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Abstract: With high resolution and wide coverage, satellite precipitation products like Global
Precipitation Measurement (GPM) could support hydrological/ecological research in the Tianshan
Mountains, where the spatial heterogeneity of precipitation is high, but where rain gauges are sparse
and unevenly distributed. Based on observations from 46 stations from 2014–2015, we evaluated the
accuracies of three satellite precipitation products: GPM, Tropical Rainfall Measurement Mission
(TRMM) 3B42, and the Climate Prediction Center morphing technique (CMORPH), in the Tianshan
Mountains. The satellite estimates significantly correlated with the observations. They showed a
northwest–southeast precipitation gradient that reflected the effects of large-scale circulations and
a characteristic seasonal precipitation gradient that matched the observed regional precipitation
pattern. With the highest correlation (R = 0.51), the lowest error (RMSE = 0.85 mm/day), and the
smallest bias (1.27%), GPM outperformed TRMM and CMORPH in estimating daily precipitation. It
performed the best at both regional and sub-regional scales and in low and mid-elevations. GPM
had relatively balanced performances across all seasons, while CMORPH had significant biases in
summer (46.43%) and winter (−22.93%), and TRMM performed extremely poorly in spring (R = 0.31;
RMSE = 1.15 mm/day; bias = −20.29%). GPM also performed the best in detecting precipitation
events, especially light and moderate precipitation, possibly due to the newly added Ka-band and
high-frequency microwave channels. It successfully detected 62.09% of the precipitation events that
exceeded 0.5 mm/day. However, its ability to estimate severe rainfall has not been improved as
expected. Like other satellite products, GPM had the highest RMSE and bias in summer, suggesting
limitations in its way of representing small-scale precipitation systems and isolated deep convection.
It also underestimated the precipitation in high-elevation regions by 16%, suggesting the difficulties
of capturing the orographic enhancement of rainfall associated with cap clouds and feeder–seeder
cloud interactions over ridges. These findings suggest that GPM may outperform its predecessors
in the mid-/high-latitude dryland, but not the tropical mountainous areas. With the advantage of
high resolution and improved accuracy, the GPM creates new opportunities for understanding the
precipitation pattern across the complex terrains of the Tianshan Mountains, and it could improve
hydrological/ecological research in the area.
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1. Introduction

Precipitation is a key meteorological variable and a major climate change indicator, directly
affecting the energy and water exchanges between the biosphere and atmosphere. Traditional climate
studies relied heavily on field observations [1], however, it is difficult to develop high-resolution spatial
dataset of precipitation based on field observations [2]. Compared to air temperature, precipitation
has more complex spatiotemporal patterns, which can only be accounted for with a dense network of
rain gauge stations that are usually unavailable in a study area, particularly in the remote mountains
in developing countries [3,4]. Such data issues have seriously hindered ecological and hydrological
studies in the Tianshan Mountains area, which is known as “the water tower” of Central Asia [5],
the largest dryland and one of the most climate sensitive ecosystems in the world [6]. The Tianshan
Mountains are characterized by a large contrast in elevation, from 154 m below sea level to 7439 m
above sea level (asl), which creates highly heterogeneous precipitation that varies from <100 mm/yr in
the low mountain deserts to >900 mm/yr in the windward slopes of the high mountain ranges [7,8].
However, there is only a sparse and unevenly distributed network of meteorological stations across
this complex geography [9]. Many of the stations stopped functioning with the collapse of the former
Soviet Union in the early 1990s [10], and they further worsened the data availability [11]. As the result,
widely used spatially interpolated precipitation datasets like the Climate Research Unit (CRU) are not
reliable for hydrological/ecological research in both the Tianshan Mountains and the Central Asia
dryland [9,12].

The development of satellite remotely sensed datasets has provided an opportunity to retrieve
the spatiotemporal pattern of precipitation with high resolution in remote areas that have had few
field observations [13]. These precipitation products are generated by combining thermal infrared
reflection (IR), passive microwave (PM), and precipitation radar (PR) data from various satellite sensors.
Over the four decades, multiple generations of satellite precipitation projects have been launched,
e.g., the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network
(PERSIANN) [14], the Naval Research Laboratory Global Blended-Statistical Precipitation Analysis
(NRLgeo) [15], the Climate Prediction Center Morphing Technology (CMORPH) [16], the Tropical
Rainfall Measurement Mission (TRMM) Multi-sensor Precipitation Analysis (TMPA) [17], and the
Global Precipitation Measurement (GPM) project [18]. With a high spatial resolution of 0.25◦ and
a long temporal period (1998–2015), the TMPA has been widely applied in ecological/hydrological
researches [17,19,20]. With the highest spatial resolution of ~0.1◦ among the satellite precipitation
datasets, the CMORPH and GPM products also have a huge potential for research in mountainous
areas [16,18]. In particular, the Integrated Multi-Satellite Retrievals for GPM (IMERG) products
have inherited the strengths of previous satellite precipitation projections. In addition, the GPM
Core Observatory is equipped with a multi-channel GPM Microwave Imager (GMI), an expanded
Ku/Ka-band at 13.6 GHz/35.5 GHz, and an upgraded dual-frequency precipitation radar (DPR).
These on-board sensors are more sensitive to light rainfall and snowfall than their predecessors [18].

Satellite precipitation estimates, however, are subject to large uncertainties due to their indirect
nature [21–23]. As uncertainties can emanate from various elements, including the retrieval algorithm,
thermal radiance, and cloud noise in these satellite precipitation products, strict and comprehensive
evaluations are necessary [21,24]. Launched in 2014, the GPM mission is still in the early stages of the
development and evaluation cycle. Duan et al. [25] and Huffman et al. [26,27] provided preliminary
comparisons between the IMERG and TMPA monthly precipitation products. Their studies showed
the two products are similar over land. Liu (2016) [28] made further comparisons on a global scale
and found that IMERG performed better over land with high precipitation. Studies in India also
indicated a notable advantage of IMERG over TMPA in terms of heavy monsoon rainfall detection [29].
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The improvement was attributed to the newly added DPR [30]. However, another study in tropical
Asia showed that IMERG performed worse than TMPA in heavy rain detection, according to 75%
of the gauge stations [31]. The evaluation study in the US mid-Atlantic region also indicated that
IMERG tended to underestimate heavy rain with considerable random errors [32]. Albeit at low
frequency, heavy precipitating events have a significant hydrological impact, leading to extreme floods
and landslides in mountainous areas [25] and would be considerable affection on the global climate
models [30]. Therefore, it is important to evaluate and improve the capacities of satellite instruments
in detecting and estimating heavy rainfall.

After 2016, there were more studies evaluating the performances of IMERG in comparison with
other satellite precipitation products in Xinjiang, China [33,34], where the major part of Tianshan
is located, and in the Tibetan Plateau, a region adjacent to Tianshan [35–37]. Both Chen and Li
(2016) [33] and Lu et al. (2018) [34] found that in comparison with TMPA, IMERG significantly
improved the estimation accuracy of precipitation over the Xinjiang region. They attributed the
improvement to the upgraded DPR and PM sensors, which were supposed to increase GPM’s
sensitivity to light precipitation [33]. However, the study by Wei et al. (2018) [37] showed that
IMERG performed worse than TRMM 3B42 in typical arid/semi-arid regions of China, indicating that
its sensitivity to light precipitation might not have been as improved as expected. In addition, the
precipitation in the Tianshan Mountains is highly influenced by topography and convective systems,
and satellite precipitation products have been found to perform relatively poorly in regions with
strong orographic effects and complex convective systems [33,38,39]. Although previous studies
have confirmed the suitability of satellite precipitation products over complex mountain terrains in
Asia [40,41], their performance in the Tianshan Mountains are still unclear. In general, previous studies
have shown that the IMERG as well as other satellite-retrieved precipitation products have not
been very reliable in the Xinjiang region [33]. A comprehensive evaluation of the performances
of satellite precipitation products in the Tianshan Mountains could provide valuable feedback for
developers to improve the related retrieval algorithm, and for data users to assess their usefulness in
ecological/hydrological research in Central Asia.

In this study, the accuracies of the estimated precipitation in the Tianshan Mountains from three
satellite products: IMERG, TRMM 3B42, and CMORPH were evaluated through comparisons with
observations from 46 stations. The study period was set to April 2014–March 2015, which was the
overlapping time period of the three satellite missions (see Section 2.2.1.). While this short time period
limits the representativeness of the temporal pattern in weather, it is still possible to evaluate whether
the satellite products can reflect the spatial pattern and seasonal variation of precipitation. This study
aims to improve our understanding of the suitability and uncertainty of satellite precipitation products
in the Tianshan Mountains, and evaluates whether the upgrades in GPM actually helped to enhance
its capacity in capturing light precipitation and solid precipitation in the Tianshan Mountains of the
Central Asia dryland.

2. Materials and Methods

2.1. Study Region

Straddling the border between China and Kyrgyzstan, the Tianshan Mountains (39◦30′–45◦45′N,
74◦10′–96◦15′E) are the largest mountain system in Central Asia [42]. Due to the issue of rain-gauge
data availability, only the part of the Tianshan Mountains that are located in China was investigated
in this study (Figure 1). Stretching about 1700 km from west–southwest to east–northeast and with a
central width of about 350 km, the study area (3.5 × 105 km2) accounts for two thirds of the whole
Tianshan Mountain area. The mountains have a rough terrain, with elevation ranging from −154 m
to 7439 m. The tallest peaks in the Tianshan area are a central cluster of mountains forming a knot,
from which ridges extend along the boundaries between China, Kyrgyzstan, and Kazakhstan.
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Sitting in the center of Central Asia, the Tianshan Mountains are the source of major rivers
and lakes in the dryland including the Tarim River, the Syr Darya, and the Ili River (Figure 1).
The region’s atmospheric circulation is controlled by moist westerly Atlantic air masses and cold
northerly/northwesterly inflows. The seasonal pattern of precipitation is controlled by the seasonal
dynamic of the northern jet stream and the southwesterly cyclones from the Arabian Sea, which results
in strong precipitation in spring [10]. Topography also plays a vital role in the formation of distinct local
climates that vary from <100 mm/yr in the low-mountain deserts in the eastern Tianshan Mountains
to >900 mm/yr in the windward slopes of high ranges in the western Tianshan Mountains. Following
the climate gradient, the mountain vegetation/land cover changes from low-mountain deserts/dry
grasslands, to mid-mountain forests, to alpine meadow/dwarf shrubs, before rising into glaciers in
higher elevations.

Based on the monthly mean precipitation data from 163 ground stations, the study area was
further divided into sub-regions with similar climates using the K-nearest neighbor (KNN) method [43].
To find the optimal spatial constraint parameters, we tried a series of K values ranging between 2 and
10. The number of clusters was automatically decided by the clustering analysis tool. This was done
in the analysis by finding the most effective number of clusters. The effectiveness was quantified by
the Calinski–Harabasz pseudo F-statistic that reflects the similarity and difference between the group,
and a larger F means a better clustering result:

F =
R2

nC−1
1−R2

n−nc

where R2 = BGD−WGS
BGD ; WGS is a reflection of within-cluster similarity, and BGD reflects the

between-cluster difference:

BGD =
nc

∑
i=1

ni

∑
j=1

nv

∑
k=1

(vk
ij − vk

j )
2

WGS =
nc

∑
i=1

ni

∑
j=1

nv

∑
k=1

(vk
ij − vk

i )
2

In the above equations,
n = the number of the objects to be regionalized.
ni = the number of the objects in cluster i.
nc = the number of the cluster.
nv = the number of the variables used to cluster objects.
vk

ij = the value of the kth variable of the jth object in the ith cluster.

vk
i = the mean value of the kth variable.

vk
j = the mean value of the kth variable in cluster i.

The highest coefficient of determination R2 = 0.79 and the largest F = 81.18 were reached when
K = 8 and the category is set to 3. Therefore, a value of K = 8 was used for the spatial constraint
condition of KNN, and the clustering analysis yielded three climate sub-regions in the Tianshan
Mountain area, each of which was coherent in precipitation variation and seasonal circulation pattern:
the southern and western Tianshan Mountains (SW TS) that are bounded to the south by the Tarim
Basin and links up with the Pamir Mountains in the southwest; the northern and eastern Tianshan
Mountains (NE TS), which are bounded to the north by the Junggar Basin and meets the Altai
Mountains in the east, and the central Tianshan Mountains (CN TS) that includes the Ili River Valley
and the central mountain clusters [41] (Figure 1). The sub-regions identified in this study agreed well
with the three main climatic sub-regions identified by Sorg et al. (2012) [44]: (1) a moist sub-region
bounded by the outer ranges of Tianshan from the northwest and the inner ranges of Tianshan from
the southwest, corresponding to CN TS, (2) the inner ranges of Tianshan and its arid southern slope,
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corresponding to SW TS, and (3) the eastern ranges of Tianshan that accounted for >70% of the NE TS
area in this study.

Figure 1. The study area and distribution of precipitation monitoring stations.

2.2. Data

2.2.1. Satellite Precipitation Products

The satellite precipitation products used in this study include the GPM IMERG, TRMM 3B42,
and CMORPH (Table 1). CMORPH was developed by the National Oceanic and Atmospheric
Administration Climate Prediction Center (NOAA-CPC). It estimates precipitation from low orbiter
satellite passive microwave observations, compensated by high-resolution IR imagery [16]. The dataset
had 30-min temporal and 0.07◦ spatial resolutions. Despite its high resolutions, the CMORPH may
not perform as well as the TRMM precipitation product in Central Asia and the nearby Tibetan
Plateau [45,46]. This study used the version 7 TRMM data (3B42V7), which had 3 h temporal and 0.25◦

spatial resolution. The TRMM product combined multiple satellite observations, including (the first)
space-based precipitation radar, IR and PM sensor data, and precipitation observations from the Global
Precipitation Climatology Centre (GPCC) [47]. The TRMM project was discontinued in April 2015,
and it was succeeded by the GPM mission, an international constellation of satellites that consisted of
a GPM core observatory satellite and 10 partner satellites. There were several major improvements,
including a Ka-band (35.5 GHz) to the DPR and newly added high-frequency channels (165.6 and
183.3 GHz) to the GMI [30]. IMERG was the level-3 product of the GPM mission [26]. With 30-min
temporal and 0.1◦ spatial resolutions, it inherited the strengths of previous satellite precipitation
projections, including CMORPH, TRMM, and PERSIANN [27]. Considering that the level-3 GPM
IMERG final-run products started in March 2014 while the TRMM was discontinued by April 2015, the
study period was confined to the 12 months between April 2014 and March 2015.

Table 1. The satellite precipitation products used in this study.

Spatial/Temporal Resolutions Temporal Extent Coverage Data Sources

GPM IMERG 0.1◦/0.5 h 2014–present 60◦N–60◦N [48]
TRMM 3B42V7 0.25◦/3 h 1998–2015 50◦N–50◦N [49]

CMORPH 0.07◦/0.5 h 2002–present 60◦N–60◦N [50]

2.2.2. Rain Gauge Data

Hourly and daily precipitation data were obtained from the Xinjiang Meteorological Network
(XMN, [51], last visited on 15 August 2018), which is part of China’s National Meteorological
Network [35,52]. The XMN included 1934 meteorological stations, the majority of which commenced
after 2012. Only 163 of the 1934 stations fell within the study area and were used in this study.
The monthly mean precipitation data from these stations were used to divide the study area into
sub-regions (see Section 2.1). Among the 163 stations, 64 were distributed in CN TS, 58 in the NE TS,
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and 41 in the SW TS (Figure 1). This dataset underwent strict quality controls, including a spatial
consistency check, an internal consistency check, and an extreme value check [53]. In particular,
stations with 20% of missing observations in any 30-day period or with missing observations for
more than five consecutive days were excluded. Otherwise, the missing values in the precipitation
records were filled by linear interpolation. If an interpolated daily precipitation fell below the observed
minimum daily precipitation within the nearest 90 days, it was assumed that there was no precipitation
on that day and the daily precipitation was set to zero. Only the 46 stations that had daily precipitation
records throughout the study period (i.e., April 2014–March 2015) were used in the evaluation study
of the three satellite precipitation products. We found that less than 5% of the stations could be used
in the GPCC [54] for adjustments of the TRMM/GPM products in the study area. In addition, both
the TRMM- and GPM-integrated GPCC data at a monthly scale, while this study used daily data [27].
Therefore, the dependence between the gauge- and satellite-based data should not be a big issue.
To our knowledge, this is the best observational dataset of precipitation in the Tianshan Mountain area.

2.3. Methodology

2.3.1. Spatial Downscaling Method

Mountain precipitation is under the influence of orographic effects, and it has high spatial
variation. To warrant an accurate evaluation, it is necessary to downscale the grid-level satellite
precipitation estimates to the site level at each gauge station [9]. The traditional bilinear interpolation
or direct data extraction approach [55,56], however, ignores the orographic effect, and this could lead
to unwanted effects from spreading convective precipitation during summer [57]. To avoid these
problems, this study adopted the precipitation–topography partial least squares (PTPLS) downscaling
method, which uses the partial least squares method to estimate local topographical influences on
precipitation [9]. Motivated by previous studies, we used elevation, slope, and aspect ratio, as well
as latitude and longitude to estimate the effects of orography and geography on precipitation in the
Tianshan Mountains [58,59]. The following procedures were conducted to downscale the gridded
satellite precipitation estimates to match the site-level observations from the gauge stations:

(1) For a gauge station (S), we identified the grid cell in which that station fell in the spatial dataset
of a satellite precipitation product. This grid cell was noted as A, and the precipitation at station S and
at the grid representing A were noted as PS and PA, respectively;

(2) We identified 25 adjacent grid cells centered around station S in the spatial dataset satellite of
precipitation, and extracted their terrain and geographic information, i.e., elevation (X1), aspect ratio
(X2), slope (X3), latitude (X4), and longitude (X5) from the digital elevation model of the study region
(GTOPO30) [60].

(3) Based on the information, the local terrain effects on precipitation were estimated at site S. Let
X be the matrix of five terrain and geographic factors at each of the 25 grid cells:

X =

 x1,1 . . . x1,5
...

...
...

x25,1 . . . x25,5

 = ( X1 · · · X5 ).

where Xi (i = 1, 2, . . . , 5) are column vectors; and let P be the matrix of precipitation of these 25
grid cells:

PT = ( p1 · · · p25 ),

where PT was the transpose of P. Both X and P were normalized. To estimate the effects of Xi on local
precipitation, matrix W(1) was constructed as:
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W(1) =
1√

∑5
i=1 Cov2(PT , X)

 Cov(PT , X1)
...

Cov(PT , X5)

,

where Cov(PT,X) is the covariance of the time series PT and X. Applying W(1), we obtained the first order
estimate of the terrain/geographic effects on local precipitation T(1) = X*W(1), and the precipitation
was estimated by P = r1 T(1) + P(1), where r1 = PT(1)

‖T(1)‖ and P(1) was the residual vector of P.

Repeating this process by treating P(1) as P, we obtained the second order estimate of the local
terrain/geographic effect, with P(1) = r2 T(2) + P(2) with r2 = PT(2)

‖T(2)‖ and P(2) being the residual vector

of P(1). Repeating this process n times, we obtained the number of estimates {P(1), P(2), . . . , P(n)},
taking into account the portions of the terrain/geographic influences on local precipitation. Among
the estimates, we used the least square method to obtain the precipitation for grid cell A, P’A, from the
most relevant P(i) (1 ≤ i ≤ n).

P’A was the downscaled satellite estimates of precipitation at station S. The value was then
compared to the observations at station S.

2.3.2. Evaluation Metrics

The evaluations were conducted based on daily precipitation datasets, which were aggregated
from the sub-daily data. Following Ma et al. (2016) [35], three quantitative statistical metrics were
used to quantify the accuracy or discrepancy between the rain gauge observations (OBS) and satellite
precipitation estimates: (1) the Pearson linear correlation coefficient (R) that measured the strength
and direction of the linear association between OBS and satellite estimates; (2) the root-mean-square
error (RMSE) that measured the averaged magnitude of the deviation that a satellite product will have
from the OBS; and (3) the relative bias (PB) that measured any persistent bias in satellite estimates to
either underestimate or overestimate OBS:

PB =
∑n

i=1(Pe− Po)
∑n

i=1 Po
× 100% (1)

R =
Cov(Pe− Po)

δeδo
(2)

RMSE =

√
∑n

i=1(Pe− Po)2

n
(3)

where Po and Pe are the OBS and satellite estimated precipitations, respectively; n is the sample size; δ

is standard deviation; and cov() is covariance. The significance of R at the 95% level is tested.
In addition, to better check the appearance possibility of rainfall events from satellite products,

the false alarm ratio (FAR), probability of detection (POD), frequency bias index (FBI), and equitable
threat score (ETS) were calculated [61]. An estimate has a high accuracy when POD, ETS, and FBI
approach 1, and FAR approaches 0. POD measures the ability of the satellite product to correctly detect
rainfall, where the best score is ‘1’ and the worst score is ‘0’. FBI of less (or greater) than 1 measures
under (or over) forecast frequency. FAR measures how often a satellite product incorrectly reports
rainfall events when no rain has occurred, and the score value can range from ‘0’ to ‘1’, where ‘1’ is
the worst score and ‘0’ is the best score. ETS penalizes false alarms and misses equally, and it was
designed to account for hits that would occur purely randomly. The parameter has a value of 0 for no
skill and 1 for perfect correspondence. The detailed information of the evaluation indices can be found
in Tian et al. (2009) [61] and Kenawy et al. (2015) [62].

FBI =
H + F
H + M

(4)
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POD =
H

H + M
(5)

FAR =
F

H + F
(6)

ETS =
H − Hs

H + M + F− Hs
; where Hs =

(H + M)(H + F)
Total

(7)

where M represents the observed precipitation events that are missed by the satellite products, while H
is the correctly detected precipitation events, and F represents the precipitation events that are falsely
reported by the satellite but not observed by the rain gauge. Hs indicates random hits. These parameters
were calculated according to a precipitation threshold and a contingency table between the satellite
estimates and OBS (Table 2). To measure the performances of the satellite estimates for different ranges
of precipitation intensity, multiple evaluations were conducted with eight levels of threshold values:
0.5 mm/day, 1 mm/day, 2 mm/day, 4 mm/day, 8 mm/day, 10 mm/day, 15 mm/day, and 20 mm/day.

Table 2. Contingency table between the rain gauge observations and satellite estimates.

Observations ≥ Threshold Observations < Threshold Total

Estimates ≥ Threshold H F Estimated yes
Estimates < Threshold M Z # Estimated no

Total Observed yes Observed no total

# Z stands for correct estimation of no precipitation.

3. Results

3.1. Accuracy in Describing Regional Precipitation

The observed precipitation ranged from 4.8 ± 5.7 mm in December to 31.3 ± 27.8 mm in
June, with an annual total of 176.7 ± 113.6 mm during the study period. The highest sub-regional
precipitation (297.9 ± 79.0 mm/yr) was observed in CN TS, while the lowest (129.6 ± 85.1 mm/yr)
was found in SW TS. Our evaluations showed that the daily precipitation estimates from three
satellite products were significantly correlated with the OBS (p < 0.05). The GPM product had
the highest correlation of 0.53 ± 0.25, about 17% higher than the correlations of the other two
satellite products (Figure 2a). The GPM also had the lowest RMSE (0.85 ± 0.54 mm/day) and the
smallest bias (PB = 1.27 ± 30.41%) among the three satellite products, according to the observed
precipitation, and the CMORPH data had the highest RMSE (1.15 ± 0.69 mm/day) and the highest
bias (PB = 8.34 ± 42.21%) (Figure 2b,c). While the CMORPH overestimated precipitation, the TRMM
underestimated precipitation by 5.00 ± 34.43% (Figure 2c). Overall, the GPM performed the best while
the CMORPH performed the worst in estimating precipitation in the Tianshan Mountain area.

All satellite products correctly reflected the general pattern of the observed intra-annual variations
in precipitation at the gauge stations during the study period, which peaked in June 2014 and gradually
declined until reaching its lowest point in December 2014 (Figure 3). In particular, the GPM product
closely followed the fluctuations of observed precipitation from month to month throughout the
year, while the CMORPH product showed a false renunciation of precipitation in August and the
TRMM product failed to show the decline of precipitation from April to May. Of the four seasons,
the satellite estimates had the highest correlations with the OBS in autumn (SON), with the highest R
value (0.63 ± 0.25) found in the GPM (Figure 2a). In the winter season (DJF), the satellite estimates
had the lowest correlation with OBS, but also the smallest error (RMSE) (Figure 2a,b). Again,
the GPM had the smallest RMSE (0.53 ± 0.31 mm/day) among the satellite products in winter
(Figure 2b). The satellite estimates had relatively high RMSE in summer (JJA). Moreover, the CMORPH
overestimated the summer precipitation significantly (PB = 46.43± 35.33%). In addition, the CMORPH
significantly underestimated the winter precipitation (PB = −22.93 ± 21.20%). The TRMM also
seriously underestimated the precipitation (PB =−20.29± 39.10%) in spring (MAM). In fact, the TRMM
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performed the poorest in spring of all of the satellite products, by all the quantitative metrics. Overall,
the GPM performed better than the other two satellite products in describing seasonal precipitations,
especially in the autumn. Although it overestimated summer precipitation by 12.17 ± 34.71% and
underestimated winter precipitation by 11.82 ± 27.69%, the magnitudes of the biases were much lower
than that of the CMORPH. Compared to the CMORPH estimates, which showed significant biases
in summer and winter, and the TRMM, which performed extremely poorly in spring, the GPM had
relatively balanced performances across all seasons. It should be noted that Figure 3 only reflects the
average precipitation of the rain gauge stations and it does not represent the pattern of intra-annual
variations of precipitation across the Tianshan Mountain area. Actually, the seasonality of precipitation
varied among the sub-regions (as shown in the following section).

Figure 2. Results of different accuracy estimators for each satellite-based product in different
seasons. The statistical metrics are (a) Pearson linear correlation coefficient, (b) root-mean-square
error, and (c) relative bias. The solid black line represents the median value, the square represents the
average value; from top to bottom, the four horizontal lines are the upper edge line, the upper quartile,
the lower quartile, and the lower edge, respectively, and the empty black dots represent outliers.
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Figure 3. Comparison of the monthly precipitation patterns from the Global Precipitation Measurement
(GPM), Tropical Rainfall Measurement Mission (TRMM), and Climate Prediction Center morphing
technique (CMORPH) products against the OBS from April 2014 to March 2015, averaged for the 46
stations. Shaded area shows 1 standard errors (SE) of the observations. The monthly precipitation
values (averaged for the 46 stations) from all satellite products fell within 1 SE of the OBS.

3.2. Accuracy in Describing Spatial Distribution of Precipitation

The satellite products correctly reflected the spatial pattern of the precipitation in the Tianshan
Mountain area, where the precipitation decreased from the north to the south and from the west
to the east (Figure 4). Although the overall pattern of precipitation was stable throughout the year,
the precipitation gradient was stronger in spring and autumn than in the summer season. Our analysis
showed a gradient in seasonality of precipitation across the study area, with precipitation peaking
in late spring/early summer in the northwest (the CN TS and the northern slope of the Tianshan
Mountains), and summer/early autumn in the southern (SW TS) and the eastern ranges of the Tianshan
Mountains. Compared with the gauge observations, the satellite products tended to underestimate the
spatial gradient in annual precipitation. The precipitation in northeastern Tianshan was overestimated,
especially by the COMORPH product (Figure 4b,k,n), while the precipitation in the Ili River Valley
was underestimated by the TRMM product (Figure 4a,d,m).

Among the three sub-regions, the satellite products performed relatively poorly in the CN TS,
where the smallest R values and the largest RMSEs were found. The CMORPH tended to overestimate
precipitation in the SW TS (Figure 5c), especially in the upper reaches of the Tarim River and Konqi
River (Figures 1 and 4b,h,k). The GPM IMERG performed better than the other two satellite products
in all sub-regions by all quantitative metrics (Figure 5a–c). Among the three sub-regions, the GPM
had the highest R value (0.62 ± 0.14) and lowest RMSE (3.77 ± 1.63 mm/day) in the NE TS; however,
it overestimated the precipitation in the NE TS by 8.96 ± 32.67% and underestimated precipitation in
the CN TS by −4.25 ± 37.95%.
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Figure 4. Spatial patterns of the observed precipitation (mm) by the gauge stations (circles) and the
satellite estimated precipitations estimated by the TRMM (a,d,g,j,m), CMORPH (b,e,h,k,n), and GPM
(c,f,i,l,o) at annual and seasonal scales. ANN: annual (a–c), DJF: winter (d–f), MAM: spring (g–i), JJA:
summer (j–l), SON: autumn (m–o). CN: Central Tianshan area, NE: northeastern Tianshan area, SW:
southwestern Tianshan.

Figure 5. Results of the different accuracy estimators for each satellite-based product in different
sub-regions. The statistical metrics are (a) Pearson linear correlation coefficient, (b) root-mean-square
error, and (c) relative bias. In the box plot, the solid black line represents the median value, the square
represents the average value, and the four horizontal lines from top to bottom are the upper edge line,
upper quartile, lower quartile, and lower edge, respectively, and the hollow black point represents
the outliers.
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3.3. Elevation Impact Analyses

The elevation impacts were further analyzed by comparing the variations of the accuracies
among the low-mountain (<1250 m asl.), mid-mountain (1250–2800 m asl.) and high-mountain
(>2800 m asl.) ranges that were defined according to Jenks Natural Breaks [63]. All satellite products
had the highest correlation with OBS in the mid-mountain areas, with the highest R value (≈0.71)
found in the GPM (Figure 6). In addition, both the GPM and CMORPH had low RMSE in the
mid-mountain areas, and both the GPM and TRMM had a small bias (PB ≈ 2%) in the mid-mountain
areas. Although the GPM performed much better than the other two satellite products in the
low-mountain areas, its correlation with the OBS in the high-mountain areas was relatively low.
Notably, the CMORPH product consistently overestimated the precipitation, particularly in the
low-mountain areas (PB = 29.05%). In comparison, the GPM and TRMM underestimated precipitation
by 13–16% in the high-mountain areas.
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Figure 6. Comparison of the precisions of three satellite-based products at different elevation zones.

3.4. Contingency Statistics

To measure the algorithm performance for different precipitation rates, it is useful to plot the
categorical scores as a function of an increasing precipitation threshold, as shown in Figure 7. According
to the scores of FAR, ETS, and FBI, the GPM performed better than the other two satellite products,
especially for precipitation exceeding 1–10 mm/day (Figure 7a,b,d). It also had the best performance in
detecting light precipitation. It successfully detected 62.09% of the precipitation events that exceeded
0.5 mm/day (Figure 7c). The performance of the TRMM was consistently poorer than the other two
satellite products, according to the scores of ETS and POD, especially for precipitation exceeding
8–15 mm/day, indicating its relatively low skill in detecting precipitation, and its tendency to miss
precipitation events. The CMORPH strongly overestimated the frequency of precipitation, except
for extremely heavy rains (>20 mm/day) (Figure 7a). Its FBI was as high as 3.10 for precipitation
exceeding 2 mm/day. According to the scores of ETS, POD, and FAR, the performances of the
satellite estimates generally declined as the thresholds of precipitation events narrowed to heavier
precipitations (Figure 7b–d). Notably, all satellite estimates had high false alarm ratios (FAR > 50%).

The GPM overestimated the frequency of light precipitation (FBI > 1.5 when thresholds ∈ {0.5, 1,
2}) and underestimated the frequency of heavy precipitation (FBI < 0.5 when thresholds ∈ {15, 20}).
Nevertheless, it performed well in capturing light precipitation, achieving the maximum detection
skill for precipitation exceeding 0.5–2 mm/day (the ETS ranged from 0.23 to 0.24) (Figure 7b), and the
lowest false alarm ratios for precipitation exceeding 1 mm/day to 4 mm/day (Figure 7d).
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Figure 7. (a) frequency bias index (FBI), (b) equitable threat score (ETS), (c) probability of detection
(POD), and (d) false alarm ratio (FAR) values for the different satellite-based products.

4. Discussion

Previous studies have suggested that satellite precipitation products like the GPM IMERG and
TRMM TEMPA are unreliable in the Xinjiang Province of China [33], particularly under the influence
of complex terrain [35]. Our evaluations, however, showed that the daily precipitation estimates
from the three satellite products were significantly correlated with the OBS (p < 0.05) in the Tianshan
Mountains, Xinjiang, China. The spatial patterns of the satellite precipitation products also agreed
well with the observed precipitation gradient, which decreased from the north to the south, and from
the west to the east (Figure 4). This pattern reflects the fact that the Tianshan Mountains as well,
as Central Asia receives its moisture primarily from the westerly flow of the atmosphere. The large-scale
circulation and the mountain barrier effect create a distinct continentality gradient with decreasing
precipitation rates from northwest to southeast [64]. The north–south precipitation gradient, however,
was weakened in the summer (Figure 4j,k,l) when monsoonal circulations from the Pacific and Indian
Oceans also brought in southerly moisture fluxes [44,65,66]. In fact, the Tianshan Mountains themselves
play an important role in enhancing the East Asian summer monsoon [44,65]. In addition, model
simulations suggested that the Tianshan Mountains could enhance the precipitation seasonality
gradient across the Central Asia dryland by blocking western winter precipitation and increasing
eastern summer precipitation [66]. As a result, in Central Asia’s western deserts (Kyzyl Kum and
Kara-Kum), precipitation peaks in the winter and spring, while in the deserts to the east of the Tianshan
Mountains (Taklimakan and Gobi Deserts), precipitation peaks in the summer [67]. This pattern
was confirmed by our satellite precipitation datasets, which showed that precipitation peaked in
late spring/early summer in the northwestern Tianshan Mountains and summer/early autumn in
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the southern and eastern Tianshan Mountains (Figure 4). Our analysis showed that the satellite
precipitation products not only correctly reflected the effects of large-scale circulations on the spatial
and seasonal patterns of precipitation in the study area, but could also provide additional evidence for
the orographic effects of the Tianshan Mountains on the observed precipitation seasonality gradient
across the Central Asia dryland.

According to our evaluation in the Tianshan Mountain area, the GPM IMERG outperformed the
TRMM 3B42V7 and CMORPH products in estimating accumulated precipitation at all spatial scales
and all elevation ranges, except for the alpine region. Although previous evaluations in China indicated
that the GPM products might perform worse than the TRMM products in the winter season [68,69],
our study showed that the IMERG outperformed the other two satellite products in all seasons and had
more balanced seasonal performances. The GPM product also had the best performance in detecting
precipitation in the Tianshan Mountains, particularly in capturing light and moderate precipitation
(i.e., <15 mm/day). Similarly, studies in the adjacent Tibetan Plateau showed that the GPM IMERG
had appreciably better correlations, lower errors, and smaller FAR than its predecessor the TRMM
3B42V7 [35,36]. Like our study, these studies also found an improved detecting ability for light
rainfall events by GPM. This improvement is particularly helpful in retrieving precipitation in the
low-mountain drylands of Central Asia. The improvements could be attributed to the GPM’s newly
added Ka-band (35.5 GHz), which enhanced its ability to capture light precipitation [30].

It should be noted that the findings in this study do not indicate that the GPM products will
outperform their predecessors in all mountainous areas. A study in a tropical mountainous watershed
found no significant improvements from the IMERG in comparison with the TRMM 3B42V7 [31].
In fact, the GPM product performed worse than the TRMM 3B42V7 in heavy rain detection according
to 75% of the gauge stations according to the study by Yuan et al. (2017) [31]. Although studies in
India indicated a notable advantage of the IMERG over the TMPA in terms of heavy monsoon rainfall
detection [70], our study did not find any obvious improvement in the GPM’s ability to detect severe
rainfall in the Tianshan Mountains (Figure 7) [30]. Previous studies showed that the PR attenuation
correction (i.e., surface reference technique and the Hitschfeld and Bordan method applied to correct for
atmospheric attenuation) for the GPM tended to underestimate convective rain, particularly for heavy
rain accumulations [25,71]. Such weakness limits the GPM’s usefulness in tropical mountainous areas
as heavy precipitating events have significant hydrologic impacts on extreme floods and landslides in
these regions. However, our study and several other studies [33,40,41] indicated that the GPM could
significantly improve the estimation accuracy of precipitation over the mountainous areas in high- and
mid-latitude regions, possibly because the high-frequency channels (165.6 and 183.3 GHz) added to
the GMI improved the GPM’s ability to detect solid precipitation and gave it the capability to provide
the probability of the liquid phase for all grid boxes in the IMERG data.

The GPM, like the TRMM, underestimated precipitation by 13–16% at high-elevation regions
in the Tianshan Mountains (Figures 2 and 6). Recent studies in the adjacent Tibetan Plateau also
found that the GPM and TRMM underestimated precipitation at high-elevation regions [35,36].
Studies in the Great Smoky Mountains, USA indicated that the precipitation radar in the TRMM
and GPM tended to underestimate low level orographic enhancement of rainfall associated with
fog, cap clouds, and cloud to cloud feeder–seeder interactions over ridges [25]. Previous studies
indicated that mountain precipitation associated with small-scale systems and isolated deep convection
tended to be underestimated by the GPM and TRMM, which could be attributed to non-uniform
beam-filling effects, due to the spatial averaging of reflectivity at their PR resolution [25,72]. In addition,
the passive microwave algorithms depend primarily on scattering by ice, but the orographic rains
might not produce much ice aloft, thus resulting in the underestimation of precipitation at high
altitudes [73]. These uncertainties in satellite products and a shortage of high-elevation gauge stations
limit our ability to assess the spatiotemporal pattern of precipitation in the alpine Tianshan Mountains,
where prominent climate change is threatening the sustainability of the major glaciers in Central
Asia [44,74].
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Despite the uncertainties, satellite precipitation estimates are very valuable for Tianshan Mountain
studies, where meteorological stations are sparse and mainly distributed in the low mountain
dryland, causing biased estimation of precipitation by spatial interpolation of rain gauge data [11,13].
For example, the widely used CRU data underestimated the precipitation of Tianshan Mountain
by about 34% [75]. For this reason, ecological and hydrological studies in Central Asia, including
Tianshan Mountains, had to rely on climate reanalysis products (CRP; e.g., the NCEP-CFSR data [76])
as precipitation inputs [77]. Our study showed that the GPM product not only has much higher spatial
resolution (5 km vs. >40 km in CRP) but also higher accuracy in estimating mountain precipitation
in Central Asia than the CRP data (e.g., RGPM = 0.65 vs. RCRP ≤ 0.42; RMSEGPM = 0.85 mm/day vs.
RMSECRP ≥ 1.03 mm/day; PBGPM = 1.27% vs. PBCRP ≥ 36%, where GPM and CRP denote the GPM
and climate reanalysis products respectively) [9]. It is noteworthy that the GPM product performed
especially well in the mid-mountain area (Figure 6), where the highest ecosystem biomass/productivity
in Central Asia were found [77]. In addition, the major rivers/lakes in the Central Asia dryland mainly
relied on the water yields from the mid-mountain area of Tianshan [42]. Therefore, the ecological and
hydrological studies in the Tianshan Mountain and Central Asia areas can be significantly benefit by
using the new generation of satellite precipitation products—the GPM IMERG.

5. Conclusions

Estimates by the satellite precipitation products significantly correlated with gauge observations.
They showed a northwest–southeast precipitation gradient that reflected the effects of large-scale
circulations and showed characteristic seasonal precipitation patterns among different sub-regions
that matched the observed precipitation seasonality gradient in the study region. Among the
high-resolution satellite products evaluated in this study, the GPM IMERG outperformed the TRMM
and CMORPH in estimating the accumulated precipitation at all temporal (daily and seasonal) and
spatial (regional and sub-regional) scales, and in low and mid-elevation regions. The GPM had
relatively balanced performances across all seasons, while the CMORPH had significant biases
in summer and winter, and the TRMM performed extremely poorly in spring. In addition, the
GPM had the best performance in detecting precipitation events, especially for light and moderate
precipitation, possibly due to the newly added Ka-band and high-frequency microwave channels.
However, the dual-frequency precipitation radar did not significantly improve the GPM’s ability to
estimate severe rainfall, as expected. The satellite product had the highest RMSE and bias in summer
when small-scale convective rain was common in Tianshan Mountains. These findings suggest that
GPM may outperform its predecessors in the mid- or high-latitude dryland areas, but not in the
tropical mountainous areas. While this short time period in this study limits the representativeness
of the temporal pattern in weather, previous studies with longer time periods generally support
these findings.

The improved accuracy in satellite precipitation data creates new opportunities for understanding
the spatial variation of precipitation across complex terrains, and it provides alternatives for estimating
rainfall in areas where field observations are inadequate or unreliable. The GPM IMERG has relatively
high accuracy and shows more spatially detailed information when compared with its predecessors,
which will extend the application of satellite precipitation data from a global or national scale to a
regional scale, especially in the mountainous areas in mid or high-latitudes. Previous evaluation
studies based on hourly data suggested that the GPM IMERG showed appreciably better correlations
and lower errors than the TRMM 3B42V7 for all assessment indicators [35]. Moreover, the higher
temporal resolution (30 min) of the GPM IMERG in comparison with the TRMM products (3 h) can
help to eliminate the anomalous values in the TRMM-estimated precipitation and could improve the
accuracy of hydrological modeling [33].
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