.5 ± 1.46%/◦C, respectively. Except
for the SH ocean, these are larger than the projected global increase of 2%/◦C [47]. This is possible
due to moisture transport from other regions and the greater net cooling capacity of the atmosphere at
these latitudes relative to the global mean. For example, these high latitudes do not experience super
greenhouse effects [48,49] that prevent cooling to space as the local surface warms.
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Figure 5. The ratio of future mean precipitation (2071–2100) over the present climate is plotted
separately for each month and each region. The median and 20–80% ensemble range of models are
shown using line and shaded areas in blue (for all models) and red (for the subset of selected models)
in each region.

The largest calculated slope of 8.8 ± 1.20%/◦C is over the Antarctic which is higher than the
3–7.4%/◦C that has been reported for regional and global climate models (e.g., [24,50]). From the
statistics in Table 2, the strongest correlation between ∆P/P and ∆T occurs in the Antarctic
(full ensemble r = 0.93) and the weakest in the SH Ocean (full ensemble r = 0.34). This implies a major
role for the Clausius–Clapeyron limit on moisture carrying capacity over Antarctica, but limitations
based on either moisture availability or changes in horizontal moisture transport through the region
boundaries for the SH oceans. The moisture-availability argument would only apply over sea-ice
covered regions.
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It can also be seen that the subset of the models generally show larger surface temperature and
fractional precipitation change than that full ensemble average, indicating that the larger precipitation
changes shown in Figure 6 are largely a result of local thermodynamic effects.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 17 
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Figure 6. Regional-mean precipitation change (∆P/P) with respect to surface temperature change (∆T)
for all-models. The subset of selected models in each region is shown by filled-circles, so it can be
distinguished from the rest of the models shown by empty circles. The changes are based on comparing
the current (1976–2005) and future (1971–2100) climates.

Table 2. Statistics for surface temperature and percent relative precipitation change for all and subset
models. The table is constructed using the same data plotted in Figure 6.

∆T (◦C) ∆P/P (%) Correlation

Models min max mean min max mean Coefficient

Antarctic
All 1.43 5.12 3.79 2.63 37.59 23.26 0.93

subset 3.68 4.53 4.12 17.46 33.12 26.95 0.89

SH ocean
All 0.27 5.44 2.75 5.68 24.50 15.88 0.34

subset 2.75 3.06 2.88 12.06 24.07 18.75 0.33

NH land
All 3.21 7.86 5.35 5.44 45.71 27.54 0.87

subset 5.56 6.92 6.22 26.52 42.68 35.12 0.76

NH
ocean

All 3.97 9.58 6.44 11.32 46.29 23.98 0.66
subset 5.09 9.06 7.34 22.18 30.50 27.12 −0.23

Greenland
All 3.96 10.87 7.12 5.64 32.48 20.64 0.77

subset 6.48 10.15 8.31 21.29 27.97 24.91 0.53

Figure 7 shows maps of mean near surface temperature for 1976–2005 in SH and NH (Figure 7a,b)
and its change through 2071–2100 (Figure 7c,d) for the full ensemble mean. The changes are similar to
those shown in Figure 4 for relative precipitation change. While temperature tends to increase almost
everywhere, the rate of change has strong regional dependence. The selected subset (Figure 7e,f) has
a similar spatial pattern but often with larger warming, especially over the Arctic Ocean and East
Antarctic ice sheet where the greatest fractional changes in precipitation occurred. The NH generally
experiences more warming, especially over the historically ice-covered ocean where the increase in
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mean surface temperature exceeds 10 ◦C (Figure 7d) in the full ensemble mean or 12 ◦C (Figure 7f) in
the selected model mean.

This fast warming relative to the global mean is consistent with polar amplification arguments [2],
with Southern Ocean warming being delayed by factors such as local upwelling of cold ocean waters
that reduce warming rates for period of a century or more (e.g., [51,52]).Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 17 
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Figure 7. Similar to Figure 4e–j, but for near surface temperature change (◦C).

4.4. Changes in Spatial Variability

Figure 8 displays Taylor diagrams with present day in blue linked to future values in magenta by
red lines. Arcs of constant RMSE are also displayed, with greater distance from the starred reference
dataset indicating greater RMSE. Relative to the bottom left corner, any change that extends the radius
represents an increase in the spatial variability of precipitation, and any rotation indicates a change
in the spatial pattern. Clockwise means that the future simulated pattern is closer to the present day
observed pattern, and counterclockwise the opposite.

Inspection of this figure results in the following interpretations:

(1) Over high latitude oceans, only one model shows present or future spatial variability that is as
great as that reported by CloudSat, and that one only over the NH55 ocean region.

(2) The greatest inter-model difference in spatial pattern occurs over high latitude land, since they
do not fall on a straight radial line,

(3) Both hemispheres’ high latitude land show a general increase in spatial variability. The SH55 land
(mainly Antarctica) changes extend radially, indicating little change in the spatial pattern, whereas
NH55 land generally show a counterclockwise shift and therefore reduced spatial correlation
between present and future.

Point (1) suggests limitations in the simulation of ocean regions of intense precipitation, both in the
current and future. Point (2) indicates that the shape and location of the spatial patterns is informative
over land. Finally, point (3), with the increased radial extent from present-to-future indicates that these
regions generally experience “wet get wetter”, although the angular shift over NH55 land indicates
that the location of the wettest and driest regions shifts.

In physical terms, Antarctic precipitation growth mostly occurs on the coast, particularly around
the Peninsula and West Antarctic. This occurs in models and in paleoclimate records from historical
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warmings [50]. The interior is so cold and has such a small current precipitation rate that the faster
percentage increase is overwhelmed in terms of mm day−1. The increased spatial standard deviation
means that the spread between the wettest and driest regions increases, and with all grid cells in
Figure 4 showing increased precipitation this must mean that the wettest areas are getting wetter at a
faster rate in absolute terms.

This occurs to some extent over NH land and ocean, but the counterclockwise shift in their future
points indicates changes to the pattern of precipitation. This can be inferred from inspection of Figure 4:
firstly, the NH ocean south of Greenland shows heavy present day precipitation, but near-zero future
changes, for which a number of causes have been proposed [53]. Meanwhile the Bering Sea shows
moderate present day precipitation and a substantial future percentage increase. This represents a
change in pattern with a decrease in the weighting given to the Atlantic sector. Similar features can
be seen over NH land in Figure 4, with major contributions to the correlation between present and
future occurring wherever regions of heavy precipitation show small increases, or regions of moderate
precipitation show moderate to large fractional increases. Large fractional increases over very dry
regions tend to be insufficient to greatly change the spatial correlation. Increases over Finland and
the grid cells north of coastal Alaska therefore likely contribute to this change. Further inspection of
Figure 4 shows no obvious differences in the spatial patterns, and similar is true for the low-RMSE
models in Figure 8. Their future correlation coefficients are not distinguishably different from those of
the non-selected models, suggesting that they show similar future patterns of precipitation but with
greater mean increase.
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Figure 8. Taylor Diagrams of present and future precipitation for each of the studied high-latitude
regions. The reference is shown as a star on the bottom axis in each case, and is CloudSat for SH55
land, SH55 ocean and NH55 ocean. For the others it is ECMWF ERA-I. CMIP5 1976–2005 averages are
in blue and 2070–2099 in magenta, with red lines linking each simulation’s change.

5. Summary and Concluding Remarks

Behrangi et al. [12] provided a quantitative observation-based update of precipitation amount
and distribution poleward of 55◦ in the Northern and Southern hemispheres (NH55 and SH55) using
various data sets including CloudSat over the oceans and Antarctica to take advantage of its high
sensitivity W-band radar. Here, this dataset was used to study simulated high-latitude precipitation and
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assess future changes in precipitation under the RCP8.5 scenario of large global warming. For NH55
land areas, CloudSat’s products are inappropriate since rain is frequent there and the rain retrieval
relies on path-integrated attenuation, which is currently only determined accurately over ocean
surfaces. This forced the use of ECMWF Era Interim reanalysis output over NH55 land, although
CloudSat was used over Antarctica since its snowfall product does not use path-integrated attenuation.

We selected a subset of models that we identified as better performing based on the smallest
discrepancy relative to CloudSat and ERA-I in terms of both the total amount and spatial distribution
of high-latitude precipitation. Models within the five lowest sum of rankings for bias + RMSE relative
to the reference for a given region are used in our primary analysis.

The use of minimized RMSE is particularly useful as the CloudSat record is only four years, and
internal variability can lead to substantial variation between periods of just four years length, meaning
that it can only provide a relatively loose constraint. However, CMIP5 models show greater variation
in their calculated regional RMSE than they do in total precipitation. The longer GPCP record was split
into non-overlapping 4-year periods to estimate the effect of internal variability on this property, and
this was found to be smaller than the typical inter-model differences. This finding suggests that the
spatial RMSE allows greater discrimination of models based on the limited time series of available data
bias. Meanwhile, we continue to use the additional bias criterion to ensure that the total precipitation
is also within a realistic range.

We then consider changes in mean precipitation from 1976–2005 to 2071–2100 for the full CMIP5
ensemble and for a subset of 5 selected based on our bias + RMSE rankings. Any such sub-selection
of models can be arbitrary, so we clarify that our sub selection of 5 is illustrative only, and the key
result is the extra discriminatory power of using spatial RMSE. When selecting models based on bias
alone, the detected changes in precipitation under warming are somewhat smaller than when also
considering the spatial pattern. This suggests that analysis including spatial patterns may result in
somewhat different constraints than are provided by bias alone.

We showed that while colder months experience larger fractional modelled precipitation increases
than warmer months, the selected models generally report larger fractional increase than the full
ensemble. For everywhere except the SH ocean, the selected models show greater warming than the
model ensemble and tend to fall close to the ensemble local hydrological sensitivity trend, indicating
that local thermodynamic effects explain much of the change. For the SH ocean, the models that
perform best show temperature changes close to the median but precipitation changes greater than
those expected from the full ensemble hydrological relationship, implying that a process other than
local thermodynamic changes is the main cause. Based on previous findings [24], this may be related
to the sea ice coverage and its change, through the way in which sea ice modifies moisture availability.

A Taylor diagram analysis suggests that across the full CMIP5 ensemble, the NH and SH land
areas show increased standard deviation of their spatial precipitation patterns, suggesting a “wet get
wetter” paradigm for land poleward of 55◦. The SH55 land areas show stable correlations, indicative
of small changes in the spatial pattern, but this is not true of NH55 land. This is typical of cases where
the spatial pattern of precipitation changes through time as well as the differences in precipitation
between wet and dry regions.

Here we presented some potentials and challenges for using CloudSat precipitation estimates to
assess the climate models in high latitudes. We note that while CloudSat is more capable than other
existing spaceborne sensors in detecting the common type of precipitation in high latitudes (i.e., light
rain, drizzle, and snowfall), it may also face various uncertainties, among which is an uncertainty
in separating precipition phase. This is partly due to lack of dual-frequency radar as well as the
temperature-based approach that utilizes reanalysis data. While future instruments may reduce such
uncertainty sources, the use of wet-bulb temperature [54,55] instead of air temperature might be helpful
in the short term. Furthermore, the short period of CloudSat data limits our comprehensive assessment,
the near future launch and operation of the Earth, Clouds, Aerosols, and Radiation Explorer mission
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(EarthCARE) [56] will provide capabilities comparable to CloudSat that helps produce longer data
record and enhance our climate model assessment.
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