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Abstract: Clouds, cloud shadows (CCS), and numerous other factors will cause a missing data
problem in passive remote sensing images. A well-known reconstruction method is the selection
of a similar pixel (with an additional clear reference image) from the remaining clear part of an
image to replace the missing pixel. Due to the merit of filling the missing value using a pixel
acquired on the same image with the same sensor and the same date, this method is suitable for
time-series applications when a time-series profile-based similar measure is utilized for selecting
the similar pixel. Since the similar pixel is independently selected, the improper reference pixel
or various accuracies obtained by different land covers causes the problem of salt-and-pepper
noise in the reconstructed part of an image. To overcome these problems, this paper presents a
spectral–temporal patch (STP)-based missing area reconstruction method for time-series images. First,
the STP, the pixels of which have similar spectral and temporal evolution characteristics, is extracted
using multi-temporal image segmentation. However, some STP have Missing Observations (STPMO)
in the time series, which should be reconstructed. Next, for an STPMO, the most similar STP is
selected as the reference STP; then, the mean and standard deviation of the STPMO is predicted
using a linear regression method with the reference STP. Finally, the textural information, which is
denoted by the spatial configuration of color or intensities of neighboring pixels, is extracted from
the clear temporal-adjacent STP and “injected” into the missing area to obtain synthetic cloud-free
images. We performed an STP-based missing area reconstruction experiment in Jiangzhou, Chongzuo,
Guangxi with time-series images acquired by wide field view (WFV) onboard Chinese Gao Fen 1 on
12 different dates. The results indicate that the proposed method can effectively recover the missing
information without salt-and-pepper noise in the reconstructed area; also, the reconstructed part of
the image is consistent with the clear part without a false edge. The results confirm that the spectral
information from the remaining clear part of the same image and textural information from the
temporal-adjacent image can create seamless time-series images.

Keywords: missing area reconstruction; cloud-free time-series image; multi-temporal image
segmentation; cloud and cloud shadow

1. Introduction

In passive remote sensing, clouds, cloud shadows (CCS) and numerous other factors (such as the
Scan Line Corrector Off (SLC-OFF) for Enhanced Thematic Mapper Plus(ETM+) onboard Landsat 7)
may obscure or contaminate the land surface information recorded by a remote sensor, which causes
information distortion or missing data in the corresponding area of the obtained images [1,2]. In cloudy
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and rainy regions, the acquisition of cloud-free images becomes particularly difficult. As a result,
the lack of cloud-free images become one of the most restrictive factors for land-related applications.
Therefore, filling the missing part of the partially contaminated image will increase the data availability.
In time-series remote sensing applications, such as crop classification [3], forest disturbance history
monitoring [4], farmland abandonment, or cultivation mapping [5], which require dense time-series
images to describe the land-cover dynamics and evolution, the CCS-induced information missing
problem will not only prolong the time interval between temporal-adjacent images and produce
irregular time intervals, it will also induce the features derived from the time-series image characterized
with different dimensions [6]. Therefore, the reconstruction of missing areas in time-series images will
benefit a time-series image based application.

For high temporal resolution images, such as the Advanced Very High Resolution Radiometer
(AVHRR) and MODerate resolution Imaging Spectroradiometer (MODIS), an image composite method
has been utilized to fill CCS-induced information gaps. This is because the vegetative indices, such as
the normalized difference vegetation index (NDVI), which is contaminated by CCS and other noisy
factors, are underestimated compared with clear observations. A maximum NDVI composite within a
certain period can suppress the negative effect of noise and obtain a relatively noise-free composite
image [7]. This composite method has been extensively employed to create 8-day (d) or 16-d NDVI
products for high temporal resolution images. However, multiple observations and one cloud-free
observation within the composite period are needed to obtain a fully noise-free composite. In practice,
satisfying this precondition in the cloudy and rainy regions is difficult, which causes a certain amount
of noise to remain in 8-d or 16-d composites. To further remove the residual error in time-series
observations, some well-defined mathematics models, such as the nonlinear Fourier model and
the asymmetric Gaussian model, are utilized to describe the temporal evolution of the land cover.
The missing values can be estimated using the predicted values of the model to obtain a cloud-free
image [8,9].

However, the spatial resolution of high temporal resolution data, such as MODIS, is generally
250 m or coarser, which prevents the data from describing the spatial detail of the land surface
accurately, and restricts their fine applications in small regions. The medium spatial resolution
images, which were acquired by Landsat-like satellites, have a relatively fine spatial resolution.
However, their revisiting period approaches 16 days. The selective observations and presence of
CCS further prolongs the time interval between temporal-adjacent images; as a result, one cannot
reconstruct the missing of CCS-induced information by the maximum-value composite technique.
Also, the time interval of medium and high spatial resolution between adjacent images is relatively
long and inconsistent, which hinders the ability to obtain smooth modeled time-series curves. Thus,
the fitting method, such as Brooks [8] and Vuolo [9], cannot be used to reconstruct missing areas.
New methods are needed for the missing area reconstruction that are aimed at low-temporal resolution
data (which usually have a fine spatial resolution). According to whether reference images are
employed, the missing area reconstruction methods can be classified into two main categories, namely,
restoration or mosaic methods.

Image restoration methods extract the spatial structural distribution characteristics of an image
from the clear part of the image, and then the structural characteristics are extended to the CCS-induced
missing region, and the missing region is reconstructed. For example, the multiscale segmentation
method divides the image into homogeneous regions with similar spectral characteristics, and then
the missing region is filled using the remaining clear parts of the segments in the multiscale space [10].
The autocorrelation between neighboring pixels is a well-recognized feature, and the Kringing
interpolation is used to fill the missing CCS region [11]. Another extensively employed method adopts
the Bandelet transform to extract the geometric field that describes the variation in the grayscale value
of an image, and the missing region is reconstructed according to the extracted geometric field [12].
The image restoration method can achieve satisfactory results for small, homogenous missing regions;
however, its applicability for large and complicated missing regions remains unexamined.



Remote Sens. 2018, 10, 1560 3 of 20

The mosaic method assumes that images of the same region taken at different times are not
simultaneously contaminated by CCS, and therefore, the cloud-free reference image can be used to
fill the CCS-induced missing area and obtain a synthetic cloud-free image. Due to the radiometric
difference between the images obtained on different dates, a direct image mosaic may produce
patch-based color differences in the resultant image. Therefore, radiometric normalization is used
prior to image mosaic to eliminate the radiometric difference. Linear regression, regression tree,
and histogram matching are extensively employed models for radiometric normalization for missing
area filling [13,14]. Since various land covers exhibit radiometric variation over time, the adoption of an
identical radiometric normalization equation for pixels of different types is unreasonable. Considering
this problem, Melgani proposed a method for establishing class-based linear and nonlinear (support
vector regression) equations for different classes in an image and filling the CCS-induced missing region
based on the corresponding equations [15]. Since pixel-by-pixel filling is prone to salt-and-pepper
noise, Lin et al. viewed the CCS-induced missing region as a whole, and adopted a global optimization
method to fill the missing area [16]. In contrast to directly establishing a mapping relationship between
two scenes of images in the original grayscale space, some recently developed methods exploited
missing area reconstruction in the transformed space. For example, the compressed sensing-based
method extracts low-rank and other high-level characteristics from one cloud-free reference image by
dictionary learning and transfers the learned characteristics to the image with missing areas, as the
new feature space can describe the nonlinear relationship between different images and achieve
satisfactory results [17]. The image mosaic procedure mentioned above indicates that the resultant
image is mosaicked with an additional image, whose acquisition date will become vague. As the image
acquisition time for the time-series analysis is essential, this condition may restrict the applicability of
the mosaic method.

As the images are only partially contaminated by CCS, an alternative method is to employ
similar pixels in the clear part from the same image to reconstruct the CCS region. Thus,
the determination of similar pixels becomes a critical problem for this method. The most similar
pixel method [18] and spatial–temporal Markov model [19] are successively employed to search for
a similar pixel. Considering that crops or natural vegetation of the same class on the image have
similar (but not identical) phenological cycles, utilizing time-series images to select a pixel with a
similar spectral–temporal evolution, such as the profile-based interpolator (PBI) [20], spectral angle
mapper-based spatiotemporal similarity [21], and tempo-spectral angle model [22], will improve
the reconstruction accuracy. Since the reference pixel is selected from the clear part of the image,
this method can maintain the time stamp for various types of pixels [18–24], and is a relatively ideal
method for the reconstruction of cloud-free images aimed at time-series analysis. Thus, we develop a
method that is characterized by these merits.

Using a pixel in the clear part of the images to fill the missing areas exhibits great potential
for time-series applications; however, a pixel-by-pixel reconstruction strategy will produce a serious
salt-and-pepper noise effect in the reconstructed area, which will conceal rich textural information [25].
The inconsistent accuracy will produce a visual false edge between the reconstructed part and the
remaining clear part [26]. Salt-and-pepper noise and false edges can be attributed to the following
points [25,26]:

â The temporal variation in a diverse landscape is inconsistent. For example, pseudo-invariant
features (PIFs), such as buildings and bare land, remain stable over time. However, vegetation
cover, such as forest and cultivated farmland, exhibits distinct seasonal changes. The PIFs are
expected to have better accuracy than the temporal variant landscape.

â The reconstruction accuracy of different bands is diverse. Different bands are characterized by
different responses to solar radiation, which will yield different reconstruction accuracies.

â The reference pixel for the pixel with missing observations is independently selected without any
consideration of neighboring pixels; improper reference pixel selection will produce a different
reconstruction accuracy.
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â The reconstruction residuals, which are induced by the previously mentioned factor, will produce
a visual seam line (i.e., false edge) between the reconstructed part and the remaining clear part.

Combined with different accuracies obtained by different land covers, different bands,
and independent reference pixel selections, when the pixel-by-pixel method is applied to rich-textured
regions on multiband images, the inconsistent reconstruction accuracy will produce inconsistent pixels
(i.e., salt-and-pepper noise) and a false edge between the reconstructed part (corresponding to the
missing region) and the clear remaining part (corresponding to the valid region). Inspired by the
object-oriented image analysis [25], we propose a spectral–temporal patch (STP)-based time-series
cloud-free image reconstruction method to overcome the influence of salt-and-pepper noise and
the false edge. The extracted STP will have not only homogenous spectral features, it will also
have a similar temporal evolution. Instead of obtaining one cloud-free mosaic, our method aims to
simultaneously reconstruct all of the missing areas in time-series images. The main contributions of
our paper are summarized as follows:

â A multi-temporal image segmentation strategy, which incorporates spectral homogeneity and
temporal evolution consistency, is utilized to extract the STP.

â The textural information from the clear temporal-adjacent image and the spectral information
from the clear part of the same image are used to simultaneously reconstruct a missing STP,
which will suppress the salt-and-pepper noise.

â The seam line will go through the actual edge defined by the STP, instead of the original
seam line defined by the missing region and the valid region. As demonstrated by Soille [27],
the actual edge between different STPs in the image will help conceal the false edge and obtain
the seamless image.

The remainder of this paper is structured as follows. Section 2 introduces the reconstruction
method of the missing area. Section 3 presents the experimental setting and the evaluation of the
results. Section 4 discusses and analyzes the results of the method in this paper. Section 5 presents the
conclusions of this paper.

2. Methods

In this paper, we propose a STP-based missing area reconstruction method for time-series images.
Our method considers the STP with Missing Observation (STPMO) as a basic unit that searches for
the reference STP and is to be reconstructed as a whole. At the same time, the textural information,
denoted by the spatial arrangement of color or intensities for neighboring pixels [28], is extracted
from the clear temporal-adjacent STP, and injected the missing observation. Through these methods,
the reconstruction result not only avoids salt-and-pepper noise in the interior of the reconstructed STP,
it also helps conceal the false edge between the reconstructed part and the remaining clear part.

For implementation, the proposed method includes three main procedures (as shown in Figure 1).
(1) Multi-temporal image-based STP extraction: we divide the image into an ensemble of homogeneous
patches using image segmentation with multi-temporal (most) cloud-free images. Since the segment
obtained by our method has similar spectral and temporal evolution characteristics, we refer to the
segmentation result as an STP. (2) Reference STP selection for the STPMO: we adopt a similar STP-based
measurement to select the reference STP for the STPMO. (3) Missing STP reconstruction: we reconstruct
the missing STP in the image according to the reference STP, and obtain cloud-free time-series images.

For the convenience of method description, we assume that we have obtained n scenes of an
image of the same study area acquired on different dates. According to the date of acquisition, the n
images can be expressed as I:

I =
{

I1, I2, . . . , In
}

(1)

Due to the CSS factor, some parts of the image are missing, which should be reconstructed by
our method. First, we divide the region of every image in the time series into the valid part ϕ and
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the missing part φ using an automatic mask method or a human-labeled method. For the image
Im ∈ I, the valid part and the missing part can be expressed as ϕm and φm, respectively, where ϕm and
φm satisfy:

Im = φm ∪ ϕm (2)

φm ∩ ϕm = ∅ (3)

where pixel xm
i ∈ φm is an invalid observation contaminated by CCS, i.e., a missing value, which should

be estimated using the method proposed in this paper. By reconstructing the missing values of all of
the images in the time series, we can obtain seamless time-series images.
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2.1. Multi-Temporal Image Segmentation

Traditionally, image segmentation groups of adjacent pixels into a homogeneous region according
to the similarities among the spectral characteristics of the pixels. The obtained homogeneous region
forms the basic unit of analysis, which is generally referred to as a patch or segment. As a basic
image-processing method, image segmentation has attracted increased attention, and a large number
of image segmentation methods and improved versions have been proposed [29–33]. Mean shift
segmentation has been extensively employed and achieved satisfactory performance in diverse
applications. In mean shift segmentation, the cluster center constantly moves toward the density
gradient ascending direction, which is referred to as drift, and therefore obtains the region of high
density, and the pixels, which passed through during the process of searching the high-density regions,
form a segment [32]. Numerous studies have addressed the principles and improvement of mean shift
segmentation [33], which will not be repeated here.

The objective of the traditional image segmentation method is to split the image into an ensemble
of homogenous regions, which is referred to as a segment, object, or patch. However, the pixels
of a segment in our paper will require not only the same spectral characteristics but also similar
temporal evolution; we denote them as STPs. To obtain the STPs, we adopt a multi-temporal image
segmentation strategy similar to Dutrieux [31] and Desclée [34]. We selected multi-images from the
time-series images to perform image segmentation. The selection of the images for segmentation
considers two factors. (1) Proportion of valid pixels in the image: to obtain the image segmentation
results for the entire study area, a cloud-free image in the entire study area is needed. (2) Date of
the image acquisition: since vegetative land cover (such as forest and crops) has the distinct feature
of temporal evolution, and selecting an image acquired at the temporal window (the best time(s) of
image acquisition for vegetative land cover discrimination) will better differentiate the various STP
types [35].
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For convenience in processing, we select three scenes of images for segmentation. However,
if we separately segment the three images, inconsistent segmentation results will likely be obtained
for the various scenes. Thus, many small segmentation STPs can appear around the border of the
segmentation results. Since vegetative information is primarily concentrated in the near-infrared
band, the near-infrared band of three images is utilized to construct a new image; the color of the
obtained image indicates the temporal evolution of the image, and the texture exhibits local contrast
and similarity information. The new image is fed to segmentation, and we obtain the STP set P with m
STPs, which can be expressed as follows:

P = {P1, P2, . . . , Pm} (4)

By multi-temporal image segmentation, the pixels within an STP will have not only similar
spectral characteristics, but also similar temporal evolution. We calculate the mean µ

j
Pi

and standard

deviation σ
j
Pi

of the grayscale value for STP Pi ∈ P, i = 1, 2, . . . , m for image I j ∈ I:

µ
j
Pi
=

1
|Pi| ∑

(r,c)∈Pi

xj
(r,c) (5)

σ
j
Pi =

√√√√ 1
|Pi| ∑

(r,c)∈Pi

(xj
(r,c) − µ

j
Pi
)

2
(6)

where (r, c) ∈ Pi represents a pixel with row r and column c, which belongs to the STP of Pi; xj
(r,c)

denotes the grayscale value of a pixel with row r and column c on image I j; and |Pi| is the pixel
number of the STP Pi. On this basis, the mean and standard deviation grayscale value of the STP Pi are
calculated for every image in I; the results form the mean vector µPi and the standard deviation vector
σPi , which can be expressed as:

µPi = {µ
1
Pi

, µ2
Pi

, . . . , µn
Pi
} (7)

σPi = {σ
1
Pi

, σ2
Pi

, . . . , σn
Pi
} (8)

The vector µPi depicts the temporal evolution of the mean grayscale value of the STP Pi, and the
vector σPi describes its variation magnitude.

2.2. Reference STP Selection for the STPMO

Assume that the data are missing in the region of STP Pi ∈ P in image Im ∈ I (i.e., Pi ∈ ∅m),
which is an STPMO, in other words, µm

Pi
and σm

Pi
are unknown. For the convenience of description,

we set µm
Pi

and σm
Pi

to −1. Therefore, we should estimate µm
Pi

and σm
Pi

using the reference STP Pr,
whose mean (µm

Pr
) and standard deviation (σm

Pr
) are known in the image Im. According to this analysis,

the problem has been transformed to determine the reference STP.
The reference STP should have similar temporal-spectral features as the missing STP.

The correlation coefficient describes the linear correlation between two variables. When it is applied
to describe the similarity of the time-series spectral measurement (such as the grayscale value),
the correlation coefficient indicates the reliability of using the reference variable to predict the variable
with a missing observation. According to this analysis, we calculate the linear correlation coefficient
C(Pi, Pj) between STPs Pi and Pj:

C(Pi, Pj) =
∑
t
(ut

Pi
− µ(µPi ))(u

t
Pj
− µ(µPj))√

∑
t
(ut

Pi
− µ(µPi ))

2
√

∑
t
(ut

Pj
− µ(µPj))

2
(9)
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t = 1, 2, . . . , n, µt
Pi
6= −1∧ µt

Pj
6= −1 (10)

where µt
Pi

and µt
Pj

are the mean grayscale values for STPs Pi and Pj on image It ∈ I, respectively,

u(µPi ) and µ(µPj) are the mean value of vector µPi and µPj , respectively.
While calculating the correlation coefficient, we use only the valid value of µt

Pi
and µt

Pj

(i.e., µt
Pi
6= −1∧ µt

Pj
6= −1, as indicated by Equation (10)). The dimension of the input vector for

different STPs is inconsistent. Since the value of the correlation coefficient is a real number in the range
of [–1, 1], for a situation that lacks one dimension, the fluctuation will not be excessive, but can reflect
the linear correlation among the input remaining variables.

We use the k STPs with the largest correlation coefficient C(Pi, Pj) as the candidate reference STP
R(Pi) of STP Pi. However, the candidate reference STPs can only ensure that the reference STP and
STPMO values have a similar temporal–spectral variation; their grayscale value distribution range may
differ significantly. The standard deviation can quantitatively describe the grayscale values’ variation
amplitude in an STP. The standard deviation similarity between two STPs Pi and Pk can be described
by the Euclidean distance D(Pi, Pk), which can be calculated as:

D(Pi, Pk) =

√
1
n

n

∑
t=1

(σt
Pi
− σt

pk
)

2 (11)

where STP Pk ∈ R(Pi). We consider the STP with the smallest Euclidean distance in R(Pi) as the
reference STP of STP Pi and denote it as Pr:

Pr = argmin
Pk∈R(Pi)

(D(Pi, Pk)) (12)

2.3. Missing Value Estimation for STPMO

Missing value estimation for STPMO includes two steps: (I) estimation of the mean and standard
deviation of the STPMO, and (II) textural information injection. The implementation details are
introduced as follows:

(I) Estimation of the mean and standard deviation of the STPMO

According to the analysis, the mean vector of the missing STP Pi and the reference STP Pr has
a high linear correlation. Therefore, a linear regression model is used to describe their relationship.
The linear regression coefficient < ku, bu > can be obtained by least squares regression with the
remaining valid observations in the time series. The estimated mean value for the STP Pi, ûm

Pi
, can be

expressed as:
ûm

Pi
= ku ∗ µm

Pr + bu (13)

Since the reference STP is selected using the minimum Euclidean distance of the standard
deviation, we directly obtain the estimation of value σ̂m

Pi
using σm

Pr
:

σ̂m
Pi
= σm

Pr
(14)

(II) Textural information injection

To recover the rich texture of the STP Pi in image Im, we “inject” the rich textural information
exhibit in the corresponding region of image Il into the missing part of image Im. First, we should
select a reference image to extract the textual information. The determination of the temporal-adjacent
image Il for image Im depends on two conditions: (1) the region of STP Pi in the image in image Il is
valid; and (2) based on satisfying condition (1), we select the acquisition date of two images as close as
possible—i.e., the temporal interval between Im and Il is the smallest.
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The textural information from the temporal-adjacent image will be injected to the STPMO under
the restrictive condition of the estimated mean (ûm

Pi
) and standard deviation (σ̂m

Pi
). For pixel xm

Pi
,

whose value is missing, the estimation value x̂m
Pi

can be calculated as:

x̂m
Pi
=

σ̂m
Pi

σl
Pi

xl
Pi
+ (µ̂m

Pi
−

σ̂m
Pi

σl
Pi

µl
Pi) (15)

where µl
Pi

and σl
Pi

are the mean and standard deviation, respectively, of the grayscale value in the STP
Pi on the image Il ; ûm

Pi
and σ̂m

Pi
are the estimated mean and standard deviation, respectively, of the

grayscale value. As shown in Equation (15), the grayscale of the reconstructed STPMO will obey
a distribution, where the mean is ûm

Pi
and the standard deviation is σ̂m

Pi
. From the above procedure,

we can see that neighboring pixels in the reconstructed area will have similar reconstruction accuracy,
which helps preserve the spatial arrangement color or intensity information; removing the inconsistent
pixel will suppress the salt-and-pepper noise effect.

For the STP Pi in the image Im, the missing part may be partial or complete. For cases in which
only part of the STP data is missing, if the missing ratio exceeds r, we treat the valid pixels as the
missing pixel, and reconstruct them using the method. If the missing ratio is smaller than r, then we use
the remaining clear part (denoted as ϕ(Pi)) to construct the missing part (denoted as φ(Pi)). The setting
of r should take into consideration that the valid part must provide enough information to reconstruct
the missing part. By the trial and error method, we find that r set 0.5 is a proper value to balance the
valid pixel preservation and missing pixel restoration. Then, we calculate the mean and standard
deviation of the grayscale value for the valid region of Pi (ϕ(Pi)) on the image Im, which can be
expressed as µm

ϕ(Pi)
and σm

ϕ(Pi)
, respectively. The mean and standard deviation of the grayscale value on

the image Il are µl
ϕ(Pi)

and σl
ϕ(Pi)

, respectively. For the missing value, we adopt the following equation
for the reconstruction:

x̂m
φ(Pi)

=
σm

ϕ(Pi)

σl
ϕ(Pi)

xl
φ(Pi)

+ (µm
ϕ(Pi)
−

σm
ϕ(Pi)

σl
ϕ(Pi)

µl
ϕ(Pi)

) (16)

Since CCS can induce a data missing problem for any date of time-series images, the missing
observation number in the time series is not consistent among different STPs. Generally, the smaller
the missing number in the time series of the STP, the stronger the ability of the correlation coefficient to
describe the linear correlation, which increases the probability of selection of the proper reference STP.
Therefore, we sort the STP according to the missing data number in descending order, and sequentially
reconstruct the missing STP. For example, we reconstruct the STPs with one missing observation using
the free STP. The STPs with two missing observations are reconstructed using the free STP and the
previously reconstructed STP with one missing. Then, we repeat this process until the STPs with
missing observations have been reconstructed, and can thus obtain an entire seamless time series
of images.

According to the implementation procedures, the mean and standard deviation are estimated
using the reference STP in the same image, which guarantees that the reconstructed STP is consistent
with the remaining clear part. Since the texture of the missing STP is injected according to the
temporal-adjacent images and normalized by the estimated mean and standard deviation, the pixels
in the missing STP will have similar reconstruction accuracy. The seam line of the reconstructed part
and remaining part has been shifted to the actual edge between different STPs, which can help conceal
the false edge.
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3. Experimental

3.1. Study Area and Data

The study area is located in the Jiangzhou District of Chongzuo City in the Guangxi Zhuang
Autonomous Region in China, which covers an area of 2901 km2, as shown in Figure 2. The terrain in
the study area is high in the northeast and low in the southwest; the Zuojiang River passes through the
middle of the Jiangzhou District. Farmland is the dominant land-use type in the study area. The study
area has an abundance of water and heat and occurred in the same period, which renders it suitable
for sugarcane growth [36]. Sugarcane is extensively grown on the flat ground or gentle slopes. Thus,
this region is the main sugarcane-producing area in China, and sugarcane is the main local economic
crop [37]. Due to decentralized cultivation by individual farmers, the sowing, cutting, and harvesting
of sugarcane rely on manpower, which increases the planting costs. Centralized farmland planting
via land-use right transfer has importance for improving the economic efficiency and increasing the
income of the farmers. A spatial-explicit crop map derived from time-series remote sensing images
forms the basis for land suitability assessment and improves agricultural gain [38]. Jiangzhou is in the
subtropical zone, which is characterized by cloudy and rainy weather [36]; this hinders the acquisition
of cloud-free images. The complete exploitation of partially missing images will lay the foundation for
all passive remote sensing applications.
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Figure 2. Study area of the paper. The gray polygon in subfigure (a) indicates the location of Guangxi
in China. The gray polygon in subfigure (b) indicates the location of Jiangzhou in Guangxi. Subfigure
(c) shows a remote sensing image acquired by Chinese GaoFen1 (GF1) on 15 April 2015.

To test the proposed method, we identified 16 scenes of images obtained in 2015 by the wide
field view (WFV) sensor onboard the Chinese GaoFen1 satellite, which has a spatial resolution of
16 m and four spectral channels: near-infrared, red, green, and blue. The details of the sensor
characteristics are listed in Table 1. The images are processed via Image Processing Machine (IPM)
software (developed by ImageSky) for fine geometric correction. We exclude the images whose
geometric errors after fine geometric correction exceeded one pixel; 12 scenes of an image remain.
The metadata are shown in Table 2. The CCS-masked images, which are clipped by the boundary
of the study area, are shown in Figure 3. Transforming the original grayscale value to a physical
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signal, such as top-of-atmosphere (TOA), may increase the comparability among different images and
improve the reconstruction accuracy. Due to the lack of radiometric correction parameters during the
image distribution, we directly employ the grayscale value. The initial missing area mask is obtained
by automatic processing and modified by human interpretation to ensure an accurate CCS mask.
The missing percentage of different scenes of the image is diverse, and each pixel has approximately
8.5 valid observations.
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The green line indicates the administrative boundary of Jiangzhou, and the white patches inside the
boundary denote missing areas due to the CCS factor.

Table 1. Characteristic of the wide field view sensor onboard Chinese GaoFen1 (GF1). NIR: near-infrared.

Spectral
Band Name Band Range

(µm)
Spatial

Resolution (m)
Field Width

(km)
Revisit Time

(Day)

B1 blue 0.45–0.52

16 800 2
B2 green 0.52–0.59
B3 red 0.63–0.69
B4 NIR 0.77–0.89
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Table 2. Metadata of time-series images. WFV: wide field view.

No. Sensor Image Acquisition Date Missing Area Percent

1 WFV2 19 January 2015 1.2
2 WFV2 3 April 2015 20
3 WFV1 15 April 2015 0.1
4 WFV2 28 June 2015 16.2
5 WFV1 14 July 2015 21.2
6 WFV2 8 August 2015 16.3
7 WFV1 24 August 2015 9.9
8 WFV1 30 September 2015 24.5
9 WFV4 17 October 2015 20.8

10 WFV2 25 October 2015 16.7
11 WFV1 2 November 2015 31.6
12 WFV2 17 December 2015 38.4

We selected three scenes of images with acquisition dates of 19 January, 15 April, and 24 August
for image segmentation. These three multi-temporal images were selected because the differentiation
of the various vegetation in these images was better, and the missing proportion on the image was
relatively small (smaller than 10%). The missing values in the three images were directly filled with
the corresponding pixels in the temporal-adjacent pixel for multi-temporal image segmentation.
We employ the default spectral and spatial bandwidth (i.e., 6.5 and 7, respectively) for image
segmentation [39]. Under the guidance of the reference [39] and visual inspection of the segmentation
result, we set the segmentation scale to 100, which indicates that the lowest pixel number of a STP
approaches 100. We obtain 39,116 STPs. According to the statistics, the lowest number of valid
observations in the time series in different STPs is six. We employ the STP as the basic unit to
reconstruct the missing values and obtain seamless time-series images.

3.2. Experimental Method and Evaluation Method

The profile-based interpolator (PBL) method selects the reference curve based on the
morphological similarity of the time-series curve and estimates missing values [20]. The principal
of the PBL method is similar to that of our method; thus, we select it as the contrasting method.
The difference is that the contrasting method reconstructs the missing area pixel-by-pixel, whereas
our method uses the STP as the basic unit for the missing area reconstruction. To obtain the most
accurate estimation of the missing value, the contrasting method searches for the reference pixel in the
entire image.

We select four types of STPs (i.e., farmland, forest, city, and water) without missing time-series
observations, whose 12 observations are valid in the time-series images. According to the ratio of
the STP type in the study area, the number of STPs of each STP type is 20, 10, 10, and 5, respectively.
We generated the missing values in these STPs and reconstructed them using our method and the
contrasting method. The results are compared with the actual value to evaluate the accuracy of the
two methods.

To quantitatively evaluate the accuracy of the methods, we calculated the error ei of pixel i in the
reconstruction region as follows:

ei = |xi − x̂i| (17)

where xi is the true value, i.e., the simulated missing value, and x̂i is the estimated value by our method
or the contrasting method. The smaller the value of e, the higher the accuracy.

For the total reconstruction accuracy of the missing region, we adopted the root mean square
error (RMSE), standard deviation of the error (SDE), and correlation coefficient (CC) for quantitative
evaluation. The RMSE indicates the deviation between the actual observation and the reconstructed
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result; SDE represents the concentration of the error distribution; and CC depicts the textural similarity
between the actual observation and the reconstructed result. The calculation method is expressed as:

RMSE =

√
1
|φ|∑i∈φ

(ei)
2 (18)

SDE =

√
1
|φ|∑i∈φ

(ei − u(e))2 (19)

CC =

|φ| ∑
i∈φ

xi
_
x i − ∑

i∈φ
xi ∑

i∈φ

_
x i√

|φ| ∑
i∈φ

(xi)
2 − ( ∑

i∈φ
xi)2

√
|φ| ∑

i∈φ
(
_
x i)

2
− ( ∑

i∈φ

_
x i)2

(20)

where φ is the missing area, and |φ| is the number of pixels in the missing area.

3.3. Experimental Results

Figure 4 shows the reconstruction results of our method. Viewing all of the images as a whole,
we can discover the evolution process of the study area, which demonstrates that the capacity
of our reconstructed data can describe the landscape dynamics. Figure 5 provides an original
image (Figure 5a), our result (Figure 5b), and the contracting result (Figure 5c). By magnifying
the reconstruction area (as shown in Figure 5d–f), we observe that (1) the reconstructed region of our
method (Figure 5e) can restore the textural features and provide sufficient information, whereas the
contrasting method (Figure 5f) is substantially influenced by salt-and-pepper noise, which conceals the
local spectral contract of the land surface; and (2) the reconstructed part is consistent with the clear part
of the image without a distinct false edge, which indicates that the reconstructed part and clear part
blend well. In general, our method can maintain the local texture information and the reconstructed
part exhibit better spectral consistency with the remaining clear part.

Figure 6 shows the reconstruction results of our method and the contrasting method for the
four typical simulated missing STPs (i.e., farmland, forest, water, and cities). We observe that the
reconstruction results of our method provide rich texture information, and the consistence with the
surrounding clear pixels is better than that of the contrasting method. The contrasting method shows
some salt-and-pepper noise and a mosaic phenomenon. The fourth and fifth columns of Figure 6
show the error distribution for the NIR band of our method and the contrasting method. The error
distribution of our method is compact, whereas the error distribution range of the contrasting method
is wide. The sixth column of Figure 6 reveals that the error of our method is smaller than that of the
contrasting method in most cases. We conclude that our method outperforms the contrasting method
in terms of accuracy.

Table 3 illustrates the statistical results of our method and the contrasting method. The results
indicate that the RMSE of our method is smaller than or comparable to that of the contrasting method,
which demonstrates that our method can achieve greater accuracy. Note that the RMSE is similar in
different bands, which indicates that our method can preserve the color fidelity. The SDE obtained
by our method is smaller than that of the contrasting method, which indicates that the errors are
concentrated in a small range. The concentrated error distribution will suppress the salt-and-pepper
effect in the reconstructed area. The CC is higher in our result in most cases, which indicates that
the reconstructed STP is linearly correlated with the actual STP, and that the textural information is
more authentic.

Also, from Figure 6 and Table 3, some interesting phenomena can be observed. (1) Our
method obtains lower accuracy for some pixels. This phenomenon can be attributed to our method
reconstructing the STPMO as a whole, whereas the pixel-by-pixel selection may select a more similar
pixel, thus making the reconstructed error become smaller. On the other hand, the pixel-by-pixel
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reference selection may induce an overfitting problem and have a low accuracy, but STP-based
processing will operate in a robust way. (2) The error distribution (SDE) of our method outperforms
that of the contrasting method, whereas the RMSE of our method is larger, such as the water of blue
band (in Table 3). The temporal evolution of water cannot be well-defined, which may induce that
we cannot find a similar STP with type of water for the STPMO, but the pixel-by-pixel selection
can find more proper pixels and yield better accuracy. (3) The performance gain is smaller (or even
performance loss) in the green and red bands between our method and the contrasting method. This can
be attributed to the multi-temporal image segmentation adopting only the NIR band, which loses
information that is present in the green and red bands to extract the STPs.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 20 

 

band (in Table 3). The temporal evolution of water cannot be well-defined, which may induce that 
we cannot find a similar STP with type of water for the STPMO, but the pixel-by-pixel selection can 
find more proper pixels and yield better accuracy. (3) The performance gain is smaller (or even 
performance loss) in the green and red bands between our method and the contrasting method. This 
can be attributed to the multi-temporal image segmentation adopting only the NIR band, which loses 
information that is present in the green and red bands to extract the STPs. 

 
Figure 4. Missing area reconstruction results of our method, subfigure (a–l) represent the 
reconstruction result of the 12 images and the text below the image indicates the acquisition of dates 
of the images. 

Table 3. Statistical result of Our MethoD (OMD) and the Contrasting MethoD (CMD). CC: 
correlation coefficient, RMSE: root mean square error, SDE: standard deviation of the error. 

Band Method 
Farmland Forest Water City 

RMSE SDE CC RMSE SDE CC RMSE SDE CC RMSE SDE CC 

NIR 
OMD 20.24 60.24 0.95 32.99 46.84 0.94 40.29 36.09 0.84 17.74 30.33 0.88 
CMD 33.35 72.61 0.91 54.58 55.15 0.87 26.85 45.74 0.81 26.43 32.29 0.80 

Red 
OMD 20.85 45.29 0.86 21.34 18.48 0.85 40.34 16.31 0.72 13.26 36.56 0.97 
CMD 45.29 45.19 0.87 26.75 24.01 0.67 43.61 16.53 0.83 18.84 40.66 0.88 

Green OMD 16.81 22.9 0.69 8.70 7.39 0.58 10.5 11.8 0.61 9.90 9.13 0.94 
CMD 12.9 23.39 0. 68 8.29 16.06 0.48 4.78 11.78 0.78 9.10 10.22 0.86 

Figure 4. Missing area reconstruction results of our method, subfigure (a–l) represent the reconstruction
result of the 12 images and the text below the image indicates the acquisition of dates of the images.

Table 3. Statistical result of Our MethoD (OMD) and the Contrasting MethoD (CMD). CC: correlation
coefficient, RMSE: root mean square error, SDE: standard deviation of the error.

Band Method
Farmland Forest Water City

RMSE SDE CC RMSE SDE CC RMSE SDE CC RMSE SDE CC

NIR
OMD 20.24 60.24 0.95 32.99 46.84 0.94 40.29 36.09 0.84 17.74 30.33 0.88
CMD 33.35 72.61 0.91 54.58 55.15 0.87 26.85 45.74 0.81 26.43 32.29 0.80

Red
OMD 20.85 45.29 0.86 21.34 18.48 0.85 40.34 16.31 0.72 13.26 36.56 0.97
CMD 45.29 45.19 0.87 26.75 24.01 0.67 43.61 16.53 0.83 18.84 40.66 0.88

Green
OMD 16.81 22.9 0.69 8.70 7.39 0.58 10.5 11.8 0.61 9.90 9.13 0.94
CMD 12.9 23.39 0.68 8.29 16.06 0.48 4.78 11.78 0.78 9.10 10.22 0.86
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our method (OMD); the reconstruction results of the contrasting method (CMD), the error distribution 
(ED) of OMD in the NIR band, the ED of the CMD method in the NIR band, and the comparison of 
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Figure 5. Subfigure (a) is the original image with numerous missing areas; subfigure (b,c) are the
reconstructed result of our method and the reconstructed result of the contrasting method respectively;
(d–f) are zoomed-in local areas of the black box in subfigure (a) of the original image, our method, and the
contrasting method. The white area surrounded by the inner yellow polygon in the subfigures indicate
missing areas. Since our method will reconstruct some partially missing spectral–temporal patches (STPs),
we indicate the original cloud mask with a buffer of 20 pixels (the outermost yellow polygon).
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Figure 6. Reconstruction results for the various simulated missing STP types. Rows 1–4 represent the STP
type of farmland: forest, water, and city. Column (a–f) shows the original image, the results of our method
(OMD); the reconstruction results of the contrasting method (CMD), the error distribution (ED) of OMD
in the NIR band, the ED of the CMD method in the NIR band, and the comparison of the two methods
respectively. In column (f), the blue pixel (whose value is 1) indicates that our method achieves a better
performance; the yellow pixel (whose value is 0) reveals that the two methods have the same performance;
and the red pixel (whose value is −1) indicates that the contrasting method has better performance.
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4. Discussion

4.1. Factors that Influence the Accuracy of the Algorithm

The STP is the basic unit for missing region reconstruction, and the spectral homogeneity and
temporal variation consistency of the STP are important factors that determine the accuracy obtained
by our method. The spectral homogeneity and temporal variation consistency of the STP are primarily
exhibited as the STP size and the grayscale value distribution acquired on various dates. The size of
the STP primarily depends on the selected segmentation scale. The size of the STP in this paper is 100.
Figure 7a shows the distribution of the pixel numbers for the STPs. In particular, the size of 80% of the
STPs is less than 400 pixels. Figure 7b shows the standard deviation of the grayscale value of the STP
in the NIR band and its variation with time. A black point indicates the mean of the grayscale of an
STP, and the red line represents the mean and standard deviation of all of the STPs. The distribution of
the standard deviation for various STPs is relatively small in all of the images, which indicates that the
grayscale characteristics of the STPs have satisfactory temporal evolution consistency. These results
indicate that the multi-temporal image segmentation method that is utilized in this paper can obtain
segmentation results with spectral homogeneity and temporal evolution consistency, which provide a
firm basis for the construction of missing time-series data. Note that the distribution of the grayscale
value for different STPs of the image obtained on 28 June 2015 exhibits a larger range; this is due to the
deficiency from our use of the original grayscale value instead of a physical signal, which decreases
the comparability among different images.
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The underlying land-cover type, missing dates in the time series, and missing numbers are
important factors that affect the accuracy of the algorithm. We calculate the mean RMSE for all of the
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simulated STPs with different types for the NIR band; the results are shown in Figure 8. We observe
the following results:

â For different missing STP types. Figure 8a shows the RMSE with one missing time for four types
of STPs (i.e., farmland, forest, city, and water). As expected, the higher reconstruction accuracy is
obtained for the city, and lower reconstruction accuracy is obtained for forest, farmland, and the
lowest is obtained for water. The spectral variation among the cities is relatively slow, whereas
the forest and farmland exhibit relatively high temporal variation and are difficult to reconstruct.
The estimation error of a water body is the largest, which is primarily attributed to the water
being susceptible to sediment charge and chlorophyll content, which does not have a well-defined
evolution process.

â For the missing date of the images. Figure 8a shows the simulation reconstruction accuracy of
the corresponding data. The influence of the growth period of vegetation (forest and farmland) is
large, and the influence of the stable time is small. The influence on accuracy for cities is small
due to their small changes in the radiation characteristics.

â For the missing number in the time series. Figure 8b shows the variation of RMSE with an
increasing missing number. The RMSE value generally increases as the number of missing
observations increases; thus, the reconstruction accuracy decreases. Since the method in this
paper selects the entire STP as the reference STP, when the reference STP of the missing STP
does not change, the influence on the accuracy of the reconstruction results is small. However,
when the selected reference STP changes, the accuracy exhibits a steep decrease.
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4.2. Error Propagation of the Early Reconstructed STP

Our method sorts STPs according to the missing observation number in the time series in
ascending order and sequentially reconstructs the missing area. When we use the early reconstructed
STP for the late missing STP reconstruction, error propagation or accumulation may occur.
To quantitatively evaluate the error propagations, we perform an experiment to simulate the error
propagation process. Assume that STP(B) is a STPMO and that STP(A) has been selected as the
reference STP, and is utilized to reconstruct STP(B). We obtain the reconstructed result, which is
denoted as STP(B1), i.e., iteration 1. For anther STP, which is denoted as STP(C) and whose reference
STP is STP(B), because the STP(B) has two copies, i.e., the actual STP(B) and reconstructed result
STP(B1), they can be applied to the reconstruction of STP(C), respectively. Therefore, we can obtain
two reconstructed results STP(C1) and STP(C2), i.e., iteration 2. We can compare the reconstructed
results STP(C1) and STP(C2) with STP(C) to evaluate the error propagation problem. For simplicity,
we refer to the obtained result that was reconstructed with the actual observation as the first-generation
result, and refer to the result reconstructed with the first-generation result as the second-generation
result. Similarly, we can define the third-generation result, the fourth-generation result, and the
remaining results.

We simulate the missing area in the nearly cloud-free image (image acquired on 15 April 2015)
with six iterations. Ten simulated STPs have been selected. The mean and standard deviation of the
RMSE calculated using the simulated STPMO are illustrated in Figure 9. The result demonstrates
that (1) the RMSE variation between different generations is small. This finding can be explained
as follows: the mean and standard deviation of the missing observations are estimated using the
remaining clear observations in the time series by linear regression. One observation value variation
(caused by the early reconstructed STP) does not significantly change the estimated value; (2) the
RMSE of a subsequent generation is smaller than that of the earlier generation. This finding can
be attributed to the missing value, which has been previously reconstructed and has a larger error.
The early reconstruction is similar to removing an observation with a large error. As a result, the late
reconstruction can yield a smaller RMSE. The result demonstrates that the utilization of the early
reconstructed STPs does not produce a monotone increasing error, which demonstrates that this
strategy can serve as an effective method for enriching the potential reference STPs and improving the
reconstruction accuracy.
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5. Conclusions

In this paper, we propose an STP-based missing area reconstruction method for a time-series image.
The reconstruction results are characterized by rich texture information (without salt-and-pepper noise)
and are consistent with the original image (without a false edge). Since the missing area is constructed
STP by STP, which considerably decreases the search space for reference STP, the computational
efficiency is substantially improved compared with pixel-by-pixel selection. Our method can complete
the processing in hours, but the contrasting method will complete it in days. The STP represents
different land covers with similar spectral characteristics and temporal evolution, and the actual edges
between different STPs help conceal the false edge induced by the error between the reconstructed
part and the remaining clear part.

Although many factors, such as the SLC-OFF for ETM+ onboard Landsat 7, may cause missing
information in remote sensing images, the CCS is the most common factor. For convenience of
description, we employ CCS-induced information about the missing area to represent the missing
information caused by all of the factors. Our method can also be directly applied for missing area
reconstruction induced by other factors.

However, this paper has some drawbacks to be solved in future studies. (1) Numerous factors,
such as the missing observation number in the time series and the missing land-cover type, affect the
accuracy of our method, which may cause uncertainty in the reconstruction results. (2) The direct
utilization of a grayscale value may produce additional noise to the reconstructed result. (3) The STPs
were obtained by multi-temporal image segmentation using only the NIR band and three scenes of
images selected for conducting multi-temporal image segmentation, which may omit some information
contained in the remaining bands or images. An improved method may adopt an image segmentation
method that can simultaneously handle additional bands and process incomplete data.
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