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Abstract: In this paper, we investigate the value of different modalities and their combination
for the analysis of geospatial data of low spatial resolution. For this purpose, we present a
framework that allows for the enrichment of geospatial data with additional semantics based on
given color information, hyperspectral information, and shape information. While the different
types of information are used to define a variety of features, classification based on these features
is performed using a random forest classifier. To draw conclusions about the relevance of different
modalities and their combination for scene analysis, we present and discuss results which have been
achieved with our framework on the MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set.
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1. Introduction

Geospatial computer vision deals with the acquisition, exploration, and analysis of our natural
and/or man-made environments. This is of great importance for many applications such as land
cover and land use classification, semantic reconstruction, or abstractions of scenes for city modeling.
While different scenes may generally exhibit different levels of complexity, there are also various
different sensor types that allow for the capture of significantly different scene characteristics. As a
result, the captured data may be represented in various forms such as imagery or point clouds, and
acquired spatial (i.e., geometric), spectral, and radiometric data might be given at different resolutions.
The use of these individual types of geospatial data as well as different combinations is of particular
interest for the acquisition and analysis of urban scenes which provide a rich diversity of both natural
and man-made objects.

A ground-based acquisition of urban scenes nowadays typically relies on the use of mobile laser
scanning (MLS) systems [1–4] or terrestrial laser scanning (TLS) systems [5,6]. While this delivers a
dense sampling of object surfaces, achieving a full coverage of the considered scene is challenging, as
the acquisition system has to be moved through the scene either continuously (in the case of an MLS
system) or with relatively small displacements of a few meters (in the case of a TLS system) to handle
otherwise occluded parts of the scene. Consequently, the considered area tends to be rather small,
i.e., only street sections or districts are covered. Furthermore, the dense sampling often results in a
massive amount of geospatial data that has to be processed. In contrast, the use of airborne platforms
equipped with airborne laser scanning (ALS) systems allows for the acquisition of geospatial data
corresponding to large areas of many km2. However, the sampling of object surfaces is not that dense,
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with only a few tens of measured points per m2. The lower point density in turn makes semantic scene
interpretation more challenging as the local geometric structure may be quite similar for different
classes. To address this lack with respect to the spatial resolution, additional devices such as cameras
or spectrometers are often involved to capture standard color imagery or hyperspectral imagery in
addition to 3D point cloud data. In this regard, however, there is still a lack regarding the relevance
assessment of the different modalities and their combination for scene analysis.

1.1. Contribution

In this paper, we investigate the value of different modalities of geospatial data acquired from
airborne platforms for scene analysis in terms of a semantic labeling with respect to user-defined classes.
For this purpose, we use a benchmark dataset for which different types of information are available:
color information, hyperspectral information, and shape information. Using these types of information
separately and in different combinations, we define feature vectors and classify them with a random
forest classifier. This allows us to reason about the relevance of each modality as well as the relevance
of multi-modal data for the semantic labeling task. Thereby, we focus in particular on analyzing how
valuable shape information is for the extraction of semantic information in challenging scenarios of
low point density. Furthermore, we take into account that, in practical applications, e.g., focusing
on land cover and land use classification, we additionally face the challenge of a classification task
where only very few training data are available to train a classifier. This is due to the fact that expert
knowledge might be required for an appropriate labeling (particularly when using hyperspectral data)
and the annotation process may hence be costly and time-consuming. To address such issues, we
focus on the use of sparse training data of only few training examples per class. In summary, the key
contributions of our work are:

• the robust extraction of semantic information from geospatial data of low spatial resolution;
• the investigation of the relevance of color information, hyperspectral information, and shape

information for the extraction of semantic information;
• the investigation of the relevance of multi-modal data comprising hyperspectral information and

shape information for the extraction of semantic information; and
• the consideration of a semantic labeling task given only very sparse training data.

A parallelized, but not fully optimized Matlab implementation for the extraction of all presented
geometric features is available at http://www.ipf.kit.edu/code.php.

After briefly summarizing related work in Section 1.2, we present our framework for scene
analysis based on multi-modal data in Section 2. Subsequently, in Section 3, we demonstrate the
performance of our framework by evaluation on a benchmark dataset with a specific focus on how
valuable shape information is for the considered classification task. This is followed by a discussion of
the derived results in Section 4. Finally, we provide concluding remarks in Section 5.

1.2. Related Work

In recent years, the acquisition and analysis of geospatial data has been addressed by numerous
investigations. Among a range of addressed research topics, particular attention has been paid to the
semantic interpretation of 3D data acquired via MLS, TLS, or ALS systems within urban areas [1–4,6–11]
which is an important prerequisite for a variety of high-level tasks such as city modeling and planning.
In such a scenario, the acquired 3D data corresponds to a dense sampling of object surfaces preserving
many details of the geometric structure. Thus, the main challenges for scene analysis are typically
represented by the irregular point sampling and the complexity of the observed scene. Numerous
investigations on interpreting such data focused on a data-driven extraction of local neighborhoods
as the basis for feature extraction (Section 1.2.1), on the extraction of suitable features (Section 1.2.2),
and on the classification process itself (Section 1.2.3).

http://www.ipf.kit.edu/code.php
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1.2.1. Neighborhood Selection

When using geometric features for scene analysis, it has to be taken into account that such features
are used to describe the local 3D structure and hence are extracted from the local arrangement of
3D points within a local neighborhood. For the latter, either a spherical neighborhood [12,13] or a
cylindrical neighborhood [14] is typically selected. Such neighborhoods, in turn, can be parameterized
with a single parameter. Assuming that a cylindrical neighborhood is aligned along the vertical
direction, it is normally defined by two parameters: radius and height. When analyzing ALS
data, however, the height is typically set as infinitely large. The remaining parameter is commonly
referred to as the “scale” and in most cases represented by either a radius [12,14] or the number
of nearest neighbors that are considered [13]. As a suitable value for the scale parameter may be
different for different classes [7], it seems appropriate to involve a data-driven approach to select
locally-adaptive neighborhoods of optimal size. Respective approaches for instance rely on the local
surface variation [15] or the joint consideration of curvature, point density, and noise of normal
estimation [16,17]. Further approaches are represented by dimensionality-based scale selection [18],
and eigenentropy-based scale selection [7]. Both of these approaches focus on the minimization of a
functional, which is defined in analogy to the Shannon entropy across different values of the scale
parameter, and select the neighborhood size that delivers the minimum Shannon entropy.

Instead of selecting a single neighborhood as the basis for extracting geometric features [1,7,19],
multi-scale neighborhoods may be involved to describe the local 3D geometry at different scales and
thus also how the local 3D geometry changes across scales. In this regard, one may use multiple
spherical neighborhoods [20], multiple cylindrical neighborhoods [10,21], or a multi-scale voxel
representation [5]. Furthermore, multiple neighborhoods could be defined on the basis of different
entities, e.g., in the form of both spherical and cylindrical neighborhoods [11], in the form of voxels,
blocks, and pillars [22], or in the form of spatial bins, planar segments, and local neighborhoods [23].

In our work, we focus on the use of co-registered shape, color, and hyperspectral information
corresponding to a discrete raster. This allows for data representations in the form of a height map,
color imagery, and hyperspectral imagery. Consequently, we involve local 3× 3 image neighborhoods
as the basis for extracting 2.5D shape information. For comparison, we also assess the local 3D
neighborhood of optimal size for each 3D point individually as the basis for extracting 3D shape
information. The use of multiple neighborhoods is not considered in the scope of our preliminary work
on geospatial computer vision based on multi-modal data, but it should definitively be the subject of
future work.

1.2.2. Feature Extraction

Among a variety of handcrafted geometric features that have been presented in different
investigations, the local 3D shape features, which are represented by linearity, planarity, sphericity,
omnivariance, anisotropy, eigenentropy, sum of eigenvalues, and local surface variation [15,24],
are most widely used, since each of them describes a rather intuitive quantity with a single
value. However, using only these features is often not sufficient to obtain appropriate classification
results (in particular for more complex scenes) and therefore further characteristics of the local 3D
structure are encoded with complementary features such as angular statistics [1], height and plane
characteristics [9,25], low-level 3D and 2D features [7], or moments and height features [5].

Depending on the system used for data acquisition, complementary types of data may be
recorded in addition to the geometric data. Respective data representations suited for scene analysis
are for instance given by echo-based features [9,26], full-waveform features [9,26], or radiometric
features [10,21,27]. The latter can be extracted by evaluating the backscattered reflectance at the
wavelength with which the involved LiDAR sensor emits laser light. However, particularly for a more
detailed scene analysis as for instance given by a fine-grained land cover and land use classification,
multi- or hyperspectral data offer great potential. In this regard, hyperspectral information in particular
has been in the focus of recent research on environmental mapping [28–30]. Such information can,
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for example, allow for distinguishing very different types of vegetation and to a certain degree also
different materials, which can be helpful if the corresponding shape is similar. The use of data
acquired with complementary types of sensors has for instance been proposed for building detection
in terms of fusing ALS data and multi-spectral imagery [31]. Despite the fusion of data acquired
with complementary types of sensors, technological advancements meanwhile allow the use of multi-
or hyperspectral LiDAR sensors [27]. Based on the concept of multi-wavelength airborne laser
scanning [32], two different LiDAR sensors have been used to collect dual-wavelength LiDAR data
for land cover classification [33]. Here, the involved sensors emit pulses of light in the near-infrared
domain and in the middle-infrared domain. Further investigations on land cover and land use
classification involved a multi-wavelength airborne LiDAR system delivering 3D data as well as
three reflectance images corresponding to the green, near-infrared, and short-wave infrared bands,
using either three independent sensors [34], or a single sensor such as the Optech Titan sensor which
carries three lasers of different wavelengths [34,35]. While the classification may also be based on
spectral patterns [36] or different spectral indices [37,38], further work focused on the extraction of
geometric and intensity features on the basis of segments for land cover classification and change
detection [39–41]. Further improvements regarding scene analysis may be achieved via the use of
multi-modal data in the form of co-registered hyperspectral imagery and 3D point cloud data for scene
analysis. Such a combination has already proven to be beneficial for tree species classification [42] as
well as for civil engineering and urban planning applications [43]. Furthermore, the consideration
of multiple modalities allows for simultaneously addressing different tasks. In this regard, it has for
instance been proposed to exploit color imagery, multispectral imagery, and thermal imagery acquired
from an airborne platform for the mapping of moss beds in Antarctica [44]. On the one hand, the
high-resolution color imagery allows an appropriate 3D reconstruction of the considered scene in the
form of a high-resolution digital terrain model and the creation of a photo-realistic 3D model. On the
other hand, the multispectral imagery and thermal imagery allow for drawing conclusions about the
location and extent of healthy moss as well as about areas of potentially high water concentration.

Instead of relying on a set of handcrafted features, recent approaches for point cloud classification
focus on the use of deep learning techniques with which a semantic labeling is achieved via learned
features. This may for instance be achieved via the transfer of the considered point cloud to a
regular 3D voxel grid and the direct adaptation of convolutional neural networks (CNNs) to 3D data.
In this regard, the most promising approaches rely on classifying each 3D point of a point cloud based
on a transformation of all points within its local neighborhood to a voxel-occupancy grid serving as
input for a 3D-CNN [6,45–47]. Alternatively, 2D image projections may be used as input for a 2D-CNN
designed for semantic segmentation and a subsequent back-projection of predicted labels to 3D space
delivers the semantically labeled 3D point cloud [48,49].

In our work, we focus on the separate and combined consideration of shape, color, and
hyperspectral information. We extract a set of commonly used geometric features in 3D on the
basis of a discrete image raster, and we extract spectral features in terms of Red-Green-Blue (RGB) color
values, color invariants, raw hyperspectral signatures, and an encoding of hyperspectral information
via the standard principal component analysis (PCA). Due to the limited amount of training data in the
available benchmark data, only handcrafted features are considered, while the use of learned features
will be subject of future work given larger benchmark datasets.

1.2.3. Classification

To classify the derived feature vectors, the straightforward approach consists in the use of standard
supervised classification techniques such as support vector machines or random forest classifiers [5,7]
which are meanwhile available in a variety of software tools and can easily be applied by non-expert
users. Due to the individual consideration of feature vectors, however, the derived labeling reveals a
“noisy” behavior when visualized as a colored point cloud, while a higher spatial regularity would be
desirable since the labels of neighboring 3D points tend to be correlated.
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To impose spatial regularity on the labeling, it has for instance been proposed to use
associative and non-associative Markov networks [1,50,51], conditional random fields (CRFs) [10,52,53],
multi-stage inference procedures relying on point cloud statistics and relational information across
different scales [19], spatial inference machines modeling mid- and long-range dependencies inherent
in the data [54], 3D entangled forests [55] or structured regularization representing a more versatile
alternative to the standard graphical model approach [8]. Some of these approaches focus on directly
classifying the 3D points, while others focus on a consideration of point cloud segments. In this regard,
however, it has to be taken into account that the performance of segment-based approaches strongly
depends on the quality of the achieved segmentation results and that a generic, data-driven 3D
segmentation typically reveals a high computational burden. Furthermore, classification approaches
enforcing spatial regularity generally require additional effort for inferring interactions among
neighboring 3D points from the training data which, in most cases, corresponds to a larger amount of
data that is needed to train a respective classifier.

Instead of a point-based classification and subsequent efforts for imposing spatial regularity on
the labeling, some approaches also focus on the interplay between classification and segmentation.
In this regard, many approaches start with an over-segmentation of the scene, e.g., by deriving
supervoxels [56,57]. Based on the segments, features are extracted and then used as input for
classification. In contrast, an initial point-wise classification may serve as input for a subsequent
segmentation in order to detect specific objects in the scene [4,58,59] or to improve the labeling [60].
The latter has also been addressed with a two-layer CRF [52,61]. Here, the results of a CRF-based
classification on point-level are used as input for a region-growing algorithm connecting points
which are close to each other and meet additional conditions such as having the same label from
the point-based classification. Subsequently, a further CRF-based classification is carried out on the
basis of segments corresponding to connected points. While the two CRF-based classifications may
be performed successively [61], it may be taken into account that the CRF-based classification on the
segment level delivers a belief for each segment to belong to a certain class [52]. The beliefs in turn may
be used to improve the CRF-based classification on the point level. Hence, performing the classification
in both layers several times in an iterative scheme allows improving the segments and transferring
regional context to the point-based level [52]. A different strategy has been followed by integrating
a non-parametric segmentation model (which partitions the scene into geometrically-homogeneous
segments) into a CRF in order to capture the high-level structure of the scene [62]. This allows
aggregating the noisy predictions of a classifier on a per-segment basis in order to produce a data
term of higher confidence.

In our work, we conduct experiments on a benchmark dataset allowing the separate and combined
consideration of shape, color, and hyperspectral information. As only a limited amount of training
data is given in the available data, we focus on point-based classification via a standard classifier, while
the use of more sophisticated classification/regularization techniques will be subject of future work
given larger benchmark datasets.

2. Materials and Methods

In this section, we present our framework for scene analysis based on multi-modal data in
detail. The input for our framework is represented by co-registered multi-modal data containing color
information, hyperspectral information, and shape information. The desired output is a semantic
labeling with respect to user-defined classes. To achieve such a labeling, our framework involves
feature extraction (Section 2.1) and supervised classification (Section 2.2).

2.1. Feature Extraction

Using the given color, hyperspectral and shape information, we extract the following features:

• Color information: We take into account that semantic image classification or segmentation often
involves color information corresponding to the red (R), green (G), and blue (B) channels in the
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visible spectrum. Consequently, we define the feature set SRGB addressing the spectral reflectance
I with respect to the corresponding spectral bands:

SRGB = {IR, IG, IB} (1)

Since RGB color representations are less robust with respect to changes in illumination,
we additionally involve normalized colors also known as chromaticity values as a simple example
of color invariants [63]:

SRGB,norm =

{
IR

IR + IG + IB
,

IG

IR + IG + IB
,

IB

IR + IG + IB

}
(2)

Furthermore, we use a color model which is invariant to viewing direction, object geometry, and
shading under the assumptions of white illumination and dichromatic reflectance [63]:

SC1,C2,C3 =

{
arctan

(
IR

max(IG, IB)

)
, arctan

(
IG

max(IR, IB)

)
, arctan

(
IB

max(IR, IG)

)}
(3)

Among the more complex transformations of the RGB color space, we test the approaches
represented by comprehensive color image normalization (CCIN) [64] resulting in SCCIN and
edge-based color constancy (EBCC) [65] resulting in SEBCC.

• Hyperspectral information: We also consider spectral information at a multitude of spectral bands
which typically cover an interval reaching from the visible spectrum to the infrared spectrum.
Assuming hyperspectral image (HSI) data across n spectral bands Bj with j = 1, . . . , n, we define
the feature set SHSI,all addressing the spectral reflectance I of a pixel for all spectral bands:

SHSI,all =
{

IB1 , . . . , IBn

}
(4)

• PCA-based encoding of hyperspectral information: Due to the fact that adjacent spectral bands typically
reveal a high degree of redundancy, we transform the given hyperspectral data to a new space
spanned by linearly uncorrelated meta-features using the standard principal component analysis
(PCA). Thus, the most relevant information is preserved in those meta-features indicating the
highest variability of the given data. For our work, we sort the meta-features with respect to the
covered variability and then use the set SHSI,PCA of the m most relevant meta-features Mj with
j = 1, . . . , m which covers p = 99.9% of the variability of the given data:

SHSI,PCA = {M1, . . . , Mm} (5)

• 3D shape information: From the XYZ coordinates acquired via airborne laser scanning and
transformed to a regular grid, we extract a set of intuitive geometric features for each 3D point
whose behavior can easily be interpreted by the user [7]. As such features describe the spatial
arrangement of points in a local neighborhood, a suitable neighborhood has to be selected first for
each 3D point. To achieve this, we apply eigenentropy-based scale selection [7] which has proven
to be favorable compared to other options for the task of point cloud classification. For each 3D
point Xi, this algorithm derives the optimal number ki,opt of nearest neighbors with respect to
the Euclidean distance in 3D space. Thereby, for each case specified by the tested value of the
scale parameter ki, the algorithm uses the spatial coordinates of Xi and its ki neighboring points
to compute the 3D structure tensor and its eigenvalues. The eigenvalues are then normalized
by their sum, and the normalized eigenvalues λi,j with j = 1, 2, 3 are used to calculate the
eigenentropy Ei (i.e., the disorder of 3D points within a local neighborhood). The optimal
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scale parameter ki,opt is finally derived by selecting the scale parameter that corresponds to the
minimum eigenentropy across all cases:

ki,opt = arg min
ki∈K

Ei(ki) (6)

= arg min
ki∈K

{
−

3

∑
j=1

λi,j(ki) ln λi,j(ki)

}
(7)

Thereby, K contains all integer values in [ki,min, ki,max] with ki,min = 10 as lower boundary for
allowing meaningful statistics and ki,max = 100 as upper boundary for limiting the computational
effort [7].
Based on the derived local neighborhood of each 3D point Xi, we extract a set comprising 18 rather
intuitive features which are represented by a single value per feature [7]. Some of these features
rely on the normalized eigenvalues of the 3D structure tensor and are represented by linearity Li,
planarity Pi, sphericity Si, omnivariance Oi, anisotropy Ai, eigenentropy Ei, sum of eigenvalues
Σi, and local surface variation Ci [15,24]. Furthermore, the coordinate Zi, indicating the height of
Xi, is used as well as the distance di between Xi and the farthest point in the local neighborhood.
Additional features are represented by the local point density ρi, the verticality Vi, and the
maximum difference ∆i and standard deviation σi of the height values of those points within
the local neighborhood. To account for the fact that urban areas in particular are characterized
by an aggregation of many man-made objects with many (almost) vertical surfaces, we encode
specific properties by projecting the 3D point Xi and its ki,opt nearest neighbors onto a horizontal
plane. From the 2D projections, we derive the 2D structure tensor and its eigenvalues. Then, we
define the sum Σ2D,i and the ratio R2D,i of these eigenvalues as features. Finally, we use the 2D
projections of Xi and its ki,opt nearest neighbors to derive the distance d2D,i between the projection
of Xi and the farthest point in the local 2D neighborhood, and the local point density ρ2D,i in 2D
space. For more details on these features, we refer to [7]. Using all these features, we define the
feature set S3D:

S3D = {Li, Pi, Si, Oi, Ai, Ei, Σi, Ci, (8)

Zi, di, ρi, Vi, ∆i, σi, (9)

Σ2D,i, R2D,i, d2D,i, ρ2D,i} (10)

• 2.5D shape information: Instead of the pure consideration of 3D point distributions and
corresponding 2D projections, we also directly exploit the grid structure of the provided imagery
to define local 3 × 3 image neighborhoods. Based on the corresponding XYZ coordinates,
we derive the features of linearity L∗i , planarity P∗i , sphericity S∗i , omnivariance O∗i , anisotropy A∗i ,
eigenentropy E∗i , sum of eigenvalues Σ∗i , and local surface variation C∗i in analogy to the 3D case.
Similarly, we define the maximum difference ∆∗i and standard deviation σ∗i of the height values of
those points within the local 3× 3 image neighborhood as features:

S2.5D = {L∗i , P∗i , S∗i , O∗i , A∗i , E∗i , Σ∗i , C∗i , ∆∗i , σ∗i } (11)

• Multi-modal information: Instead of separately considering the different modalities, we also
consider a meaningful combination, i.e., multi-modal data, with the expectation that the
complementary types of information significantly alleviate the classification task. Regarding
spectral information, the PCA-based encoding of hyperspectral information is favorable, because
redundancy is removed and RGB information is already considered. Regarding shape information,
both 3D and 2.5D shape information can be used. Consequently, we use the features derived via
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PCA-based encoding of hyperspectral information, the features providing 3D shape information,
and the features providing 2.5D shape information as feature set SHSI,PCA+3D+2.5D:

SHSI,PCA+3D+2.5D = {SHSI,PCA,S3D,S2.5D} (12)

For comparison only, we use the feature set SRGB+3D as a straightforward combination of color
and 3D shape information, and the feature set SHSI,PCA+3D as a straightforward combination of
hyperspectral and 3D shape information:

SRGB+3D = {SRGB,S3D} (13)

SHSI,PCA+3D = {SHSI,PCA,S3D} (14)

Furthermore, we involve the combination of color/hyperspectral information and 2.5D shape
information as well as the combination of 3D and 2.5D shape information in our experiments:

SRGB+2.5D = {SRGB,S2.5D} (15)

SHSI,PCA+2.5D = {SHSI,PCA,S2.5D} (16)

S3D+2.5D = {S3D,S2.5D} (17)

In total, we test 15 different feature sets for scene analysis. For each feature set, the corresponding
features are concatenated to derive a feature vector per data point.

2.2. Classification

To classify the derived feature vectors, we use a random forest (RF) classifier [66] as a
representative of modern discriminative methods [67]. The RF classifier is trained by selecting random
subsets of the training data and training a decision tree for each of the subsets. For a new feature
vector, each decision tree casts a vote for one of the defined classes so that the majority vote across all
decision trees represents a robust assignment.

For our experiments, we use an open-source implementation of the RF classifier [68]. To derive
appropriate settings of the classifier (which address the number of involved decision trees,
the maximum tree depth, the minimum number of samples to allow a node to be split, etc.), we use
the training data and conduct an optimization via grid search on a suitable subspace.

3. Results

In the following, we present the involved dataset (Section 3.1), the used evaluation metrics
(Section 3.2), and the derived results (Section 3.3).

3.1. Dataset

We evaluate the performance of our framework using the MUUFL Gulfport Hyperspectral and
LiDAR Airborne Data Set [69] and a corresponding labeling of the scene [70] shown in Figure 1.
The dataset comprises co-registered hyperspectral and LiDAR data which were acquired in November
2010 over the University of Southern Mississippi Gulf Park Campus in Long Beach, Mississippi, USA.
According to the specifications, the hyperspectral data were acquired with an ITRES CASI-1500 and
correspond to 72 spectral bands covering the wavelength interval between 367.7 nm and 1043.4 nm
with a varying spectral sampling (9.5 nm to 9.6 nm) [71]. Since the first four bands and the last four
bands were characterized by noise, they were removed. The LiDAR data were acquired with an Optech
Gemini ALTM relying on a laser with a wavelength of 1064 nm. The provided reference labeling
addresses 11 semantic classes and a remaining class for unlabeled data. All data are provided on a
discrete image grid of 325× 220 pixels, where a pixel corresponds to an area of 1 m × 1 m.
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Figure 1. MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set: RGB image (left); height
map (center) and provided reference labeling (right).

3.2. Evaluation Metrics

To evaluate the performance of different configurations of our framework, we compared the
respectively derived labeling to the reference labeling on a per-point basis. Thereby, we consider the
evaluation metrics represented by the overall accuracy OA, the kappa value κ, and the unweighted
average F̄1 of the F1-scores across all classes. To reason about the performance for single classes,
we furthermore consider the classwise evaluation metrics represented by recall R and precision P.

3.3. Results

First, we focus on the behavior of derived features for different classes. Exploiting the
hyperspectral signatures of all data points per class, we derive the mean spectra for the different
classes as shown in the left part of Figure 2. The corresponding standard deviations per spectral
band are shown in the right part of Figure 2 and reveal significant deviations for almost all classes.
Regarding the shape information, a visualization of the derived 2.5D shape information is given in
Figure 3, while a visualization of exemplary 3D features is given in Figure 4.
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Figure 2. Mean spectra of the considered classes across all 64 spectral bands (left) and standard
deviations of the spectral reflectance for the considered classes across all 64 spectral bands (right).
The color encoding is in accordance with the color encoding defined in Figure 1.



Remote Sens. 2018, 10, 2 10 of 20

Sphericity Linearity Planarity Omnivariance Anisotropy 

Local surface variation Sum of eigenvalues Eigenentropy Maximum height difference Std. of height values 
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Figure 3. Visualization of the derived 2.5D shape information. The values for the maximum height
difference and the standard deviation of height values are normalized to the interval [0, 1].

Sphericity Linearity Planarity 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 4. Visualization of the derived 3D shape information for the features of linearity Li, planarity Pi,
and sphericity Si.

Regarding the color information, it can be noticed that each of the mentioned transformations
of the RGB color space results in a new color model with three components. Accordingly, the
result of each transformation can be visualized in the form of a color image as shown in Figure 5.
Note that the applied transformations reveal quite different characteristics. The representation
derived via edge-based color constancy (EBCC) [65] is visually quite similar to the original RGB
color representation.
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C1,C2,C3 RGB RGB,norm CCIN EBCC 

Figure 5. Aerial image in different representations—the original image in the RGB color space and
color-invariant representations derived via a simple normalization of the RGB components, the
C1,C2,C3 color model proposed in [63], comprehensive color image normalization (CCIN) [64], and
edge-based color constancy (EBCC) [65].

In the next step, we split the given dataset with 71,500 data points into disjoint sets of training
examples used for training the involved classifier and test examples used for performance evaluation.
First of all, we discard 17,813 data points that are labeled as C12 (“unlabeled”), because they might
contain examples of different other classes (c.f. black curves in Figure 2) and hence not lead to
an appropriate classification. Then, we randomly select 100 examples per remaining class to form
balanced training data as suggested in [72] to avoid a negative impact of unbalanced data on the
training process. The relatively small number of examples per class is realistic for practical applications
focusing on scene analysis based on hyperspectral data [30]. All 52,587 remaining examples are used as
test data. To classify these test data, we define different configurations of our framework by selecting
different feature sets as input for classification. For each configuration, the derived classification results
are visualized in Figure 6. The corresponding values for the classwise evaluation metrics of recall R,
precision P and F1-score are provided in Tables 1–3, respectively, and the values for the overall accuracy
OA, the kappa value κ, and the unweighted average F̄1 of the F1-scores across all classes are provided
in Table 4.

4. Discussion

The derived results reveal that color and shape information alone are not sufficient to obtain
appropriate classification results (c.f. Table 4). This is due to the fact that several classes are
characterized by a similar color representation (c.f. Figure 1) or exhibit a similar geometric behavior
when focusing on the local structure (c.f. Figures 3 and 4). A closer look at the classwise evaluation
metrics (c.f. Tables 1–3) reveals poor classification results for several classes, yet the transfer to different
color representations (c.f. SRGB,norm, SC1,C2,C3, SCCIN, and SEBCC) seems to be beneficial in comparison
to the use of RGB color representations. In contrast, hyperspectral information allows for a better
differentiation of the defined classes. However, it can be observed that a PCA should be applied to the
hyperspectral data to remove redundancy which becomes visible in neighboring spectral bands that
are highly correlated (c.f. Figure 2) and has a negative impact on classification (c.f. Table 4).

Furthermore, we can observe a clear benefit of the use of multi-modal data in comparison to
the use of data of a single modality. The significant gain in OA, κ, and F̄1 (c.f. Table 4) indicates
both a better overall performance and a significantly better recognition of instances across all classes,
which can indeed be verified by considering the classwise recall and precision values and F1-scores
(c.f. Tables 1–3). The best performance is obtained when using the feature set SHSI,PCA+3D+2.5D

representing a meaningful combination of hyperspectral information, 3D shape information, and 2.5D
shape information.
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RGB,norm Reference RGB C1,C2,C3 

HSI,all CCIN EBCC HSI,PCA 

RGB + 3D 3D 2.5D HSI,PCA + 3D 

3D + 2.5D RGB + 2.5D HSI,PCA + 2.5D HSI,PCA + 3D + 2.5D 

Figure 6. Visualization of the reference labeling (top left) and the classification results derived
for the MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set [69,70] by using the
feature sets SRGB, SRGB,norm, SC1,C2,C3, SCCIN, SEBCC, SHSI,all, SHSI,PCA, S3D, S2.5D, SRGB+3D,
SHSI,PCA+3D, SRGB+2.5D, SHSI,PCA+2.5D, S3D+2.5D, and SHSI,PCA+3D+2.5D (HSI: hyperspectral imagery;
PCA: principal component analysis). The color encoding is in accordance with the color encoding
defined in Figure 1.
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Table 1. Recall values (in %) obtained for the semantic classes C01–C11 defined in Figure 1.

Feature Set C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11

SRGB 49.41 82.25 36.69 68.83 80.61 82.79 73.23 28.37 47.16 73.49 84.02
SRGB,norm 60.44 76.07 52.80 82.16 68.16 71.86 74.26 71.40 45.14 92.77 78.70
SC1,C2,C3 58.71 66.43 44.97 82.39 66.10 72.13 75.48 67.67 50.12 91.57 72.78
SCCIN 61.14 69.74 54.14 84.59 70.68 71.58 74.12 67.49 42.72 92.77 80.47
SEBCC 53.05 86.93 30.65 59.44 81.34 86.07 71.45 44.98 43.81 75.90 88.76
SHSI,all 78.99 82.30 40.03 73.99 85.56 76.50 86.73 48.21 50.43 63.86 90.53
SHSI,PCA 79.54 83.41 57.79 66.34 86.61 92.62 88.70 67.38 62.41 93.98 94.67
S3D 73.36 12.88 7.58 20.05 20.81 95.63 13.31 83.55 22.65 62.65 71.60
S2.5D 80.94 16.38 17.15 1.39 21.00 21.86 3.52 20.36 16.03 40.96 65.09
SRGB+3D 80.67 82.49 22.54 39.98 61.12 97.81 75.39 80.73 42.88 73.49 80.47
SHSI,PCA+3D 80.55 83.48 55.94 79.37 85.21 98.36 87.76 86.29 48.02 97.59 95.27
SRGB+2.5D 79.05 86.28 22.44 52.84 67.36 92.35 42.90 23.19 41.01 71.08 88.17
SHSI,PCA+2.5D 84.71 79.40 61.06 75.32 78.85 91.26 87.53 70.78 53.00 92.77 94.67
S3D+2.5D 76.80 18.63 18.92 21.49 17.14 95.36 9.56 80.77 13.23 57.83 71.01
SHSI,PCA+3D+2.5D 85.46 81.34 58.98 64.48 89.95 94.54 89.03 89.53 60.54 92.77 96.45

Table 2. Precision values (in %) obtained for the semantic classes C01–C11 defined in Figure 1.

Feature Set C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11

SRGB 94.98 45.60 59.25 38.29 71.72 10.99 19.37 79.94 34.69 4.62 6.31
SRGB,norm 93.89 51.34 70.44 43.10 79.41 7.53 30.37 82.36 21.99 18.78 33.08
SC1,C2,C3 92.94 53.85 73.46 40.09 79.66 7.47 29.28 74.06 18.78 7.44 21.89
SCCIN 93.23 55.01 72.48 37.02 80.30 7.00 30.19 83.48 22.00 19.01 29.00
SEBCC 94.81 45.47 60.24 43.16 70.99 9.85 21.40 65.20 41.46 4.82 14.10
SHSI,all 96.84 52.14 72.73 47.76 72.34 83.09 37.09 80.17 34.56 3.26 37.68
SHSI,PCA 96.79 55.14 81.46 58.84 79.63 50.00 38.40 91.65 42.34 11.98 23.74
S3D 88.45 22.31 27.77 17.05 37.38 21.62 11.50 62.84 15.58 1.08 2.68
S2.5D 76.86 18.72 49.57 7.48 32.96 12.52 10.20 29.85 10.05 0.81 1.86
SRGB+3D 93.26 51.85 58.52 30.30 82.89 52.72 33.24 81.72 28.05 4.14 11.69
SHSI,PCA+3D 92.96 63.87 83.17 56.12 93.91 55.47 37.63 82.90 46.92 16.80 56.10
SRGB+2.5D 92.97 46.28 59.57 28.96 69.08 22.75 26.85 46.11 22.92 3.58 13.87
SHSI,PCA+2.5D 95.52 63.14 78.91 60.98 81.55 59.54 39.08 81.71 43.91 11.90 75.12
S3D+2.5D 87.31 23.64 46.33 11.83 42.25 21.56 12.93 69.11 13.18 1.37 2.31
SHSI,PCA+3D+2.5D 95.04 64.49 81.50 67.54 91.14 65.41 40.94 95.48 47.97 11.37 69.96

Table 3. F1-scores (in %) obtained for the semantic classes C01–C11 defined in Figure 1.

Feature Set C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11

SRGB 65.01 58.67 45.31 49.20 75.91 19.40 30.64 41.88 39.97 8.70 11.74
SRGB,norm 73.54 61.31 60.36 56.54 73.36 13.62 43.11 76.49 29.58 31.24 46.58
SC1,C2,C3 71.97 59.48 55.79 53.94 72.25 13.54 42.19 70.72 27.32 13.76 33.65
SCCIN 73.85 61.51 61.99 51.50 75.19 12.75 42.91 74.64 29.04 31.56 42.63
SEBCC 68.03 59.71 40.63 50.01 75.81 17.67 32.93 53.24 42.60 9.06 24.33
SHSI,all 87.01 63.84 51.64 58.05 78.40 79.66 51.96 60.21 41.01 6.20 53.22
SHSI,PCA 87.32 66.39 67.61 62.36 82.98 64.94 53.60 77.66 50.46 21.25 37.96
S3D 80.20 16.33 11.91 18.43 26.74 35.26 12.34 71.73 18.46 2.13 5.17
S2.5D 78.85 17.47 25.48 2.34 25.65 15.92 5.23 24.21 12.35 1.59 3.62
SRGB+3D 86.51 63.68 32.55 34.47 70.36 68.52 46.14 81.22 33.92 7.83 20.42
SHSI,PCA+3D 86.31 72.37 66.89 65.75 89.35 70.94 52.67 84.56 47.46 28.67 70.61
SRGB+2.5D 85.44 60.24 32.60 37.42 68.21 36.50 33.03 30.86 29.41 6.81 23.97
SHSI,PCA+2.5D 89.79 70.34 68.84 67.39 80.18 72.06 54.04 75.85 48.03 21.10 83.77
S3D+2.5D 81.72 20.84 26.87 15.26 24.39 35.16 10.99 74.48 13.20 2.68 4.47
SHSI,PCA+3D+2.5D 89.99 71.94 68.43 65.98 90.54 77.32 56.08 92.41 53.53 20.26 81.09
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Table 4. Classification results derived with different feature sets.

Feature Set OA [%] κ [%] F̄1 [%]

SRGB 53.76 45.31 40.58
SRGB,norm 64.03 56.16 51.43
SC1,C2,C3 60.96 52.72 46.78
SCCIN 63.89 55.94 50.69
SEBCC 56.56 48.01 43.09
SHSI,all 70.91 63.16 57.38
SHSI,PCA 76.19 69.72 61.14
S3D 49.40 36.71 27.15
S2.5D 45.15 28.13 19.34
SRGB+3D 68.51 59.87 49.60
SHSI,PCA+3D 78.52 72.40 66.87
SRGB+2.5D 61.19 50.82 40.41
SHSI,PCA+2.5D 78.00 71.60 66.49
S3D+2.5D 51.70 38.95 28.19
SHSI,PCA+3D+2.5D 81.71 76.31 69.78

In the following, we consider three exemplary parts of the scene in more detail. These parts
are shown in Figure 7 and the corresponding classification results are visualized in Figure 8.
The classification results derived for Area 1 are shown in the top part of Figure 8 and reveal that in
particular the extracted 3D shape information can contribute to the detection of the given building,
while the extracted 2.5D shape information is less suitable. For both cases, however, the different
types of ground surfaces surrounding the building can hardly be correctly classified since other
classes have a similar geometric behavior for the given grid resolution of 1 m. Using color and
hyperspectral information, the surroundings of the building are better classified (particularly for the
classes “mostly-grass ground surface” and “mixed ground surface”, but also for the classes “road”
and “sidewalk”), while the correct classification of the building remains challenging with the RGB
and EBCC representations. Even the use of all hyperspectral information is less suitable for this area,
while the PCA-based encoding of hyperspectral information with lower dimensionality seems to
be favorable. For Area 2, the derived classification results are shown in the center part of Figure 8.
While the building can be correctly classified using 3D shape information, the use of 2.5D shape
information hardly allows reasoning about the given building in this part of the scene. This might be
due to the fact that the geometric properties in the respectively considered 3× 3 image neighborhoods
are not sufficiently distinctive for the given grid resolution of 1 m. The data samples belonging to
the flat roof of the building then appear similar to the data samples obtained for different types of
flat ground surfaces. For the surrounding of the building, a similar behavior can be observed as
for Area 1, since shape information remains less suitable to differentiate between different types of
ground surfaces for the given grid resolution unless their roughness varies significantly. In contrast,
color and hyperspectral information deliver a better classification of the observed area, but tend to
partially interpret the flat roof as the “road”. This could be due to the fact that the material of the
roof exhibits similar characteristics in the color and hyperspectral domains as the material of the road.
For Area 3, the derived classification results are shown in the bottom part of Figure 8 and reveal that
classes with a similar geometric behavior (e.g., the classes “mixed ground surface”, “dirt and sand”,
“road” and “sidewalk”) can hardly be distinguished using only shape information. Some data samples
are even classified as “water” which is also characterized by a flat surface, but is not present in this
part of the scene. Using color information, the derived results seem to be better. With the RGB and
EBCC representations, however, it still remains challenging to distinguish the classes “mixed ground
surface” and “dirt and sand”, while the representation derived via simple normalization of the RGB
components, the C1,C2,C3 representation, and the CCIN representation seem to perform much better
in this regard. Involving hyperspectral information leads to a similar behavior as that visible for the use
of color information for Area 3, but the classification results appear to be less “noisy”. For both color
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and hyperspectral information, some data samples are even classified as “roof”. This might be due to
the fact that materials used for construction purposes exhibit similar characteristics in the color and
hyperspectral domains as the materials of the given types of ground surfaces. Using data of different
modalities for the classification of Areas 1–3, the derived classification results still reveal characteristics
of the classification results derived with a separate consideration of the respective modalities. Yet, it
becomes visible that the classification results have a less “noisy” behavior, and tend to be favorable
in most cases. In summary, the extracted types of information reveal complementary characteristics.
Shape information does not allow separating classes with a similar geometric behavior (e.g., the
classes “mixed ground surface”, “dirt and sand”, “road” and “sidewalk”), yet particularly 3D shape
information has turned out to provide a strong indication for buildings. In contrast, color information
allows for the separation of classes with a different appearance, even if they exhibit a similar geometric
behavior. This for instance allows separating natural ground surfaces (e.g., represented by the classes
“mixed ground surface” and “dirt and sand”) from man-made ground surfaces (e.g., represented by
the classes “road” and “sidewalk”). The used hyperspectral information covers the visible domain
and the near-infrared domain for the given dataset. Accordingly, it should generally allow a better
separation of different classes. This indeed becomes visible for the PCA-based encoding, but the use
of all available hyperspectral information is not appropriate here due to the curse of dimensionality.
Consequently, the combination of shape information and a PCA-based encoding of hyperspectral
information is to be favored for the extraction of semantic information.

Regarding feature extraction, the RGB color information and the hyperspectral information
across all spectral bands can directly be assessed from the given data. Processing times required
to transform RGB color representations using the different color models are not significant. For the
remaining options, we observed processing times of 0.11 s for the PCA-based encoding of hyperspectral
information, 51.10 s for eigenentropy-based scale selection, 4.20 s for extracting 3D shape information,
and 1.55 s for extracting 2.5D shape information on a standard laptop computer (Intel Core i7-6820HK,
2.7 GHz, 4 cores, 16 GB RAM, Matlab implementation). In addition, 0.05 s were required for training
the RF classifier and 0.06 s for classifying the test data.

We also want to point out that, in the scope of our experiments, we focused on rather intuitive
geometric features that can easily be interpreted by the user. A straightforward extension would be
the extraction of geometric features at multiple scales [5,10,20] and possibly different neighborhood
types [11,22]. Furthermore, more complex geometric features could be considered [11] or deep
learning techniques could be applied to learn appropriate features from 3D data [6]. Instead of
addressing feature extraction, future efforts may also address the consideration of spatial regularization
techniques [8,10,52,67] to address the fact that neighboring data points tend to be correlated and hence
derive a smooth labeling. While all these issues are currently addressed in ongoing work, solutions for
geospatial data with low spatial resolution and only few training examples still need to be addressed.
Our work delivers important insights for further investigations in that regard.
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C03:  Mixed ground surface 
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Figure 7. Selection of three exemplary parts of the scene: Area 1 and Area 2 contain a building and its
surrounding characterized by trees and different types of ground surfaces, while Area 3 contains a few
trees and several types of ground surfaces.

RGB,norm Reference RGB C1,C2,C3 HSI,all CCIN EBCC HSI,PCA 

RGB + 3D 3D 2.5D RGB + 2.5D 3D + 2.5D HSI,PCA + 3D HSI,PCA + 2.5D HSI,PCA + 3D + 2.5D 

RGB,norm Reference RGB C1,C2,C3 HSI,all CCIN EBCC HSI,PCA 

RGB + 3D 3D 2.5D RGB + 2.5D 3D + 2.5D HSI,PCA + 3D HSI,PCA + 2.5D HSI,PCA + 3D + 2.5D 

RGB,norm Reference RGB C1,C2,C3 HSI,all CCIN EBCC HSI,PCA 

RGB + 3D 3D 2.5D RGB + 2.5D 3D + 2.5D HSI,PCA + 3D HSI,PCA + 2.5D HSI,PCA + 3D + 2.5D 

Figure 8. Derived classification results for Area 1 (top); Area 2 (center) and Area 3 (bottom).
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5. Conclusions

In this paper, we have addressed scene analysis based on multi-modal data. Using color
information, hyperspectral information, and shape information separately and in different
combinations, we defined feature vectors and classified them with a random forest classifier.
The derived results clearly reveal that shape information alone is of rather limited value for extracting
semantic information if the spatial resolution is relatively low and if user-defined classes reveal a
similar geometric behavior of the local structure. In such scenarios, the consideration of hyperspectral
information in particular reveals a high potential for scene analysis, but still typically suffers from
not considering the topography of the considered scene due to the use of a device operating
in push-broom mode (e.g., like the visible and near-infrared (VNIR) push-broom sensor ITRES
CASI-1500 involving a sensor array with 1500 pixels to scan a narrow across-track line on the
ground). To address this issue, modern hyperspectral frame cameras could be used to directly
acquire hyperspectral imagery and, if the geometric resolution is sufficiently high, 3D surfaces
could even be reconstructed from the hyperspectral imagery, e.g., via stereophotogrammetric or
structure-from-motion techniques [73]. Furthermore, the derived results indicate that, in contrast
to the use of data of a single modality, the consideration of multi-modal data represented by
hyperspectral information and shape information allows deriving appropriate classification results
even for challenging scenarios with low spatial resolution.
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