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Abstract: Mangroves are one of the most important coastal wetland ecosystems, and the compositions
and distributions of mangrove species are essential for conservation and restoration efforts. Many
studies have explored this topic using remote sensing images that were obtained by satellite-borne
and airborne sensors, which are known to be efficient for monitoring the mangrove ecosystem. With
improvements in carrier platforms and sensor technology, unmanned aerial vehicles (UAVs) with
high-resolution hyperspectral images in both spectral and spatial domains have been used to monitor
crops, forests, and other landscapes of interest. This study aims to classify mangrove species on Qi’ao
Island using object-based image analysis techniques based on UAV hyperspectral images obtained
from a commercial hyperspectral imaging sensor (UHD 185) onboard a UAV platform. First, the
image objects were obtained by segmenting the UAV hyperspectral image and the UAV-derived
digital surface model (DSM) data. Second, spectral features, textural features, and vegetation indices
(VIs) were extracted from the UAV hyperspectral image, and the UAV-derived DSM data were used
to extract height information. Third, the classification and regression tree (CART) method was used
to selection bands, and the correlation-based feature selection (CFS) algorithm was employed for
feature reduction. Finally, the objects were classified into different mangrove species and other land
covers based on their spectral and spatial characteristic differences. The classification results showed
that when considering the three features (spectral features, textural features, and hyperspectral VIs),
the overall classification accuracies of the two classifiers used in this paper, i.e., k-nearest neighbor
(KNN) and support vector machine (SVM), were 76.12% (Kappa = 0.73) and 82.39% (Kappa = 0.801),
respectively. After incorporating tree height into the classification features, the accuracy of species
classification increased, and the overall classification accuracies of KNN and SVM reached 82.09%
(Kappa = 0.797) and 88.66% (Kappa = 0.871), respectively. It is clear that SVM outperformed KNN for
mangrove species classification. These results also suggest that height information is effective for
discriminating mangrove species with similar spectral signatures, but different heights. In addition,
the classification accuracy and performance of SVM can be further improved by feature reduction.
The overall results provided evidence for the effectiveness and potential of UAV hyperspectral data
for mangrove species identification.
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1. Introduction

Mangroves are one of the most important objects in wetland ecosystems. They usually thrive in the
mud flats of estuarine regions along tropical and subtropical coastlines [1]. They are ecologically and
socioeconomically significant because of their important ecological roles in reducing coastal erosion,
storm protection, flood and flow control, and water quality control, etc. [2]. However, during the past
century, mangrove forests have been in serious decline [3,4]. Accurate mangrove species classification
is an essential component of mangrove forest inventories and wetland ecology management, etc.
Therefore, there is an emerging demand for conservation and restoration initiatives that contribute to
mangrove monitoring.

Remote sensing techniques are known to be fast and efficient for monitoring the mangrove
ecosystem when compared with conventional field work, which is costly, time-consuming, and
sometimes impossible due to the poor accessibility of mangrove areas. In previous studies,
multi-spectral sensors on satellite platforms such as Landsat TM [5] and SPOT XS [6], have been
mostly used for mangrove mapping at global or regional scales [7,8]. Due to poor spatial or spectral
resolution of these traditional multi-spectral images, they have been rarely used for mangrove species
classification. With the development of high-spatial resolution satellite sensors, such as IKONOS [9,10],
Quickbird [11,12], and WorldView-2 [13,14], their high-spatial resolution images are gradually used to
identify mangrove species because of their detailed spatial characteristics, such as textural structure.

Hyperspectral imaging technology plays an important role in improving the ability to differentiate
tree species composition [15]. With imaging spectrometers, hyperspectral images can provide abundant
spectral information with hundreds of narrow bands and a continuous spectral profile for each pixel,
which can greatly increase the amount of detailed information available on land covers [16,17]. Many
papers have been published on the use of hyperspectral data acquired by various satellite-borne or
airborne sensors in mangrove mapping. Hirano et al. used AVIRIS hyperspectral image data to produce
a wetland vegetation map, but the overall map accuracy was only 66% due to inadequate spatial
resolution and a lack of stereo viewing [18]. Koedsin and Vaiphasa discriminated five mangrove species
using EO-1 Hyperion hyperspectral images and refined the classification outcome using differences in
leaf textures [19]. Jia et al. combined EO-1 Hyperion hyperspectral images and high-spatial-resolution
SPOT-5 data to map mangrove species using an object-based method. The classification results
indicated the great potential of using high-resolution hyperspectral data for distinguishing and
mapping mangrove species [20]. Kamal and Phinn verified the effectiveness of high-spatial-resolution
CASI-2 hyperspectral images for mapping mangrove species [21]. According to these previous studies,
hyperspectral images can provide rich spectral information, but for fine classification of tree species,
which relies only on spectral characteristics, classification effectiveness is still limited. As an important
complementary feature, incorporation of spatial structure information makes it possible to classify tree
species on a finer scale [22,23].

Based on the development of sensor technology and remote sensing platforms, more accurate
and timely satellite images with high spectral and spatial resolutions, which have a positive impact on
identification accuracy [24], can be easily acquired. Unmanned aerial vehicles (UAVs), as emerging
unmanned aircraft systems, are increasingly being used as remote sensing platforms [25]. Furthermore,
hyperspectral sensors have been shrinking in size and weight, and their use onboard of UAVs has
become feasible [26–28]. Recently, several studies have addressed the use of UAV hyperspectral
sensors in vegetation [29,30], crop [31–42], forest monitoring [43], and wetland species mapping [44],
etc. However, few specific results have been published on mapping mangrove species using UAV
hyperspectral images.
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Most studies on mangrove species classification were conducted using pixel-based methods
such as spectral angle mapper (SAM) [45,46], maximum likelihood classification (MLC) [7,8,46], and
spectral unmixing [47–49], or object-based methods, such as nearest neighbor (NN) [20,21], random
forest (RF) [50], and support vector machine (SVM) [14,51,52]. Previous studies have shown that
the object-based methods generally outperformed the pixel-based methods for mangrove species
classification, particularly with high-resolution hyperspectral images [21,53–55]. For most object-based
classifications, the spectral features were widely used [56], but spatial or structural information like
textures and morphological characteristics was also considered. Canopy height is also considered
as an important variable in tree species mapping and has been generated using LiDAR, SAR, and
UAV data, etc. From previous studies, incorporation of canopy height into a tree species or crop
species classification can improve classification accuracy [50,57]. Nevertheless, only a few studies have
taken canopy height into account for mangrove classification by integrating LiDAR and multispectral
images [58,59]. Canopy height is rarely used in mangrove species classification based on hyperspectral
images. In addition, a low-cost camera onboard a UAV platform can be used to obtain tree height [4,60].
When compared to LiDAR, the acquisition of UAV images is simpler, faster, and less expensive.

The main objectives of this study are: (1) to investigate the capability of UAV hyperspectral images
for distinguishing and mapping mangrove species using object-based approaches on Qi’ao Island;
and, (2) to determine the importance of height information in mangrove species classification. This
study also analyzes the differences in accuracy of mangrove species mapping with different features
and methods.

The rest of this paper is organized as follows. Section 2 describes the study area and the dataset
used in the experiments. Section 3 presents the methods for image segmentation, feature extraction
and selection, and object-based classification. Section 4 analyzes and discusses the experimental results.
Finally, Section 5 presents a summary of the entire study and the conclusions.

2. Study Area and Data

2.1. Study Area

The Qi’ao Island mangrove nature reserve is situated in northwestern Dawei Bay on Qi’ao Island
(22◦23′40”–22◦27′38”N, 113◦36′40”–113◦39′15”E), Zhuhai City, Guangdong Province, China (see blue
boundary at lower left of Figure 1). Qi’ao Island is the most complete preservation area and the most
concentrated forest stand in Zhuhai City. As a mangrove plant gene pool and the main breeding
ground of migratory birds in the Pearl River Delta, it is also an important typical-subtropical mangrove
wetland ecological ecosystem in the coastal area of southeastern China [14]. Qi’ao Island has the largest
artificially restored mangrove area in China, covering an area of approximately 700 ha [13]. In this
study, due to the acquisition range of the UAV hyperspectral data, a subset of the study area is chosen
as the study site, as shown in the right portion of Figure 1.
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Figure 1. Location of the study area (Qi’ao Island), showing the WorldView-2 image (lower left) (false 
color composite (FCC) composed of R, band 7; G, band 5; B, band 3); and the UHD 185 hyperspectral 
image (right) covering the study site on Qi’ao Island (true color composition of R, band 50, G, band 
25, and B, band 8). The blue polygon shows the boundary of the mangrove area on Qi’ao Island, and 
the yellow polygon shows the extent of the study site. 

2.2. UAV Hyperspectral Data Acquisition 

A high-spatial-resolution hyperspectral image, collected from a commercial UHD 185 
hyperspectral sensor onboard of a multi-rotor UAV platform, was used in this study. The high spatial 
and spectral resolution of the UAV hyperspectral image makes it possible to distinguish different 
mangrove species. The hyperspectral imaging system (Figure 2) consisted of a Cubert UHD 185 
hyperspectral sensor (http://cubert-gmbh.de/) and a Pokini VI/F single-board minicomputer 
(http://www.pokini.de/). The UHD 185 hyperspectral sensor can capture 138 spectral bands with a 
spectral interval of 4 nm, covering the 450–998 nm spectral region. Following the approach that was 
used in previous researches [26,36], 125 bands between 454 and 950 nm were used in this paper. For 
each band, a 50 × 50 image cube with 12-bit radiometric resolution was created. The image capture 
task was conducted at an altitude of 80 m on 15 October 2016, under cloudless conditions at noontime. 
The hyperspectral data were acquired with approximately 0.02 m spatial resolution. In Figure 1, the 
yellow border represents the extent of the data acquisition area, approximately 3 ha. This subset of 
the UAV hyperspectral image covering the study site was used in this research. 

 
Figure 2. Carrier platform multi-rotor unmanned aerial vehicles (UAV) and image capture system 
with UHD 185 hyperspectral sensor. 

2.3. Image Preprocessing 

More than 1000 UHD 185 hyperspectral cubes were acquired by the hyperspectral imaging 
system. After removing the cubes corresponding to the takeoff and landing of the UAV, 625 of the 

Figure 1. Location of the study area (Qi’ao Island), showing the WorldView-2 image (lower left) (false
color composite (FCC) composed of R, band 7; G, band 5; B, band 3); and the UHD 185 hyperspectral
image (right) covering the study site on Qi’ao Island (true color composition of R, band 50, G, band 25,
and B, band 8). The blue polygon shows the boundary of the mangrove area on Qi’ao Island, and the
yellow polygon shows the extent of the study site.

2.2. UAV Hyperspectral Data Acquisition

A high-spatial-resolution hyperspectral image, collected from a commercial UHD 185
hyperspectral sensor onboard of a multi-rotor UAV platform, was used in this study. The high
spatial and spectral resolution of the UAV hyperspectral image makes it possible to distinguish
different mangrove species. The hyperspectral imaging system (Figure 2) consisted of a Cubert UHD
185 hyperspectral sensor (http://cubert-gmbh.de/) and a Pokini VI/F single-board minicomputer
(http://www.pokini.de/). The UHD 185 hyperspectral sensor can capture 138 spectral bands with a
spectral interval of 4 nm, covering the 450–998 nm spectral region. Following the approach that was
used in previous researches [26,36], 125 bands between 454 and 950 nm were used in this paper. For
each band, a 50 × 50 image cube with 12-bit radiometric resolution was created. The image capture
task was conducted at an altitude of 80 m on 15 October 2016, under cloudless conditions at noontime.
The hyperspectral data were acquired with approximately 0.02 m spatial resolution. In Figure 1, the
yellow border represents the extent of the data acquisition area, approximately 3 ha. This subset of the
UAV hyperspectral image covering the study site was used in this research.
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2.3. Image Preprocessing

More than 1000 UHD 185 hyperspectral cubes were acquired by the hyperspectral imaging
system. After removing the cubes corresponding to the takeoff and landing of the UAV, 625 of
the original hyperspectral cubes were used for image fusion, based on the references by [38,39,61].
Each hyperspectral cube and its corresponding panchromatic image were fused using a Cubert-Pilot
software (Cubert GmbH, Ulm, Baden-Württemberg, Germany). The entire UAV hyperspectral image
of the study site was stitched together by fusing hyperspectral images based on the point clouds of the
panchromatic image with automatic image mosaic software, known as Agisoft PhotoScan (Agisoft,
St. Petersburg, Russia).

The UAV hyperspectral image was radiometrically corrected with reference measurements on a
white board and dark measurements by covering the black plastic lens cap. To obtain the reflectance
values, the dark measurements were subtracted from the reference measurements and the actual
measured values [28]. After radiometric calibration, the UAV hyperspectral image was geometrically
corrected with reference to another UAV image that was acquired on 11 September 2015, based on the
image-to-image method. The UAV hyperspectral image with 0.02 m spatial resolution was resampled
into 0.15 m spatial resolution using a nearest-neighbor resampling method. Because of the flat terrain
of the study site, digital surface model (DSM) features obtained from the UAV image using ENVI
LiDAR 5.3 were expected to provide relative height differentiation between different mangrove species
for this study. According to previous studies [60], DSM data obtained from high-resolution images
acquired with UAV can be used in the context of tree height quantification.

2.4. Field Surveys and Sample Collection

To survey the characteristics and spatial distribution of mangrove species in the study site, three
field investigations were carried out on 1–3 July 2016, 1 January 2017, and 6–8 June 2017, on Qi’ao
Island. A handheld GPS device (Garmin 629sc) was used to record the precise locations of mangrove
samples, and then these locations were verified with a UAV image and a WorldView-2 image, acquired
on 11 September 2015, and 18 October 2015, respectively. According to these field investigations, in
the study site, the primary mangrove species included K. candel (KC), A. aureum (AA), A. corniculatum
(AC), S. apetala (SA), A. ilicifolius (AI), H. littoralis (HL), and T. populnea (TP). KC and SA were the
dominant mangrove species, and other mangrove species were fairly scattered over the study site.
SA stands have taller tree height; in contrast, AA and AI stands are shorter and are generally classed
as undergrowth. KC in the study site includes prevalent mature stands and some stands that were
artificially restored in recent years. AC tends to occur with AI. HL and TP are slightly shorter than SA
and are generally mixed. The other three land covers include herbaceous vegetation, such as P. australis
(PA), water area (river), and boardwalks. Due to changes in solar elevation angle, there are some
shadows on the UAV hyperspectral images. In this study, they were considered as a single class in the
object-based classification.

Reference data were collected from the UAV image, the WorldView-2 image, and field observations
that are verified by local experts. As a result, 828 ground truth samples were randomly selected
(Table 1). These samples were then randomly divided into two groups for object-based classification
(493 training samples) and validation (335 testing samples).

The mean reflectance spectra of six mangrove species were obtained from the ground truth
samples based on the UAV hyperspectral image. The general shapes of these mangrove species’ curves
are very similar, with considerable overlap (Figure 3). Bands within the 550-nm spectral region, and
from 750 to 950 nm are different from each other, which is mainly due to differences in pigment content,
such as chlorophyll content, and in internal leaf structure.

In addition, the mean heights for six mangrove species were calculated from the UAV-derived
DSM, as shown in Figure 4a,b. It is clear that the SA stands are generally the highest in the study site,
whereas the AA, the AC, and the AI stands have similar mean heights and the KC, HL, and TP stands
are also similar. These results are consistent with the field investigations and previous studies [62,63].
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Table 1. Number of ground investigation points.

Land-Cover Types Ground Truth Samples
Total

Training Samples Testing Samples

K. candel (KC) 68 58 126
A. aureum (AA) 46 31 77

A. corniculatum (AC) 37 45 82
S. apetala (SA) 71 41 112

A. ilicifolius (AI) 28 22 50
H. littoralis & T. populnea (HL & TP) 60 41 101

water area (river) 93 40 133
P. australis (PA) 22 18 40

boardwalk 14 10 24
shadow 54 29 83

total 493 335 828
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3. Methods

In this study, a UAV hyperspectral image was used for object-based mangrove species
classification. The classification procedure consisted of four steps: (1) selection of the optimal
segmentation parameters and image segmentation; (2) object feature extraction from the UAV
hyperspectral image and the UAV-derived DSM data, band selection using CART, feature selection
using CFS with the best first search algorithm; (3) object-based classification using KNN and SVM;
and, (4) classification accuracy assessment with overall accuracy (OA), kappa coefficient (Kappa), and
confusion matrices. Figure 5 shows the flowchart of object-based mangrove species classification based
on the UAV hyperspectral image.Remote Sens. 2018, 10, 89  7 of 19 
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3.1. Image Segmentation

Image segmentation is the first step of object-based image analysis and is used to generate image
objects that are more homogeneous among themselves than with nearby regions [64]. The accuracy
of image segmentation significantly influences object-based classification accuracy [65]. The most
widely used multi-resolution segmentation, a bottom up region-merging technique [66], was used to
generate image objects. This method requires three primary segmentation parameters: scale, shape,
and compactness. In this study, a series of interactive “trial and error” tests were applied to determine
the proper segmentation parameters [67]. All of the image processing procedures for object-based
classification were carried out using eCognition Developer 9.0 software (Trimble Germany GmbH,
Munich, Germany).

3.2. Feature Extraction and Selection

Object-based classification was developed as a means of incorporating hierarchical spectral and
spatial features into an image mapping procedure. Features associated with the image objects can be
derived from the image segmentation. The ideal features should present the highest separability of
the targeted objects, which means that they have the highest within-class similarity and the lowest
inter-class overlap. Due to similar spectral responses between different mangrove species, it is
necessary to integrate spectral and spatial information to achieve accurate mapping.
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In this study, four sets of features were evaluated, as listed in Table 2. (1) Spectral bands,
including 125 hyperspectral bands (mean values), brightness, and max.diff (maximum intensity
difference), were considered. (2) Hyperspectral vegetation indices (VIs), or narrow-band VIs, which
can generally be considered as an extension of spectral features, were also included. Eight VIs (Table 3)
that were frequently used in previous studies [26] were chosen, including transformed chlorophyll
absorption in reflectance index (TCARI) [68], optimized soil-adjusted vegetation index (OSAVI) [69],
TCARI/OSAVI [68], blue green pigment index 2 (BGI2) [70], photochemical reflectance index (PRI) [71],
normalized difference vegetation index (NDVI) [72], reformed difference vegetation index (RDVI) [73],
and modified chlorophyll absorption ratio index (MCARI 2) [74]. (3) Textural feature is an important
factor in object-based classification. It generally reflects local spatial information that is related to
tonal variations in the image. Various statistical methods have been employed to derive textural
features, the grey level co-occurrence matrix (GLCM) being the most popular [75,76]. Table 4 lists
eight second-order textural measures calculated using GLCM, including angular second moment
(ASM), contrast (CON), correlation (COR), entropy (ENT), homogeneity (HOM), mean, dissimilarity
(DIS), and StdDev (Standard Deviation), which are commonly used for object-based classification.
According to two previous studies [26,77], three bands of the UAV hyperspectral image, i.e., B482, G550,
and R650, were selected to obtain the textural variables. A total of 24 object-based textural features
were generated. (4) Due to the flat terrain of the study site, the DSM was extracted from the UAV
image to determine relative height information for mangrove species with respect to the ground. These
features were subsequently integrated by means of vector stacking and were considered as initial input
variables to train and construct the classification models (the KNN and SVM classifiers) to classify the
UAV hyperspectral image.

Table 2. Object features used for classification.

Object Features Description

spectral bands Mean values of 125 spectral bands for each image object, brightness, and
max.diff.

hyperspectral vegetation indices (vis) Eight VIs, including BGI2, NDVI, RDVI, TCARI, OSAVI, TCARI/OSAVI,
MCARI2, and PRI.

textural features
24 textural features, including ASM, CON, COR, ENT, HOM, MEAN, DIS,
StdDev calculated using GLCM with three bands (that is band 8, band 25, and
band 50).

height information UAV-derived DSM (Digital Surface Model).

Table 3. Vegetation Indices (VIs) derived from hyperspectral bands.

Hyperspectral Vegetation Indices (VIs) Formulation

Blue Green Pigment Index 2 (BGI 2) BGI 2 = ρ1/ρ25
Normalized Difference Vegetation Index (NDVI) NDVI = (ρ87 − ρ55)/(ρ87 + ρ55)

Reformed Difference Vegetation Index (RDVI) RDVI = (ρ87 − ρ55)/(
√
ρ87 + ρ55)

Transformed Chlorophyll Absorption in Reflectance Index
(TCARI) TCARI = 3[(ρ63 − ρ55)− 0.2(ρ63 − ρ25)×(ρ63/ρ55)]

Optimized Soil-Adjusted Vegetation Index (OSAVI) OSAVI = (1 + 0.16)×(ρ87 − ρ55)/(ρ87 + ρ55 + 0.16)
TCARI/OSAVI TCARI/OSAVI

Modified Chlorophyll Absorption Ratio Index 2 (MCARI 2) MCARI 2 =
1.5[2.5(ρ87 − ρ55) − 1.3(ρ87−ρ25)]√
(2ρ87+1)2 − (6ρ87 − 5

√
ρ55) − 0.5

Photo-chemical Reflectance Index (PRI) PRI = (ρ16 − ρ20)/(ρ16 + ρ20)

Note: these parameters, from ρ1 to ρ125, correspond respectively to the 125 bands between 454 nm and 950 nm of
the UHD 185 hyperspectral image.

To reduce the redundant bands of hyperspectral datasets for this study, classification and
regression tree (CART) was selected. CART is a non-parametric [78] and binary decision tree algorithm.
CART can provide stable performance and reliable results in machine learning and data mining
research [79]. It can be used to identify spectral bands with the highest discriminative capabilities
between classes. Previous research has shown that CART can be used to identify those spectral bands
which result in small misclassification rates [80]. Furthermore, the correlation-based feature selection
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(CFS) [81] with the best first search algorithm [82] was used to further select the most effective features
for this study [83]. CFS has been reported to be an effective tool to select the optimal feature subset
from complex remote sensing datasets [84]. As a classic filter feature selection mode, CFS calculates
the feature-class and feature-feature correlation matrices based on the training set, and then search
the feature subset using the best first search algorithm based on the redundancy between features.
In this study, the full training set was used for feature selection. The procedures of CART and CFS
were performed in Weka.

Table 4. Grey level co-occurrence matrix (GLCM)-derived second-order textural measures and their
corresponding equations.

Textural Variables Formulation

ASM (Angular Second Moment) ASM = ∑
i

∑
j

P[i, j]2

CON (Contrast) CON = ∑
i

∑
j

P(i− j)2P[i, j]

COR (Correlation) COR =
∑i ∑j ijP[i,j]−µiµj

σiσj

ENT (Entropy) ENT = −∑
i

∑
j

P[i, j]InP[i, j]

HOM (Homogeneity) HOM = ∑
i

∑
j

P[i,j]
1+(i−j)2

Mean µi = ∑ ip[i, j]

DIS (Dissimilarity) DIS = ∑
i

∑
j

P|i, j|

StdDev (Standard Deviation) σi
2 = ∑ i2 p[i, j]− µi

2

Note: i is the row number of the image; j is the column number of the image; P[i, j] represents the relative frequency
of two neighboring pixels.

3.3. Object-Based Classification

The object-based classification method has been widely used and has proved to be more accurate
and robust than the traditional pixel-based method, which relies solely on spectral information and
tends to be affected by the salt-and-pepper effect [85]. In our experiments, the image objects acquired by
image segmentation were used as the object-based classification unit, and the object features extracted
from the UAV hyperspectral data and the UAV-derived DSM are considered as the classification criteria.
Two classifiers, KNN and SVM, were chosen for object-based mangrove species classification.

3.3.1. KNN

KNN is an instance-based learning method [86,87], and is generally considered as one of the
simplest machine learning classifiers. It has been widely used for high-resolution and hyperspectral
image classification [21,88]. KNN is defined to classify objects based on the closest training samples
in the feature space. The distance between each unknown object and its k nearest neighbors can be
measured. If most of the k neighboring samples of the unknown object belongs to one class, this
object can be placed in the same class. Therefore, the neighborhood value k is a key parameter of
the KNN classifier, which significantly determines the classification result. Through multiple testing
with the training samples of different feature subsets, the optimal neighborhood value k of each KNN
object-based classification experiment was determined.

3.3.2. SVM

SVM is an advanced supervised non-parametric classifier that has been extensively used for
hyperspectral image classification [76,89,90], including mangrove species classification [51,52]. Based
on statistical learning theory, SVM is designed to look for an optimal decision hyperplane in
high-dimensional space, which produces an optimal separation of classes. For ill-posed classification
problems with high-dimensional features, SVM always gives good performance, even with a limited
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number of training samples. For the SVM classifier, the radial basis function (RBF) kernel was chosen
because it has been proven to be superior to other kernels, especially for high-dimensional classification
features. The SVM classifier has two important tuning parameters, cost of constraints (C) and sigma (σ),
which have a great impact on classification accuracy. Before the SVM classifier was trained, the optimal
input parameters were determined by a grid search strategy using the LIBSVM 3.22 library [91]. Finally,
for the SVM object-based classification experiments, the optimal parameter values were derived from
the training samples of different feature subsets.

3.4. Classification Accuracy Assessment

To assess the accuracy of the classification results from the KNN and SVM classifiers and to
evaluate the effectiveness of the UAV hyperspectral data in mangrove species classification, confusion
matrices were created using the 335 testing samples, which were considered as ground truth. For each
of the classification results, the confusion matrix provides the OA, the Kappa, the user’s accuracy (UA),
and the producer’s accuracy (PA) [92].

4. Results and Discussion

4.1. Analysis of Image Segmentation Results

The subsets of the UAV hyperspectral image used for this study were segmented with different
scale factors, shape indices, and compactness parameters, as shown in Figure 6. (1) The segmentation
scale is a critical image segmentation parameter because it determines the maximum allowed
heterogeneity for the resulting image objects based on image features. With the default shape index
(0.1) and compactness (0.5), the scale was set to 150, 100, 50, and 20 in separate tests (Figure 6a). When
the segmentation scale was defined as 150, neighboring objects with similar features were generally
mixed together, for example, AA and PA. When the scale was set to 50 or 20, the segmentation results
were too fragile, which would influence the efficiency of image processing. Hence, a scale of 100
was used to create homogeneous segments. (2) According to the defined scale (100) and the default
compactness (0.5), the shape index was set to 0.1, 0.3, 0.4, and 0.5 in separate tests (Figure 6b). When the
shape index was defined as 0.1, 0.3, and 0.4, adjacent objects with a certain degree of shape similarity
were combined into one class, such as the boardwalks and the water area (river). Through several
interactive tests, the shape index was set to 0.5 to create meaningful objects. (3) With the defined scale
(100) and shape index (0.5), the compactness was set to 0.3, 0.5, 0.7, and 0.9 in separate tests (Figure 6c).
Based on visual inspection of the segmentation results, when the compactness was 0.7, the objects of
each land-cover type were more compact, and the overall segmentation results were visually the best.

Therefore, when considering the clustering characteristics of the mangrove community
distribution in the study site, according to several interactive segmentation experiments, the scale
factor, shape index, and compactness were set to 100, 0.5, and 0.7, respectively.

To determine the optimal spatial unit for the species identification, the UAV hyperspectral image
was resampled to three spatial resolutions, i.e., 0.15 m, 0.3 m, and 0.5 m. Table 5 showed the overall
classification accuracies on four segmentation scales with different spatial resolution, using SVM.
It can be seen that the optimal segmentation scales are different, corresponding to different spatial
resolutions. The larger the spatial resolution, the worse the overall classification performance. The
image with a spatial resolution of 0.15 m and a segmentation scale of 100 gave the highest classification
accuracy. This is in accordance with the segmentation parameters obtained by the interactive test
method, as shown in Figure 6.
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Figure 6. Local representation of image segmentation using different scale factors, shape indices, and
compactness parameters. (a) image segmentation results with different scales (shape index = 0.1,
compactness = 0.5), (b) image segmentation results with different shape indices (scale = 100,
compactness = 0.5), (c) image segmentation results with different compactness values (scale = 100,
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Table 5. Comparison of overall classification accuracy on different spatial resolutions for four
segmentation scales.

Spatial Resolution Scale = 150 Scale = 100 Scale = 50 Scale = 20

0.15 m 83.58 88.66 74.63 60.60
0.3 m 61.49 77.01 86.57 76.12
0.5 m 35.22 54.93 82.69 74.93

4.2. Comparison of Object-Based Classification Results

To evaluate the performance of different feature combinations, five schemes were carried out in
this study using the KNN and SVM classifiers.

• Experiment A: spectral features, using 32 selected spectral bands (mean values) selected from the
CART method, including band 1–2, band 8–10, band 14, band 17–19, band 23–24, band 26, band
28–29, band 48, band 52, band 56–57, band 62–64, band 68–70, band 72, band 75, band 79–80, band
82–83, band 91, and band 107, brightness and max.diff.
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• Experiment B: stacking spectral features in Experiment A, hyperspectral VIs, and textural features.
• Experiment C: stacking spectral features in Experiment A and height information.
• Experiment D: stacking all the features together, including spectral features in Experiment A,

hyperspectral VIs, textural features, and height information.
• Experiment E: 14 features selected from Experiment D using CFS, including four spectral bands,

i.e., band 10, band 23, band 62 and band 91, four hyperspectral VIs, i.e., NDVI, TCARI, MCARI2,
and PRI, five textural features, i.e., ASM (band 50), COR (band 8 and 25), MEAN (band 8), and
StdDev (band 8), and UAV-derived DSM.

Figure 7 presents the classification results for the five feature combinations produced from the
KNN and SVM object-based classification. Both of the classifiers performed well in terms of the spatial
distribution of different mangrove species in the study site. According to visual judgment and based on
several field investigations, the SVM classifier provided better performance. From visual comparison
of the classification maps, two dominated mangrove stands, i.e., KC and SA, showed a clearly zonal
distribution, as well as HL and TP. When compared with KNN, these three mangrove stands were
rarely classified as other stands or land-cover types. Parts of the accompanying PA standing along
the edge of the river were mistakenly classified as boardwalks in most of the KNN results, whereas
this phenomenon rarely occurred in the SVM results. Moreover, by incorporating height information,
mangrove stands, or other land covers with significant height differences, such as SA, AA, and PA
could be well distinguished.
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Figure 7. Classification maps of different feature combinations with different classifiers. (a) Experiment
A using k-nearest neighbor (KNN); (b) Experiment A using support vector machine (SVM);
(c) Experiment B using KNN; (d) Experiment B using SVM; (e) Experiment C using KNN; (f) Experiment
C using SVM; (g) Experiment D using KNN; (h) Experiment D using SVM; (i) Experiment E using
KNN; (j) Experiment E using SVM.
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Tables 6 and 7 summarize the classification accuracy assessment results. These results show that
the SVM classifier outperformed the KNN classifier. The SVM object-based classification gave the best
performance with an overall classification accuracy of 89.55% and a kappa coefficient of 0.882, and the
classification accuracies for most of the mangrove species were greater than 80% in terms of PA and
UA. For example, when compared to KNN, the SVM classifier reduced the miss-classification (the class
in consideration being identified as another class) or misclassification (another class being identified as
the class in consideration) of mangrove species KC and SA, as evidenced by higher values of PA and
UA. Furthermore, in a more detailed comparison, both classifiers gave low values of PA and UA for
the undergrowth AI stands, as a result of interference from the neighboring taller mangrove stands.

Table 6. Summary of classification accuracies of the different classification schemes using KNN.

Classified Category Experiment A Experiment B Experiment C Experiment D Experiment E

PA UA PA UA PA UA PA UA PA UA

K. candel (KC) 81.03 69.12 77.59 70.31 79.31 76.67 79.31 73.02 93.55 67.44
A. aureum (AA) 80.65 49.02 87.10 65.85 100 51.67 90.32 73.68 59.09 72.22

A. corniculatum (AC) 40.00 75.00 60.00 90.00 46.67 84.00 60.00 93.10 97.50 72.22
S. apetala (SA) 80.49 76.74 90.24 86.05 80.49 94.29 90.24 88.10 50.00 100

A. ilicifolius (AI) 50.00 44.00 59.09 76.47 50.00 57.89 77.27 80.95 84.48 87.50
H. littoralis & T. populnea (HL & TP) 63.41 92.86 87.80 85.71 75.61 88.57 90.24 86.05 93.10 87.10

P. australis (PA) 92.50 75.51 92.50 74.00 97.50 73.58 95.00 74.51 57.78 81.25
water area (river) 77.78 77.78 77.78 100 77.78 77.78 77.78 100 77.78 100

boardwalk 10.00 100 50.00 100 20.00 100 50.00 100 90.24 92.50
shadow 93.10 96.43 89.66 89.66 93.10 96.43 89.66 89.66 85.37 83.33
OA (%) 71.34 79.70 76.12 82.09 81.79
Kappa 0.675 0.770 0.730 0.797 0.774

Table 7. Summary of classification accuracies of the different classification schemes using SVM.

Classified Category Experiment A Experiment B Experiment C Experiment D Experiment E

PA UA PA UA PA UA PA UA PA UA

K. candel (KC) 81.03 70.15 93.10 79.41 81.03 79.66 91.38 81.54 93.55 85.29
A. aureum (AA) 74.19 79.31 83.87 81.25 96.77 68.18 83.87 96.30 68.18 88.24

A. corniculatum (AC) 55.56 71.43 77.78 92.11 64.44 76.32 75.56 91.89 100 78.43
S. apetala (SA) 82.93 79.07 87.80 92.31 78.05 94.12 90.24 94.87 100 100

A. ilicifolius (AI) 45.45 66.67 63.64 93.33 50.00 61.11 72.73 88.89 93.10 90.00
H. littoralis & T. populnea (HL & TP) 85.37 74.47 90.24 86.05 92.68 97.44 92.68 76.00 100 90.63

P. australis (PA) 92.50 80.43 100 90.91 100 80.00 97.50 92.86 77.78 89.74
water area (river) 77.78 100 88.89 100 77.78 100 88.89 100 72.22 100

boardwalk 70.00 100 100 100 70.00 100 100 100 90.24 94.87
shadow 96.55 87.50 93.10 90.00 96.55 87.50 96.55 90.32 92.68 95.00
OA (%) 77.61 88.06 82.39 88.66 89.55
Kappa 0.746 0.864 0.801 0.871 0.882

For the scheme in Experiment D, both the KNN and SVM classification results outperformed
three combination schemes, i.e., Experiment A, B and C. Moreover, a comparison between Experiments
A and C, or between Experiments B and D, shows that height information played an important role
in improving classification accuracy. For example, the accuracy increments of taller plants, including
SA, HL, and TP, were greater than those for undergrowth plants, such as AC and AI. The AC stands
had high omission error with a low value of producer’s accuracy in this study site and were often
placed into other classes, i.e., KC, AA, and AI, due to similarities in color and small height differences.
This example demonstrates that height information can complement spectral features to enhance
classification accuracy. For Experiment E, based on 14 features selected by CFS, the classification
accuracy of the KNN classifier was close to that of using all 67 features, while the SVM classifier
obtained higher classification accuracy. These results are consistent with previous studies [93,94] that
feature selection of the high-dimensional classification, for example, plethora of spectral bands or
object features, can improve the performance and efficiency by eliminating redundant information.

The UAV hyperspectral image provides more spectral and spatial details, which improves
classification accuracy, whereas the UAV-derived DSM data provide spatial and structural information
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that increase the capability to separate different mangrove species. For instance, Jia et al. [20] combined
Hyperion data and SPOT-5 data to distinguish four mangrove species, but this study used the UAV
hyperspectral image with both narrower bandwidths and higher spatial resolution and could identify
more mangrove species. Without regard to differences among study sites, the classification accuracies
reported here were higher than those of Kamal and Phinn [21], who used CASI-2 data for three
mangrove species mapping, especially when incorporating height information into the classification
features. These results are also consistent with the results of work by Liu and Bo [57], who concluded
that height information in object-based crop species classification could improve classification accuracy.

5. Conclusions

In this study, object-based mangrove species classification was carried out using the UAV
hyperspectral image from the UHD 185 hyperspectral sensor and UAV-derived DSM data on Qi’ao
Island. To evaluate the effectiveness of the UAV hyperspectral image, comparisons of different
object-based classifiers were performed. In addition, the contributions of the spectral and textural
features of the UAV hyperspectral image, and of the height information obtained from the UAV-derived
DSM data, to the separability of mangrove species were studied.

This paper has contrasted the performance of different feature combinations for mangrove species
object-based classification. Based on qualitative and quantitative analysis of these experiments, the
following conclusions could be drawn. (1) When compared with KNN, the SVM classifier proved
to be more accurate for mangrove species classification by stacking all the features together, with an
overall accuracy of 88.66% and a kappa coefficient of 0.871. Feature reduction can further improve the
classification accuracies and performances of SVM. (2) The combination of spectral features (including
VIs) and spatial features (i.e., textural features and height information) provided higher accuracy of
mangrove species classification. In particular, the height information was effective for separating
the mangrove species with similar spectral signatures, but different mean heights. Experimental
results verify the effectiveness of the framework presented here using the UAV hyperspectral image in
mangrove species classification.
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