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Abstract: Forest inventories are constrained by resource-intensive fieldwork, while unmanned aerial
systems (UASs) offer rapid, reliable, and replicable data collection and processing. This research
leverages advancements in photogrammetry and market sensors and platforms to incorporate
a UAS-based approach into existing forestry monitoring schemes. Digital imagery from a UAS
was collected, photogrammetrically processed, and compared to in situ and aerial laser scanning
(ALS)-derived plot tree counts and heights on a subsample of national forest plots in Oregon. UAS-
and ALS-estimated tree counts agreed with each other (r2 = 0.96) and with field data (ALS r2 = 0.93,
UAS r2 = 0.84). UAS photogrammetry also reasonably approximated mean plot tree height achieved
by the field inventory (r2 = 0.82, RMSE = 2.92 m) and by ALS (r2 = 0.97, RMSE = 1.04 m). The use
of both nadir-oriented and oblique UAS imagery as well as the availability of ALS-derived terrain
descriptions likely sustain a robust performance of our approach across classes of canopy cover
and tree height. It is possible to draw similar conclusions from any of the methods, suggesting that
the efficient and responsive UAS method can enhance field measurement and ALS in longitudinal
inventories. Additionally, advancing UAS technology and photogrammetry allows diverse users
access to forest data and integrates updated methodologies with traditional forest monitoring.

Keywords: remote sensing; point cloud; unmanned aerial system (UAS); structure from motion
(SfM); forest 3D models; oblique imagery

1. Introduction

Forest inventories are an integral component of natural resource monitoring and management.
They provide the means needed to assess the health, growth, and disturbance regimes of forests and
essential measurements for the estimation of biomass and productivity, both important ecological
and economic indicators [1]. Moreover, they are an expected service of public agencies mandated
to compile forest inventory data at the local, national, and global scales. The United States Forest
Service maintains the database of the Forest Inventory and Analysis (FIA) Program—the largest system
of permanent forest inventory plots in the world—annually with field enumeration [2]. The United
Nations’ Food and Agriculture Organization (FAO), in part dedicated to tracking the state of the world’s
forests, requests Forest Resource Assessments (FRA) from over 150 countries every five years [1].
Forest inventories typically involve in situ measurements at representative samples of dispersed plots.
Frequency and spatial intensity of field surveys are often affected by financial constraints, resulting in
infrequent inventories that often constitute a substantial undertaking and, occasionally, a burden for
resource-strapped organizations. Accurate, timely, and economically acquired data would enhance
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improvements in present methodologies, support innovative monitoring schemes—in the manner
of REDD+ [3,4]—and allow owners and managers of small forest holdings to leverage public data.
Innovative methods to perform high spatial and temporal resolution data collection of forests while
maintaining relevancy to existing data are needed [5].

Remote sensing is regarded as complementary or a potential alternative to ground-based inventories,
offering high-resolution spatial information and temporal scales [6]. Three-dimensional (3D) remote
sensing, in particular, is capable of capturing local, complex forest structure that is comparable to that of
ground measurements and not available through two-dimensional products such as orthophotographs
and satellite imagery [7]. Both active and passive remote sensing technologies including light detection
and ranging (LiDAR) sensors and multiscopic photogrammetry can deliver 3D representations of forest
stands. LiDAR instruments emit short pulses of light and measure the backscattered energy; differences
in pulse return times and precisely recorded platform location and attitude yield 3D representations
of targeted scenes. Airborne laser scanning (ALS) is broadly applied in forest monitoring, but its
use is often limited, owing to steep acquisition and data-processing costs [8]. Conversely, digital
photogrammetry is a technology that offers the capacity to map local forest inventory parameters in an
affordable manner. Structure from motion (SfM) is a popular photogrammetric technique [9]. It derives
three-dimensional scene abstraction, often called 3D reconstruction, in the form of a point cloud based
on a collection of two-dimensional images exhibiting substantial overlap. By capitalizing on object
representation redundancy across overlapping images, SfM accounts for perspective and image distortion
effects and deduces, and once known, improves the accuracy of camera positions, a prerequisite for
generating the scene point cloud. The recent proliferation of SfM-capable software, ranging from open
source to commercial, has facilitated application to image collections [10]. These developments have
made SfM ideally suited to light, inexpensive, yet high-resolution-imagery-capable cameras onboard
recreational-grade unmanned aerial systems (UASs) and rendered it conducive to local forest monitoring
and assessment. In contrast, typical laser scanning for forest inventory purposes is performed using
manned aircraft or large UASs over much larger spatial scales and budgets [11,12].

SfM software advancements have been accompanied by increases in the sophistication
and versatility of UAS hardware configurations, leading to consumer-friendly workflows [13].
Even recreational-grade UASs are now equipped with Global Positioning System (GPS) receivers,
inertial measuring units, and internal positioning software that enable autonomous flight along
predetermined trajectories [14,15]. Extraction of information from reconstructions via prescribed
workflows is becoming more rote [16,17]. Derivatives directly comparable to ALS products include
digital terrain (DTMs), canopy surface (DSMs), and canopy height (CHMs) models, along with
individual tree detection (ITD) and crown delineations.

UASs are compact and easily transported. They can be flown at low above-target heights without
concerns about cloud cover and employ low-impact technology. Small UASs can be deployed
to landscapes ranging from hundreds of square meters to a square kilometer or more for rapid
high-resolution data collection [7]. Unlike ALS acquisitions which typically require months of planning,
a UAS acquisition can be completed within hours from the moment the decision is made or the need
arises. These characteristics make UASs particularly suitable for private, nonindustrial forestland
owners, replicable data collection, and studies of disturbance and growth. They have a wide range
of applications [18], from monitoring deforestation [19] to capturing phenological dynamics in time
series data [20]. The biggest driving forces behind UAS research in this context are the potential for
inexpensive, expediated measurements and attainable quantitative assessments of change.

With the utility of small UAS-based photogrammetry for forest mensuration proven [21–23], focus
is progressively shifting to the accuracy and precision of derived inventory parameters, including
tree density estimates obtained by using ITD and crown delineation. ITD-based estimates of density
explore the informational content of high-resolution imagery, have the same spatial data support
(a single tree) as most national forest inventory protocols [21], tend to be more intuitive, and usually
support and align to tactical management decisions better than estimates obtained using area-based
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methods. Early ITD approaches [24,25] continue to evolve, yielding improvements in performance,
automation, and accessibility. The topic remains an active field of research [26–29].

Individual trees identified using a LiDAR- or UAS-photogrammetry-generated point cloud
and furnished with an estimate of height support efforts to assess growth and competition rates,
biomass levels, and other aspects of forest mensuration. Low cost and ease of deployment renders
UAS-based photogrammetry compatible with the assessment of dynamic phenomena in short time
increments [30]. Using panchromatic imagery from a total of four UAS flights within a period of six
months, researchers succeeded in quantifying seasonal tree growth [31]. Under conducive conditions,
patterns in SfM-predicted tree heights may also highlight limitations of standard or alternative measuring
methods, such as bias in height assessment using field inventory techniques and LiDAR.

This study compares in situ forest inventory measurements to cotemporal, ALS-based
measurements and also to photogrammetry derived equivalents from UAS imagery acquired two
years later at a set of field plots participating in the Forest Service Carbon Monitoring System (CMS).
The asynchronous data sources are evaluated for their potential to create a low-cost retrospective
and cohesive monitoring scheme for forest plots. We are motivated to (i) provide a low-cost,
user-friendly workflow for forest data collection via a small-UAS and consumer photogrammetry
products; (ii) leverage similarities between ALS and digital imagery postprocessing to suggest
small-UAS-derived photogrammetry as a preeminent tool to describe and augment existing forest
inventories; and (iii) demonstrate how consumer UAS remote sensing can be integrated into the legacy
of forest monitoring.

2. Materials and Methods

2.1. Forest Inventory and ALS Data

This study was conducted on plots enrolled in the Carbon Monitoring System (CMS) in Oregon.
With the expressed purpose of developing a sampling design for longitudinal carbon quantification,
the program acquired high-density LiDAR data and in situ measurements at representative plots
in Oregon, Colorado, South Carolina, Maine, Minnesota, New Jersey, and Pennsylvania. Circular
plots were established with a radius of 16.2 m, and an area of 824.5 m2, or approximately one-fifth
acre. Established plots were stratified in classes of canopy cover and tree height using LiDAR-derived
metrics according to the procedure described in [32].

Airborne LiDAR data were acquired in the summer of 2015. Acquisition specifications are shown
in Table 1. The data vendor provided a 0.914 m (3 ft) LiDAR-derived Digital TerrainModel (DTM).
A DSM registered to the DTM was created by assigning to each cell the 90th percentile elevation value
of corresponding above ground returns.

Table 1. 2015 light detection and ranging (LiDAR) acquisition specifications.

Parameter Value

Scanner Reigl 680i
Mirror Rotating

Field of view ±30 degrees
Flying height 730 m (2400 ft) aboveground level

Pulse rate 330,000 Hz
Scan rate 200 Hz

Beam divergence ≤0.5 mrad
Pulse wavelength Near infrared, 1064 nm

Intensity 16-bit
Processing Digitized waveform, up to 7 returns per pulse in the study area

Field data were collected in the fall of 2015 following the FIA protocol [33] that was modified to
accommodate differences in plot footprint. The center of the plot was established with a survey-grade
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Javad Triumpth 1M rover (Javad Corporation, San Jose, CA, USA), reportedly capable of delivering
submeter horizontal location precision under canopy conditions [34]. The project used the NAD83
(2011) projected coordinate system in UTM zone 10N and vertical datum NAVD88 based on the
12A geoid. The field crew tallied all trees within 4.6 m from the plot center but only those with
a diameter-at-breast-height (DBH) greater than or equal to 12.7 cm on the full 16.2-m radius plot.
To leverage a larger plot area, our analyses excluded trees with DBH smaller than 12.7 cm. Tree DBH
was measured with tape at 1.37 m from the ground and tree height with a laser rangefinder.

2.2. UAS-Based Photogrammetry Data

We collected imagery data using a small-UAS in the summer and fall of 2017, approximately two
years after the LiDAR and field data collection campaigns, over 11 CMS plots. The selected plots were
evenly distributed over canopy cover and tree height classes (Table 2) and are representative of the
biome’s population and forest conditions. Figure 1 shows the geographic distribution of the plots.
Dominant species were ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta). All plots
were located on flat areas or modest slopes, under 6 degrees, or about 10 percent.

Table 2. Characteristics of sampled field plots.

Canopy Cover
Class (Percent)

Number of
Plots

Number of Trees on Plot
with DBH >= 12.7 cm

Maximum Tree
Height (m)

Dominant Species
(Number of Plots)

I (10–40%) 4 6–12 15.5–35.7 Ponderosa pine (3);
Lodgepole pine (1)

II (40–70%) 4 9–19 9.4–43.9 Ponderosa pine (2);
Lodgepole pine (2)

III (70–100%) 3 37–73 16.8– 28.3 Ponderosa pine (2);
Lodgepole pine (1)
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The UAS consisted of a 3D Robotics Solo outfitted with a gimbal and a GoPro Hero 4 Silver camera.
The camera recorded a mid-range field of view at 3000 × 2250 pixel resolution and acquired a red,
green, blue (RGB) image every 0.5 s during a cross-grid flight trajectory with 90% front overlap and 90%
side overlap. The camera was nadir-oriented during the first flight pass and at 25 degrees from vertical
during the perpendicular flight line. We chose to include angled views of the plots because oblique
imagery improves variability in viewing geometry and enhances the representation of lower canopy
components [35,36]. To control for edge effects, flight lines were extended by 50%, or an additional
16.2 m. Nominal flying altitude was set to 20 m above the tallest tree, notwithstanding changes in
topography. Pre-deployment flight planning was done in Mission Planner [14] and implemented
autonomously on-site with Tower, a mobile application [15]. Depending on the flying altitude, the
UAS was airborne for 4–6 min and required 190–340 images to cover the scene. The resulting mean
ground sampling distance was approximately 3 cm.

The location and altitude of the UAS during flight recorded by internal GPS and inertial navigation
sensors were transcribed to the images by synchronizing the camera’s internal clock to that of the
UAS and flight logging software and specifying the null differential during processing. To ensure
precise georeferencing of the point clouds generated via photogrammetric processing, we placed at
the center of each plot and at each approximate cardinal direction towards the plot boundary orange
18.9-liter (5-gallon) buckets that served as ground control references or points (GCPs). The coordinates
for each marker center were derived using azimuth from true-north recorded with a compass and
slope distance from the plot center using tape. The slope distance was later converted to horizontal
using the LiDAR-derived DTM as reference. UAS imagery of forested scenes always has weak
positional geometry, in the sense that all objects are viewed from a fairly narrow angular perspective.
The combination of weak geometry and the presence of many inexact and homogenous features with
similar neighbors and background induce distortions in scene scale and orientation [37]. Markers,
each identifiable on a subset of the acquired images, ensured that these distortions were minimal.

A DSM was computed from the overlapping and multiperspective images using the
photogrammetric workflow implemented in Agisoft Photoscan Professional version 1.4.2 [16].
The software generates an initial object 3D structure by identifying unique and invariant features across
congruous images. Using the bundle adjustment algorithm, it establishes camera perspectives and
accounts for the fish-eye lens characteristic of the GoPro [38]. Image alignment was conducted with
“high” accuracy and generic preselection enabled, an option designed to speed up the computational
time of image matching. Key point and tie point limits were set to 60,000 and 4000, respectively.
Geotagged images improved the processing load during alignment by providing initial, approximate
camera locations but were disabled in favor of GCP positions for subsequent processing in order to
ensure precise orientation and scale. Each image was visually assessed and any unobscured GCP was
identified and assigned its respective xyz coordinates, followed by an automatic camera alignment
adjustment. At the end of this processing phase, a correctly oriented and scaled sparse point cloud
of the scene was obtained. From the sparse point cloud and related scene positions, depth maps
representing the distances between features and respective camera location were created for each
image and combined into a comprehensive 3D reconstruction known as the dense point cloud. “Mild”
depth filtering was specified for our scenes, a setting known to permit a limited number of outlier
points yet maintains small, spatially distinguished details into the model. A “high” quality setting was
determined as an acceptable compromise between accuracy and computational time, supported by
recent evidence that it consistently yields optimal results when applied to scenes dominated by trees.
Unlike other settings, the one selected directs Photoscan to operate on the full resolution of the original
images. Conversely, the “highest” quality setting was found prone to serious degradations in point
cloud accuracy and completeness, despite its substantially higher computational cost [10]. The final
point cloud was exported in LAS format.
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2.3. Point Cloud Postprocessing

We processed the LiDAR- and UAS-derived point clouds to extract individual tree measurements
using FUSION LiDAR/LDV [39], which is publicly available software specializing in visualization
and analysis of three-dimensional data. Of the various ways to perform ITD, the one implemented
in FUSION employs a local maxima-based filtering approach applied using a user-specified window
size on derived CHMs [39]. Each point cloud is clipped to the boundary of the area of interest—in
our case, the CMS plot—and is normalized using the ALS-derived DTM before being processed by
the CanopyModel module to generate the CHM. The CanopyModel assigns the aboveground value of
the highest point within the planar area of each grid cell to the grid cell center. If requested by the
user, it smooths the generated surface using a median or a mean filter or both while preserving local
maxima. The resolution specified in the CanopyModel module is a key parameter critical for all ensuing
analyses [40,41]. It could lead to ITD errors of commission if too fine and errors of omission if too
coarse. In this study, we considered progressively coarser resolutions for the plot CHMs ranging from
0.1 to 1.0 by 0.1 m intervals and 1 to 5 by 0.5 m intervals for each of the three cover classes.

Next, we applied FUSION’s CanopyMaxima module. The module uses the CHM generated by
the CanopyModel to identify local maxima using a variable-size window, sometimes referred to as a
circular kernel of dynamic radius. The window size is calculated proportionally to the height of the
CHM at the center of the window (kernel). The diameter D of the kernel centered at a CHM cell of
value h was computed as

D = 0.681

[
−1
P3

ln (
h

0.3048 − 4.5
P2

)

] a2
P4

(1)

where D and h are expressed in meters with coefficient values P2 = 1180, P3 = 6.7, P4 = −0.315, and a2

= 0.82 derived from the Westside Cascades variant of the Forest Vegetation Simulator [42], as revised
in 2017, for mixed pines.

We compared the number of plot trees identified by using progressively coarser CHM cell
resolutions as shown above to those observed during the field visits. The root-mean-square error
(RMSE) was used to quantify the canopy class-specific discrepancy for each CHM parameter setting as

MSE =

√√√√
∑N

i=1

(
xi f − xir

)2

N
(2)

where N is the number of plots in the canopy class, xif is the number of trees observed in the field, and
xir is the number of trees extracted from the canopy height models. The cell resolution yielding the
smallest RMSE was chosen as the optimal setting for the canopy class and was subsequently used
in ITD.

We imposed a 7.73-m height threshold for identified trees to account for the DBH minimum
that trees would have had to meet or exceed to be tallied according to the field protocol. The height
threshold was calculated from a derivation of Equation (1) that relates the estimated height (in meters)
of Westside Cascades variant mixed pines to DBH (in inches).

h = 0.3048
[
e−P3×DBHP4 × P2 + 4.5

]
(3)

We estimated the nominal height of plot trees with DBH of 12.7 cm (5 in) and included all trees
with a height above this threshold in our 3D representations as discrete trees. We evaluated composite
plot summaries based on estimates of tree count and height metrics (minimum, mean, and maximum).
Performance was assessed by comparing these composite summaries across field-observed, UAS-, and
ALS-based methods. The differences in CHM resolutions, tree counts, and tree heights were analyzed
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descriptively. The coefficient of determination of a linear correlation (r-squared) between methods was
given for the comparison of tree counts and mean tree height as

r2 = cor
(

qir, qi f

)
2 (4)

where qir equals the variable extracted from either the UAS or ALS point cloud, qif equals the variable
observed in the field, and i refers to one of the 11 plots. The RMSE for the difference in mean tree
height among the methods was calculated as in Equation (2). Figure 2 presents a summary of our
methodology in the form of a flowchart.
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3. Results

3.1. Reconstructions

Figure 3 shows the UAS and ALS point clouds for one plot in each canopy cover class. The remote
sensing methods demonstrate excellent registration to each other. The magnitude of relative
registration discrepancies between each ALS and corresponding UAS point cloud was performed
via the ICP algorithm [43] embedded in the CloudCompare software package [44]. The mean
three-dimensional discrepancy across all plots was 0.193 m with standard deviation of 0.060 m.
It is smaller than the nominal laser pulse footprint diameter in the study area. The directional
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(X, Y, Z), and overall (3D) residual GCP error mean (and standard deviation) across all 11 plots
calculated by the Agisoft Photoscan software was 0.246 (0.089), 0.262 (0.062), 0.052 (0.036), and 0.371 m
(0.084 m), respectively.
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laser scanning (ALS)-derived methods, respectively, from one plot in each canopy cover between (a,d)
10–40%; (b,e) 40–70%; and (c,f) 70–100%. The point clouds from imagery collected with the UAS are
displayed in red, green, blue (RGB) while the point clouds obtained from ALS are colored according to
aboveground height. The blue circle represents the boundary of the 16.2-m radius plot.

The point clouds from photogrammetry were substantially denser than those from ALS. The mean
per square meter point density on the plots was, respectively, 1462.9 (SD = 624.8) and 5.0 (SD = 1.4)
for photogrammetry and ALS. The increased point density in the photogrammetric point clouds can
result in wider and more continuous canopy representation and improved measurement of canopy
tops [45,46].

The optimal CHM resolution (Table 3) was found to get finer with increasingly dense canopies
using both ALS- and UAS-based methods.

3.2. Tree Metrics

The distributions of individual tree heights observed or predicted on the plots are similar across
the field measurements and remote sensing methods (Table 3; Figure 4). Using field measurements
as reference, median and mean tree heights were underestimated by remote sensing on cover class
1 plots, however, the UAS-derived estimates align remarkably well on plots of denser canopy cover.
The differences in mean tree height between methods by canopy class are nonsignificant as determined
by two-way ANOVA (F(4,682) = 1.55, p = 0.19). Minimum tree heights are noticeably smaller in the
field measurements, while the minimum heights extracted from the point clouds correspond to the
imposed 7.7-m height threshold. Maximum heights are larger in the ALS- and UAS-derived estimates
for cover class 1 but smaller for classes 2 and 3.
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Table 3. Plot composite summaries by canopy cover class (CC) and inventory method. CC1 describes
plots that had 10–40% canopy cover; CC2 40–70% canopy cover; and CC3 70–100% canopy cover.

Field ALS UAS

CC1 CC2 CC3 CC1 CC2 CC3 CC1 CC2 CC3

CHM cell resolution – – – 3.0 0.3 0.2 2.5 0.4 0.3
Tree counts 36.0 62.0 159.0 30.0 47.0 125.0 30.0 63.0 139.0

Median tree height (m) 16.6 11.7 11.3 14.5 13.5 10.4 12.4 12.0 11.3
Mean tree height (m) 18.6 14.0 12.5 17.8 15.3 11.5 15.8 14.4 12.4

SD tree height 10.3 7.9 4.3 9.2 8.3 4.1 8.9 7.6 4.1
Min tree height (m) 5.5 6.4 5.5 8.5 7.7 7.7 8.0 7.9 7.9
Max tree height (m) 35.7 43.9 28.4 36.3 42.0 25.6 36.8 41.9 27.8
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Figure 4. Distribution of individual tree heights by inventory method in plots with canopy cover
between (a) 10–40%; (b) 40–70%; (c) and 70–100%. The thick lines represent median heights while the
bottom and top boundaries of the box show 25th and 75th, respectively, height percentiles. The ends
of the whiskers are ±1.5 times the interquartile range and the circles are distributional outliers.
Field corresponds to the in situ measurements, als to the estimates derived from ALS, and uas to
estimates derived from UAS data collection and photogrammetry.

Summaries of the agreement of tree counts and tree heights between the remote sensing methods
and the ground-survey data are presented in Table 4. Except for estimates derived from the
UAS method on canopy cover class 2 plots, the predicted number of trees from remote sensing
underestimates the number found in the field on average. Performance of ITD is worst in cover class 3.
Tree counts from photogrammetry-based ITD appear to be marginally superior to those derived from
the LiDAR data. Overall, the height estimates obtained with remote sensing are comparable to and at
the low end of the 1–5-m error range typically observed in conventional ground height measurements
performed in the field [47].

Table 4. Differences in optimized cell resolutions and plot composite summaries of remote sensing
methods compared to in situ measurements. CC1 describes plots that had 10–40% canopy cover; CC2
plots had 40–70% canopy cover; and CC3 plots had 70–100% canopy cover.

ALS vs. Field Measured UAS vs. Field Measured

CC1 CC2 CC3 CC1 CC2 CC3

CHM cell resolution 2.50 0.40 0.30 3.00 0.30 0.20
Mean difference in tree counts (n) −1.50 −3.75 −11.33 −1.50 0.25 −6.67

Mean difference in min tree height (m) 4.09 0.62 1.77 4.23 0.99 1.72
Mean difference in mean tree height (m) −1.04 0.70 −0.30 −1.47 0.44 0.73
Mean difference in max tree height (m) 0.22 −0.76 −1.71 0.17 -0.68 −1.01
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The relationship among plot-specific tree number and mean height estimates is shown in Figures 5
and 6, respectively. The remote-sensing-derived estimates of tree counts approximate the number of
trees observed in the field well (ALS r2 = 0.93, UAS r2 = 0.84) and demonstrate excellent consensus
with each other (r2 = 0.96). Tree counts in cover class 3 are the least precise when compared to
field measurements. The various methods are also congruent when measuring mean tree height.
Strong correlation is observed between field-measured data and ALS-derived estimates (r2 = 0.79)
as well as UAS-collected data (r2 = 0.82). ALS mean height exhibited an RMSE of 3.16 m, while the
prediction of photogrammetric mean height gave an RMSE of 2.92 m. Again, the remote sensing
methods agree with each other (r2 = 0.97, RMSE = 1.04 m). Disregarding canopy cover designation, the
ALS-derived tree count is more highly correlated to the number of trees measured in the field than the
photogrammetric estimates. In estimating tree number mean height, the photogrammetric estimates
appear to perform slightly better than those derived from ALS.
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3.3. Growth Observations

Tree height metrics across canopy classes displayed in Table 4 do not conform to a unified
pattern. Some of the UAS-derived height estimates appear to demonstrate growth, such as when they
are greater than those observed in both the field and ALS-derived representations. Even when the
photogrammetric height estimates are smaller than those measured in the field, some are closer to
parity than the ALS-based measurements, thus indicating a positive change in height. Moreover, as
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evident in Figure 6a,b, mean plot tree height assessed from the UAS workflow is more closely aligned
to the 1:1 line and was recorded with less error than mean plot height calculated from the ALS point
clouds. However, we did not observe any unequivocable results indicating growth in the intervening
two years between data acquisitions.

4. Discussion

4.1. Reconstructions

The suggested optimal CHM resolution was finer with progressively dense canopies.
Optimal CHM resolution, in terms of ITD, correlates better with crown size than canopy cover.
Where canopy cover is high, resource competition among trees prioritizes height growth for most
species, thus accounting for a reduced crown diameter and CHM kernel size. While CHM parameters
have been suggested for LiDAR point clouds [40,41], more research is needed to determine the effect
of varying CHM resolutions on photogrammetric point clouds.

The two remote sensing methods used in this study are fundamentally different and do not
observe forest structure the same way. ALS uses active systems and emits pulses of light backscattered
by targets. Pulse photons not intercepted by foliage or branches near the top of a tree crown continue
to penetrate the vegetation profile. A portion of them, often small but usually still identifiable even
in high canopy cover forest stands, is ultimately backscattered by the ground and provides terrain
reference. ALS point clouds are inherently three-dimensional products directly associated with forest
structure. Conversely, UAS photogrammetry relies on cameras, which are passive systems and depend
on solar or ambient illumination. UAS-imagery-derived point clouds contain 3D information obtained
by inference but not directly. Their construction can suffer from some characteristics common to
forest scenes, including weak geometry, homogeneous texture, object similarity, overlapping features,
occlusion, and deep shadows, especially in small crown and stand openings. All these conditions
degrade the performance of featured-based matching algorithms [48]. Flying at solar noon or on
cloudy but bright days in low wind and with high image overlap helps mitigate these difficulties [49].
A comprehensive and detailed discussion regarding photogrammetry-based workflows is available
in [50].

With UAS point clouds typically representing only the peripheral and usually upper components
of dominant and codominant tree crowns, inventory parameters pertaining to the entire vertical profile
of individual trees or forest stands, including tree height, can be challenging to access reliably because
ground references are missing. It is thus not surprising that UAS-based estimates of tree height in
close stands can be poor compared to those obtained by ALS [3]. DSMs obtained from digital imagery,
however, are not subject to the many of the aforementioned limitations and can offer more reliable
measurements of parameters manifested primarily in two dimensions, including ITD.

In this study, we attempted to circumvent this issue by using available, ALS-derived DTMs.
We also included oblique imagery instead of the typical nadir-oriented imagery. Our alternative
flight configuration increases flight and data-processing times but not substantially. Oblique imagery
improves the viewing angle towards crown components that have primarily vertical orientation,
such as the leading stems of conifers and, consequently, the probability that those components
will be represented in the point cloud. It also improves the representation of components in the
lower periphery of tree crowns. With more detailed representation of tree tops and crown edges,
ITD performance is expected to improve.

Despite the presence of shadows during imagery capture on some plots, there were no discernible
differences in performance in this study and the ultimate effect of shadows may be indiscriminate.
Dandois and Ellis [20] posit that shadows in digital imagery hinder canopy penetration, but diffuse
lighting reduces contrast and, therefore, feature matching. In conducive canopy cover and density
conditions, tree height can be assessed from the cast shadows recorded in RGB photographs [49,51].
Advancement in photogrammetry and feature matching will continue to address known limitations,
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and indeed, meaningful alignment and depth maps are already available from inferior digital imagery,
as demonstrated herein and by others [52,53].

4.2. Tree Metrics

Estimates of tree density were fairly well approximated in the UAS- and ALS-based inventory
methods. As expected, tree counts in cover class 3 were the least precise when compared to field
measurements. However, this was observed to be a disadvantage of both UAS and ALS remote sensing
in this study. The lower tree omission rate of the photogrammetry-based ITD was not expected due
to LiDAR’s improved ability to penetrate canopy, but it could have been influenced by the temporal
discrepancy between the UAS flights and the field visits. In the two growing seasons between field
inventory and UAS flight campaigns, certain trees could have cleared the height threshold we applied;
or, it is an indication that the applied height threshold is slightly too aggressive, especially on plots
with low canopy cover, where growth is likely concentrated in width rather than height. Our results
indicate that the multiscopic sightings of canopy structure enabled by oblique imagery contributed to
reducing errors embedded in the photogrammetric surface models, but further study should be done
on height profiles obtained from similar UAS workflows.

Mean and median heights were most noticeably underestimated on cover class 1 plots, which
suggests misidentification or omission of trees on these plots. Although covering less than 40% of a
plot’s footprint in total, cover class 1 plots exhibit clusters of trees with overlapping crowns that would
make differentiation during photogrammetry and ITD difficult. A regular pattern with gaps in the
canopy would likely improve height estimation. The UAS-derived estimates followed the distribution
of heights observed in field measurements more closely than the ALS-derived heights, although no
definitive evidence was given for either method. There is currently no consensus on which remote
sensing method is superior in regards to error, with respective research finding both photogrammetry
and ALS performance better in some cases, but the magnitude of error is similar to that observed in
other studies [11,54,55] and the correlation between photogrammetry and ALS tree heights is strong.
It is possible to draw similar conclusions from either remote sensing method, suggesting that the more
economical and approachable UAS methods can supplant ALS in iterative inventories.

4.3. Growth Observations

We expected less agreement between the ground-surveyed and photogrammetric-interpolated
heights compared to the LiDAR equivalents due to the two-year time offset in measurement, but
their atemporal agreement may have to do with measurement error in field heights. An improved
ability to capture tree tops may be another explanation for those heights that are greater using the UAS
method. Both field and ALS-based methods can fail to measure the tops of trees. Laser range finders
and clinometers used by field crews can sometimes miscalculate tree heights when the tops of trees are
obscured [47], in the presence of substantial tree lean [56], or where LiDAR pulses fail to systematically
illuminate the leading tree stems [46], thereby inducting bias in tree and canopy height metrics.

After two years, higher mean and maximum tree heights were only systematically observed in the
densest plots. Plots in the highest canopy cover had higher tree density and shorter height, typical of
younger trees and of growth rates that are detectable and quantifiable at the short time scale between
data acquisitions. Stands of mixed lodgepole and ponderosa pines experience mean annual height
growth of 0.37 m when young [57], with growth plateauing after maturity is reached—anywhere from
70 to 300 years and heights from 20 to 60 m for ponderosa pines and around 100 years and between 21
and 24 m for lodgepole pines in Oregon [58,59]. With maximum observed tree height on any cover
class 3 plot under 30 m, accelerated growth regimes would be the norm rather than the exception.
Moreover, dense plots, where competition is increased, often promote height over canopy growth.

Owing to the short temporal discrepancy between field/ALS data collection and UAS flights
and the limited number of plots used in this study, it is challenging to determine with confidence
whether the differences in heights observed are due to growth, data acquisition type, propagation
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of measurement error, or technical and procedural limitations. Dempewolf et al. [31] suggest that
high-precision differential GPS is needed for growth studies of individual trees to improve camera
position accuracy and distortion calibration. Moreover, [19] established strong agreement between
LiDAR and photogrammetry estimates of top of canopy height in tropical forests despite a similar
two-year difference in data collection between the methods, suggesting growth may not be elucidated
at this temporal scale when relying on consumer-grade GPS. Intraseasonal to decadal stand growth
studies are available using a UAS and photogrammetry [20,30,31,60], but more attention is needed to
provide low-cost solutions to improve reference datasets, such as ground surveys and geopositioning,
to increase growth resolution.

4.4. Future Applications

This study would benefit from enumeration of all trees regardless of DBH. Avoidable error is
introduced currently by approximating which “small” trees to remove in the point clouds to make
data sources comparable. Although unequal stratified measurement is common of and necessary
for large-area ground surveying [2], seedlings and saplings do not have a substantial impact on
volume, biomass, and other ecological estimates. More exact measurement of tree heights during field
collection would help to explain the observed differences between methods. However, the use of more
accurate and precise measurement tools, such as survey stations, are logistically and economically
infeasible for large-scale inventory operations such as those conducted by FIA. Although the use of
a high-precision differential GPS would have improved the accuracy of tree height estimates and
our ability to better quantify growth, meaningful height summaries were derived from a workflow
leveraging consumer-grade, inexpensive GPS that was directly comparable to the performance of
ground surveying and ALS. This method relies on quotidian GPS technology that requires no additional
skill or knowledge in placing base stations, waypoint averaging, or performing direct georeferencing
via a Helmert transformation [53]. A finer analysis of ITD could also illuminate model parameters and
explanation of results. With the data collected through this study, further work could quantify tree
locations and omission and commission rates, as demonstrated in other research [29,54].

As it is, the ultimate performance of the photogrammetric method was in part determined
by existing data, namely, tree characterization from ground surveys and the DTM derived from
ALS. However, this study was meant to demonstrate vertical development of an established forestry
program, providing the capacity to advance preceding forest inventories with innovative remote
sensing and computer vision technology. The motivation was to parametrize flight plans, canopy
height models, and individual tree identification so that further data collection on FIA plots in Oregon
and elsewhere can be conducted frequently and rapidly. Not only will regular UAS flights and point
cloud processing improve studies of forest growth, but the workflow can also be implemented in
reactive studies of forest disturbance. UAS data collection has been applied in real time for forest
wildfire management [18] and could be an important tool in postfire monitoring.

Conversely, it is costly to conduct ground surveys and ALS frequently, but after initial collection,
their products can continue to be referenced over time. The number of trees on a plot can be expected
to remain relatively stable year to year and any necessary adjustments can be made quickly while
on-site. The topographic terrain underlying the forest floor, as modeled from a LiDAR DTM, does not
undergo substantial change annually and can be leveraged for multiple years in tandem with renewed
DSMs derived from UASs to update forest inventories [19,22]. Moreover, baseline LiDAR products
are becoming more ubiquitous and accessible for the general public. For instance, nearly 40% of
Oregon forestland is currently covered by publicly available DTMs with plans to expand coverage [61],
supporting this method as a viable option for repeat, low-cost surveying in many areas. The ongoing
USGS 3DEP program aims at providing fine-resolution DTMs for the entire country [62].

Thus, this workflow provides nonforestry professionals and individuals with access to baseline
forest resource assessment. The inclusion of these users is supported by advancements in autonomous
flight and user interfaces for processing. Additionally, consumer RGB cameras are not only inexpensive
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but allow for more intuitive visual feature interpretation and display as well as the identification
of species and assessment of health and stand maturity that is not readily available from ALS data.
The data may even be leveraged for retrospective research questions as a high-density UAS point cloud
provides digital preservation of the plot canopy in time with low-level, minimally processed data. If a
particular measure becomes of interest in the future, it can likely be extracted from the point cloud,
but it can never be retroactively recorded in field measurement. Photogrammetry has been gradually
refined from its initial analog form after digital input became possible. In recent years, there has been
exponential advancement in photogrammetric software development. Yet, there are many processing
parameters the influence of which has not been clearly articulated. When the configuration of these
parameters is optimized, we expect the conversion from digital images to complex representations of
objects to become a rote process. In short, our method capitalizes on the ease, efficiency, affordability,
and potential of commercial small-UAS hardware and computer vision software to open the field of
forest management and evaluation to individuals and resource-constrained organizations.

5. Conclusions

In this study, we highlighted the performance of a UAS and photogrammetry to assess tree
density and height on 11 plots in central Oregon. We compared and contrasted results gained from the
photogrammetric workflow to those obtained via field measurements and ALS. The alternative method
we presented here aids institutional and longitudinal forest inventories using affordable, commercial
UAS hardware and photogrammetry software and it is sufficient to establish a comprehensive
representation of forest plots. There was not enough evidence to describe the differences between
the UAS-derived measurements and other methods as growth over the two-year measurement
interval, but there is potential to quantify growth with similar methodologies as others have shown.
Multitemporal monitoring should still be of interest on these plots in order to continue observation of
patterns in photogrammetry performance and stand characteristics.

This was also a demonstration of incorporation of a new data source into an existing forestry
program, considering all its inherent and known limitations. As this method was meant to broaden
ongoing forest monitoring, it is not concerned by its initial reliance on historical data. In fact, it has
shown that meaningful stand characteristics can be achieved even when data cannot be collected
contemporaneously due to resources, program timelines, and retrospective research. This further
increases its relevancy to private, nonindustrial forestland owners who will have some flexibility to
obtain reasonable results despite their work not being exactly aligned with external data. This study
supports the expansion of the legacy of public forest monitoring and heralds it into the next era of
technological application and public crowdsourcing of forest data.
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