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Abstract: High-frequency surface wave radar (HFSWR) plays an important role in wide area
monitoring of the marine target and the sea state. However, the detection ability of HFSWR is severely
limited by the strong clutter and the interference, which are difficult to be detected due to many
factors such as random occurrence and complex distribution characteristics. Hence the automatic
detection of the clutter and interference is an important step towards extracting them. In this paper,
an automatic clutter and interference detection method based on deep learning is proposed to improve
the performance of HFSWR. Conventionally, the Range-Doppler (RD) spectrum image processing
method requires the target feature extraction including feature design and preselection, which is not
only complicated and time-consuming, but the quality of the designed features is bound up with the
performance of the algorithm. By analyzing the features of the target, the clutter and the interference
in RD spectrum images, a lightweight deep convolutional learning network is established based
on a faster region-based convolutional neural networks (Faster R-CNN). By using effective feature
extraction combined with a classifier, the clutter and the interference can be automatically detected.
Due to the end-to-end architecture and the numerous convolutional features, the deep learning-based
method can avoid the difficulty and absence of uniform standard inherent in handcrafted feature
design and preselection. Field experimental results show that the Faster R-CNN based method can
automatically detect the clutter and interference with decent performance and classify them with
high accuracy.

Keywords: HFSWR; Range-Doppler spectrum; clutter and interference detection; deep learning;
Faster R-CNN

1. Introduction

High-frequency surface wave radar (HFSWR) transmits high-frequency electromagnetic waves
and receives the backscatter echo based on the mechanism of coastal surface diffraction propagation [1].
By analyzing the received echo, continuous monitoring over a wide range can be achieved,
which includes vessels [2] and the low altitude flying objects over the sea [3] as well as the ocean
dynamics parameters [4–6]. It is widely used and has become the primary technical means in the field
of maritime-state monitoring and target vessel detection.

Since HFSWR has the advantages of all-weather operability, and lower cost and wider range
of observation as compared to other monitoring systems, it plays an important role in continuous
monitoring of our exclusive economic zone and the sea-state. While the strong clutter and interference
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such as the sea clutter, the ionospheric clutter and the radio frequency interference (RFI) severely
limit the detection ability of HFSWR. Hence, the detection and suppression of the clutter [7] and the
interference [8,9] is essential to guarantee the performance of HFSWR, the automatic and accurate
detection in particular is a prerequisite for the suppression of the clutter. Although the suppression of
clutter and interference can be implemented without prior detection, both theoretical and simulation
results show that the signal to noise ratio (SNR) of the target also can be obviously reduced after
implementing clutter/interference suppression [10]. Hence, it is of great importance to detect
whether there is existence of clutter/interference before initiating clutter/interference suppression for
reservation of the signal energy and improvement of computation efficiency.

The most common ways to identify and detect the clutter and the interference based on
Range-Doppler (RD) spectral image are usually divided into two parts: The first step is to extract
features from the images; then use the traditional image segmentation techniques to achieve the goal
or use the machine learning which is currently the cutting-edge technology in the field of identifying
and detecting objects. Chen et al. [11] used the corresponding analysis and cluster analysis methods to
classify interference and clutter in the time and the distance domain. In addition, Jin et al. [12] analyzed
three typical features of the sea clutter, namely, the backward propagation coefficient, Bragg resonance
phenomenon, and the peak amplitude of the Bragg spectrum. These features were sent to support
vector machines (SVMs) to be identified and classified into ground/sea clutter. Li et al. [13] proposed a
method using the Otsu algorithm to adaptively choose the threshold and extract the features of clutter
in the RD spectrum images according to the regional characteristics. Li and Zeng [14] used Gabor
wavelet transform to extract the textural features in the RD spectrum images, which could have better
performance on the feature extraction of the clutter edge. In order to extract more effective features,
Li et al. [15] integrated those features such as statistical property, Gabor features, image characters,
and wavelet transform into a feature library, and then processed them using a genetic algorithm to
select the better features, which were finally sent to the SVM.

Whether a method was based on traditional image segmentation or on machine learning, these
methods relied heavily on artificial feature design and preselection, and hence, human intervention in
these methods could not be avoided. Hence, to overcome the above difficulties, an automatic clutter
and interference detection method based on deep learning network is proposed.

In 2012, Krizhevsky designed a kind of convolutional neural network (CNN) called the
AlexNet [16], which won the image classification competition of ImageNet Large Scale Visual
Recognition Competition (ILSVRC). Since the coming of AlexNet, a number of architectures based
on CNN, such as Zeiler and Fergus model (ZF) [17] and VGG-16 [18] have been proposed to solve
the problems connected with regression and classification. In 2015, Ren et al. proposed the Faster
R-CNN [19] and won many titles, including target identification and detection in the ILSVRC and
Common Objects in Context (COCO). With this model becoming popular, it has been applied in many
image and video processing fields. Compared with the conventional image processing methods,
one of the advantages of the CNN is that it can perform effective feature extraction of the images
via the convolutional computation without threshold selection, therefore, it has a wider scope for
application. Through its use, the drawbacks caused by the technique of artificial feature design can be
totally avoided.

The deep learning method is conventionally designed for big data [20,21], while the specific data
with clutter and interference are limited in practice. Based on the distribution of the clutter/interference
and the structure of R-CNN, we propose a novel algorithm to identify and detect the clutter and
interference based on Faster R-CNN with a new structure of CNN which has much fewer parameters
to be regulated for small datasets. Thanks to the structure of the end-to-end deep CNN, there is no need
to design artificial features. Furthermore, the network is able to locate the clutter and interferences,
which is helpful for their extraction. Once the clutter and interferences are automatically detected,
the suppression algorithm can be started.
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This paper is organized as follows. In Section 2, by analyzing the characteristics of the RD
spectrum of HFSWR and the deep learning network, the sea clutter and interference detection problem
is formulated via Faster R-CNN in the absence of large amount of required data. In Section 3,
we propose a novel detection method based on Faster R-CNN by designing appropriate training and
scoring mechanism. In Section 4, field data experiment results are presented to show the effectiveness
of the proposed method. In Section 5, the results are discussed, and the future work is highlighted.
Finally, the paper is summarized in the concluding remarks in Section 6.

2. Problem Formulation

It is recognized that the deep learning networks usually need a large quantity of data. Since HFSWR
data is not so massive and requires online, real-time processing, a faster R-CNN, with simple architecture
and fewer parameters is needed.

2.1. Faster R-CNN

Faster R-CNN, a real-time object detection network, has a composite architecture which involves
the region proposal network (RPN) and Fast R-CNN. This composite architecture is logical because
while the former module generates region proposals, the latter detects objects. Due to the “Attention”
mechanism, the RPN generating the suggested area frame tells the R-CNN to detect. Furthermore, these
two modules share their convolutional layers, which reduces the computational cost of generating
region proposals, also the burden on the GPU.

2.2. Architecture

For a better learning system, a two-stage four-step architecture is selected. This can be depicted
as follows.

• we use the pretrained model to finetune the RPN module for region proposal task;
• we use those region proposals to train the Fast R-CNN, which is also pretrained by the same

model for detection task;
• we fix the parameters in the convolutional layers and modulate the second RPN after initializing it

by the above detection module, in which the sharing of convolutional computation is completed;
• we repeat step 3 but finetune the parameters, especially those belonging to the second Fast R-CNN.

2.3. Create a Convolution Neural Network

When this composite architecture was first proposed, the ZF and VGG-16 networks were chosen
to be its pretrained model because these two networks separately contain five shared convolutional
layers and 13 shared layers. These deep CNN models are suitable for processing some big datasets
like Pascal VOC 2007/2012 or MS COCO (the quantity reaches to 104 ∼ 105), but they are too
complicated for those specific fields where a few image samples can be gathered. Therefore, as the RD
spectrum data was not large, we create a deep CNN with a relatively small number of parameters to
avoid the disadvantages arising from the mismatch between the complexity of the networks and the
small dataset.

The whole simple structure, shown in Table 1 includes two convolutional layers and a max
pooling layer and two fully connected layers. For detection tasks, the CNN needs to analyze smaller
sections of the image, and we should also take into account the amount of spatial detail the CNN needs
to resolve into conditions, therefore, we select an input size of (32 × 32). The reason why we choose
two convolutional layers with a small kernel [3 3] as the core building blocks of CNN is also considered
in two parts: The dataset of RD spectrum images we collect is small, and the distinction between the
RoIs and the background varies only slightly, hence these two convolutional layers are quite enough
for our purpose. The first convolutional layer close to the input layer describes the basic features such
as borders, shades and simple stripes, while the second layer contains more abstract and practical



Remote Sens. 2018, 10, 1517 4 of 12

features, which can possibly decide whether the predication is true or not. The output neurons of these
two fully connected layers were set to be as small as possible to subtract the parameters of each fully
connected layer, which may account for the majority of the parameters of the whole network.

Table 1. Whole CNN Structure of Faster R-CNN Model.

Layer Layer Name Specific Operation

1 Image Input 32 × 32 × 3 images with zerocenter normalization

2 Convolution 32 × 3 × 3 convolutions with stride [1 1] and
padding [1 1 1 1]

3 ReLu ReLu

4 Convolution 32 × 3 × 3 convolutions with stride [1 1] and
padding [1 1 1 1]

5 ReLu ReLu

6 Maxpooling 3 × 3 max pooling with stride [2 2] and
padding [0 0 0 0]

7 Fully Connected 64 fully connected layers
8 ReLu ReLu
9 Fully Connected 2 fully connected layers

10 Softmax Softmax
11 Classification Output Crossentropyex

According to the structure shown in Table 1, we can easily figure out all the parameters of the
whole CNN network, which are at the most of 3000 (320 + 320 + 64 + 2112 + 130). Compared with the
parameter quantity of more than 60 million for the pretrained ImageNet model of AlexNet, our CNN
structure is well adapted for processing the small dataset of RD spectrum images.

From the whole CNN structure of the R-CNN model shown in Table 2, we can easily see that the
number of parameters in these two models is small. However, Faster R-CNN model spends much less
time on the region proposal and the entire process than R-CNN mainly because 1. the R-CNN model
does not share convolutional weights between region proposal and SVM classification; and 2. the way
that Selective Search as its region proposal method is chosen is much expensive and numerous.

Table 2. Whole CNN Structure of R-CNN Model.

Layer Layer Name Specific Operation

1 Image Input 32 × 32 × 3 images with zerocenter normalization
2 Convolution 32 × 5 × 5 convolutions with stride [1 1] and padding [2 2 2 2]
3 ReLU ReLU
4 Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]
5 Convolution 32 × 5 × 5 convolutions with stride [1 1] and padding [2 2 2 2]
6 ReLU ReLU
7 Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]
8 Convolution 64 × 5 × 5 convolutions with stride [1 1] and padding [2 2 2 2]
9 ReLU ReLU

10 Max Pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]
11 Fully Connected 64 fully connected layers
12 ReLU ReLU
13 Fully Connected 10 fully connected layers
14 Softmax Softmax
15 Classification Output Crossentropyex

3. Detection Method Based on Faster R-CNN

In this section, the Faster R-CNN-based clutter and interference detection scheme is designed by
processing RD spectrum images. To reduce the computation cost, the images are grayscale processed
and cropped to a standard size. The gray processing converts the pixel matrix of an image from three
channels of RGB into one channel, which helps reduce nearly by 2/3 the cost of the convolutional



Remote Sens. 2018, 10, 1517 5 of 12

computation between the input layer and the conv1 layer. We then crop the image for cutting down
the number of the pixels which also helps reduce the computation cost by 1/2. As the images are
preprocessed, we label the region of interests (ROIs) with ground truth boxes and their own titles,
such as sea clutter, ground clutter, ionospheric clutter and RFI, which are labeled separately if they
appear in the same one image. We show an example in Figure 1 to present the possible region in which
clutter and interferences may be localized. Then we send the dataset with the labeled images to the
modified Faster R-CNN, which has less convolutional layers than the pretrained ImageNet model.
After training, we test the images from the test dataset and analyze the results which contain bounding
boxes, labels and scores. The procedure is shown in Figure 2 below. Range means original data done
with Fast Fourier Transform (FFT) in distance domain, while range rate means original data done with
FFT in Doppler domain.
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4. Experiments and Results

4.1. Dataset

The three datasets we use to transform into RD spectrum images are all real data recorded from
the HFSWR system located in Weihai city. A compact HFSWR with a small array named CORMS
(Compact Over-horizon Radar for Marine Surveillance) was used [22]. The first one of the three
datasets does not contain RFI, which is suitable for detection of the sea clutter in our experiment.
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And the last two datasets contain RFI. The smaller one is used to detect RFI, while the larger one is
used to do the comparison experiment between the two different models. Although there is no need to
refine the size of the input images, for computational convenience we still crop the images to the same
size (656 × 875) after the step of graying. We split these images into two parts, training and test image
datasets, in the proportion of seven to three.

4.2. Specific Process

We sent these training images into the input layer to train the four-step network. The network we
built is an end-to-end architecture so that we need to set several parameters till the accomplishment of
the training process. The stochastic gradient descent with momentum (SGDM) was applied to renew
the weights of each layer while adding a momentum can accelerate the convergence speed of the
weights. As the GPU had high memory storage capacity and the low possibility of weights diverging,
we preferred to set the batch size to 128. The learning rates, e = 10−5 and e = 10−6 were separately
applied to the first two-step and the second two-step stages of the networks. As we would use the
above values to train the network for ten times, it meant epoch = 10.

The main parameters of HFSWR are as follows: The working frequency is 4.7 MHz. The coherent
integration time ∆T of the RD image is 300 s. The transmitted wave form is linear frequency modulated
interruptive continuous wave. The RD spectrum can be obtained via solving the range and Doppler of
the target from the field HFSWR data.

In the test result shown in Figure 3, the vertical bar region was identified as the sea clutter region.
The scores on the top indicated that the network had a good performance in the identification of the
clutter. Overall, for the samples in this experiment, we chose the average precision (AP) as the index of
judging the performance on classification and regression of the bounding boxes.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 12 
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the predicted bounding boxes. Under the ideal conditions, these two related indices of Recall and
Precision should be both high values.

As shown in Figure 4, when the Recall is 0.94, the Precision can still stay in a high level near 0.96,
which verifies the effectiveness of the Faster R-CNN-based clutter detection method as highly accurate.
After testing the proposed method over all the samples, the statistical result of AP shows that the
proposed method has a high detection accuracy rate of 100%.

Figure 4. The Precision versus Recall curve of the sea clutter detection in Faster R-CNN.

Moreover, we carried out some experiments on interference detection. We got 200 training
images and 40 testing images and set the parameters as for the previous experiment. Figure 5a shows
the original RD spectrum with RFI distributed in vertical bar region and Figure 5b illustrates the
RFI detection result based on the deep learning network. As an indispensable step in the practical
procedure of real-time HFSWR data processing, once the RFI is detected, the suppression method
would be initiated to extract RFI automatically, which can maintain the strength of the target in the RD
spectrum and reduce the computational cost in comparison with the conventional scheme.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 12 
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4.3. Comparison

In the last series of dataset, we had 410 images which contained all the three pollutions. All the
images contained sea clutter, probably mixed with complex RFI or ionospheric clutter. We separately
sent them into R-CNN [23] and Faster R-CNN model. In Faster R-CNN model, the speed of testing
process reached 0.7 s per image. In our field-data processing, as the acceptable computation time that
satisfies the real-time tracking requirements is below 20 s, the processing time of our method at 0.7 s,
means that our model could be used in practical application and would completely solve the problem
of real-time processing the HFSWR field data.

4.3.1. R-CNN

As R-CNN is the most primitive model used for detection tasks, we chose it for the experimental
comparison to highlight the benefits of the region proposals algorithm, which can produce fewer but
better region proposals. R-CNN was more representative to be chosen as a comparison model because
we can regard R-CNN as a part of its latest incarnation, the Faster R-CNN.

The main structure of R-CNN, shown in Table 2, contains a series of convolutional layers.
These CNN layers are pretrained to classify the dataset called CIFAR-10. During the training, we try to
keep the parameters which are shared between these two networks unchanged.

4.3.2. Classification

Due to the complexity of this dataset, we firstly discuss the classification performance of these two
models. As shown in Table 3, we can easily conclude that there is not much difference between these
two models in these three classification objects except the RFI. In general, the classification results of
Faster R-CNN should be better than those of R-CNN, or at least they should be the same. We deduce
that the cause could be the unequal and complex distribution of these pollutions. For example, RFI in
these images can have several shapes.

Table 3. Test Results of R-CNN and Faster R-CNN in RFI, Sea Clutter and Ionospheric
Clutter Classification.

Feature Name. Model TP TN FP FN Precision Recall Accuracy

RFI R-CNN 102 - - 22 1.0 0.8226 0.8226
RFI Faster R-CNN 78 - - 46 1.0 0.6290 0.6290

seaClutter R-CNN 124 - - - 1.0 1.0 1.0
seaClutter Faster R-CNN 124 - - - 1.0 1.0 1.0
ioClutter R-CNN 122 - 2 - 0.9839 1.0 0.9839
ioClutter Faster R-CNN 122 - 2 - 0.9839 1.0 0.9839

4.3.3. Detection

But when it comes to the performance in detection, Faster R-CNN is much better than R-CNN
as shown in Figure 6. We can see in Figure 6c,f,i the detection results of R-CNN on the ionospheric
clutter, RFI and sea clutter. They are unreasonable and unacceptable. In contrast, the detection results
of Faster R-CNN shown in Figure 6b,e,h are much closer to the ground truth. Even the training dataset
was much more complex than the two test datasets in the above experiments.

When we discuss the AP shown in Table 4, it seems that neither Faster R-CNN, of which the
Precision and Recall Curves are shown in Figure 7, nor R-CNN give good results. From Table 4, we can
see clearly that the detection of model R-CNN does not present a decent bounding box that approaches
the ground truth box in each image while we notice that each AP in each feature is zero. Even though
Faster R-CNN performed a little bit better than R-CNN in this perspective, Faster R-CNN has a better
ability to extract fewer but more useful region proposals and to regress the bounding boxes better,
thanks to the RPN subnetwork. Also, it has a better performance even with the complex samples
which contain multiple forms of RFI.
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as the R-CNN detection examples in ionospheric clutter, RFI and sea clutter: (a–c) show the different
detection results in ionospheric clutter; (d–f) show the different detection results in RFI; (g–i) show the
different detection results in sea clutter.

Table 4. Average Precision of R-CNN and Faster R-CNN in RFI, Ionospheric Clutter and Sea
Clutter Detection.

Feature Name Model AP

RFI R-CNN 0
RFI Faster R-CNN 0.0165

ioClutter R-CNN 0
ioClutter Faster R-CNN 0.0831

seaClutter R-CNN 0
seaClutter Faster R-CNN 0.4566

In Figure 7, APs of ionospheric clutter and RFI detection in Faster R-CNN model are both under
0.1, while the AP of sea clutter is fair enough in this complex samples. We can give an explanation
that these samples contain multiple forms of RFI and we do not subdivide them further. In this
way, the model cannot distinguish the diversity of RFI. In addition, the distribution of the samples
between the training and testing process may be lacking uniformity. For instance, the samples in the
training process do not contain much ionospheric clutter but every sample in testing process contains
ionospheric clutter.
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Figure 7. The three Precision and Recall Curves of ionospheric clutter, RFI and sea clutter tested on
Faster R-CNN, showed in sub-figure (a), (b) and (c), respectively.

5. Discussion

Of the above three experiments: The first two experiments show how the Faster R-CNN model
detects sea clutter and RFI. Notably, the high AP and accurate region proposals both provide the proof
that the deep learning method based on the Faster R-CNN model has good detection performance
in the field of HFSWR. The last experiment gives a comparison between R-CNN and Faster R-CNN
models in a much complex dataset which contains all the three RoIs, namely, sea clutter, ionospheric
clutter and multiple forms of RFI. Compared with the AP results of zero tested by the R-CNN model,
the results show the advantage of having fewer but more accurate region proposals, which is the
benefit from the subnetwork RPN of the Faster R-CNN model.

It is clear that we still need to consider the distribution of the dataset, such as the roughly
equal proportion of positive and negative samples, the subdivision of labels owing to the multiple
forms of a feature and their distribution and the uniformity among the training and testing samples.
There is no doubt that the network based on deep learning has high detection performance, but for
further application, more research is required on the accurate detection of ionospheric clutter and RFI,
which are more complicated for dataset collection, ground truth labeling, and training of the deep
neural network.

6. Conclusions

In this paper, a novel method based on deep learning is proposed for automatic detection of
clutter and interference in the RD spectrum images produced by HFSWR. The network generated from
Faster R-CNN is a framework with RPN and CNN, and is suitable for application in the clutter and
interference detection for HFSWR. Field experimental results show that the proposed method has high
efficiency and precision that fully meet the requirement of the automatic and real-time detection in
practice. Field experiments on ionospheric clutter, RFI and sea clutter detection show that the proposed
method has a classification accuracy of 100% and a decent detection performance. Compared with
the conventional detection methods such as the method based on region extraction and subspace
decomposition, the deep learning method, which can detect the clutter and interference intelligently
and automatically only using the training result, has a wider scope for application.
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